
Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-1

UNIT 1 – INTRODUCTION TO PROGRAMMING THROUGH APP INVENTOR

UNIT 1 – INTRODUCTION TO PROGRAMMING THROUGH APP INVENTOR .. 1

THE MOST IMPORTANT LESSON OF THE ENTIRE COURSE .. 4

THE MOST IMPORTANT LESSON OF THE ENTIRE COURSE .. 4
PLANNING AND DEVELOPING SOLUTIONS TO SOFTWARE DEVELOPMENT PROBLEMS .. 4

Wrong!!!!! .. 4
Right!!!!!! (George Polya) ... 4
How these Steps Apply to Software Development .. 4

WHAT IS A PROGRAM? WHAT IS A PROGRAMMING LANGUAGE? .. 5
IMPORTANT TERMINOLOGY ... 5

Program ... 5
Programming Language ... 5
Code ... 5
Bug ... 5
Algorithm .. 5

LEARNING THE ESSENTIAL FEATURES OF APP INVENTOR ... 6

BRIEF DESCRIPTION AND HISTORY OF APP INVENTOR FOR ANDROID .. 6
OVERVIEW OF APP INVENTOR 2 ... 6

How to Access App Inventor... 6
How to Work with App Inventor ... 6
The MyProjects Page ... 7
The Design Page .. 7
The Blocks Editor ... 7

PAINTPOT: CREATING YOUR FIRST APP ... 8

STEP 1: CREATING THE PAINTPOT APP .. 8
STEP 2: USING THE COOK/CHEF ANALOGY TO UNDERSTAND THE LOGIC OF THE PAINTPOT APP .. 8
EXERCISES ... 10

SOME IMPORTANT NOTES ON MEANING! ... 11

THE MEANING OF THE “DOT” .. 11
THE MEANING OF “SET” AND “GET” ... 11
THE MEANING OF “INITIALIZE” ... 11
THE MEANING OF “CALL” ... 11

CREATING MORE APPS – MORE EXAMPLES .. 12

RESOURCES .. 12
WARNING! ... 12

CREATING MORE APPS – MAKING YOUR OWN!.. 12

INTRODUCTION .. 12
METHOD 1 – IMPROVE AN EXISTING APP: MOLEMASH EXTREME VERSION .. 12
METHOD 2 – CREATE YOUR OWN APPS!... 13
UPCOMING ASSIGNMENT ... 13

UNDERSTANDING MOLEMASH ... 14

THE CO-ORDINATE SYSTEM OF A CANVAS .. 14
QUESTIONS .. 14

USING “MOLEMASHIMPROVED” TO REVIEW APP INVENTOR MAIN IDEAS ... 15

REVIEW: EXPLAIN APP INVENTOR MAIN IDEAS .. 17

APPRECIATING THE POWER OF PROGRAMMER-DEFINED PROCEDURES .. 18

OVERVIEW OF PROCEDURES .. 18
EXAMPLES ... 18
ADVANTAGES OF PROGRAMMER-DEFINED PROCEDURES .. 19
EXAMPLES ... 19
EXERCISES ... 20

https://d.docs.live.net/0db3bfbf9f90458d/Documents/02-Cpss/00-Current%20Courses/Ics3uo/2.%20Unit%201%20-%20Introduction%20to%20Programming%20through%20AI2/Unit%201%20-%20%20Introduction%20to%20Programming%20through%20App%20Inventor.docx#_Toc464644560
https://d.docs.live.net/0db3bfbf9f90458d/Documents/02-Cpss/00-Current%20Courses/Ics3uo/2.%20Unit%201%20-%20Introduction%20to%20Programming%20through%20AI2/Unit%201%20-%20%20Introduction%20to%20Programming%20through%20App%20Inventor.docx#_Toc464644561

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-2

GENUINE PROBLEM SOLVING SPLITTERBUST: A VARIATION OF MOLEMASH/MILEYBASH 21

UNDERSTANDING THE NATURE OF THE GAME ... 21
PLANNING BEFORE CODING .. 21
BUILDING THE APP .. 22

APP INVENTOR: REVIEW OF MAIN IDEAS ... 23

CONCEPT ... 23
APPEARANCE/EXAMPLES OF USE... 23
EXPLANATION .. 23
CONCEPT ... 24
APPEARANCE/EXAMPLES OF USE... 24
EXPLANATION .. 24
CONCEPT ... 25
APPEARANCE/EXAMPLES OF USE... 25
EXPLANATION .. 25
CONCEPT ... 26
APPEARANCE/EXAMPLES OF USE... 26
EXPLANATION .. 26

INTRODUCTION TO LOOPS: LINE DRAWING PROBLEMS .. 27

INTRODUCTION .. 27
PROBLEM ... 27
HINTS ... 27
EXPLANATION .. 27
GENERATING THE PICTURES IN APP INVENTOR .. 28
EXPLANATION OF THE MORE EFFICIENT METHOD .. 28
SUMMARY .. 28

Counted Loops (“For Loops”) ... 28
PROBLEMS ... 29

LINE DRAWING CHALLENGE – THE PLACEMAT SPIRAL... 30

CHALLENGE ... 30
HINTS ... 30

CIRCLE DRAWINGS... 31

EXERCISES ... 31

GPA: APP INVENTOR CHALLENGE PROBLEM ... 32

EXAMPLE ... 32
HINTS ... 32

PROGRAMMING PROBLEMS WHOSE SOLUTIONS REQUIRE THE USE OF COUNTED (“FOR”) OR CONDITIONAL

(“WHILE”) LOOPS 33

Algorithm .. 33
LOOPING STRUCTURES: COUNTED VERSUS CONDITIONAL ... 33

EUCLID AND THE GCD ... 35

DEFINITION OF GCD .. 35
Examples .. 35

BRUTE FORCE (EXHAUSTIVE SEARCH) ALGORITHM FOR COMPUTING THE GCD OF TWO INTEGERS ... 35
APP INVENTOR CODE FOR “BRUTE FORCE” GCD ALGORITHM .. 36

Questions .. 36
DESCRIPTION OF EUCLID’S (FAST) METHOD FOR COMPUTING THE GCD OF TWO INTEGERS ... 37
EXAMPLE ... 37
YOUR TASK ... 37
ENRICHMENT QUESTIONS .. 37

SOLUTIONS TO SELECTED PROBLEMS REQUIRING LOOPS ... 38

QUESTIONS .. 42

APP INVENTOR REVIEW PROBLEMS #1 ... 43

https://d.docs.live.net/0db3bfbf9f90458d/Documents/02-Cpss/00-Current%20Courses/Ics3uo/2.%20Unit%201%20-%20Introduction%20to%20Programming%20through%20AI2/Unit%201%20-%20%20Introduction%20to%20Programming%20through%20App%20Inventor.docx#_Toc464644626

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-3

APP INVENTOR REVIEW PROBLEMS #2 ... 44

APP INVENTOR REVIEW PROBLEMS #3 ... 45

NOTE ... 45

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-4

THE MOST IMPORTANT LESSON OF THE ENTIRE COURSE

The Most Important Lesson of the Entire Course

The process of writing a program can be viewed as a form of “teaching.” Whenever you write any computer

program, you are, in a sense, “teaching” a computer how to solve a particular problem. KEEP IN MIND THAT

YOU CANNOT “TEACH” A COMPUTER TO SOLVE A PROBLEM THAT YOU DO NOT KNOW HOW TO SOLVE!

BEFORE YOU EVEN ATTEMPT TO WRITE CODE (PROGRAMMING INSTRUCTIONS), FIRST YOU MUST DEVISE A STRATEGY!

BEFORE YOU CAN DEVISE A STRATEGY, YOU MUST ENSURE THAT YOU UNDERSTAND THE PROBLEM! THE FOLLOWING

TABLE DESCRIBES A SOUND APPROACH TO SOFTWARE DEVELOPMENT. IF YOU HOPE TO BE SUCCESSFUL, FOLLOW THE

GUIDELINES IN THE SECOND AND THIRD COLUMNS. DO NOT FOLLOW THE STEPS IN THE FIRST COLUMN!

Planning and Developing Solutions to Software Development Problems

Wrong!!!!!
Right!!!!!!

(George Polya)
How these Steps Apply to Software Development

1. Read

problem

2. Type

code

3. Run the

program

1. Understand

the problem

(Analysis)

1. Before you begin constructing a solution to a problem, you must know exactly

what is required. Otherwise, you run the risk of solving the wrong problem or

providing an incomplete solution to a given problem. In particular, you need to

know what the output of the program should be given every possible input.

2. Choose a

strategy

(Design)

2. You may design an interface for your program at this stage but you MUST NOT

write any code yet! In addition, it is important to consider a variety of algorithms.

Break up the large problem into several smaller sub-problems. Choose algorithms

that best balance user ease, execution speed, programming complexity (ease of

implementation) and storage requirements.

3. Carry out the

strategy
(Implementation)

3. At this stage, you write code but NOT all in one fell swoop. Write code for one

sub-problem at a time. Do not integrate a solution to a sub-problem into the larger

solution until you are confident that it is correct. It is also wise to save each

version of your program. In case of a catastrophe, you can always go back to an

earlier version.

4. Check the

solution

(Validation)

4. Extensive testing should take place to find bugs that were not noticed in the

implementation phase. It is best to allow the testing to be done by average

computer users who are not programmers. Because of their computer expertise,

programmers unconsciously tend to avoid actions that cause computer programs to

fail. Once the software is released, additional bug fixes will usually be necessary

as users report previously undiscovered bugs. This is known as the maintenance

phase.

? Input Output

I told you to solve

that problem for me!

It doesn’t matter that

I can’t solve it!

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-5

What is a Program? What is a Programming Language?

Important Terminology

Program

 A program is a sequence of instructions that a computer can interpret and execute. (“Execute” means “carry

out” in this context.)

Programming Language

 A programming language is a very precise and unambiguous language that is designed to allow

instructions to be given to a computer.

Code

 Programming instructions are often called “code.” Programmers say that they are “writing code” when they

write programs.

Bug

 A fault or defect in a computer program, system, or machine. Bugs are usually due to design flaws.

Algorithm

 An algorithm is a systematic procedure (finite series of steps) by which a problem is solved. Long division is

an example.

 The steps of a particular algorithm remain the same whether you solve a problem by hand or by computer.

 In cooking, algorithms are called recipes.

 Algorithms have been worked out for a wide range of problems.

 For many problems, there exist many different algorithms.

 For some problems, there are no known efficient algorithms (too slow and/or require too much memory).

e.g. What are the prime factors of a number?

 Some problems cannot be solved by a computer (i.e. no algorithm exists that can be implemented on a

computer).

Why doesn’t this

computer follow my

instructions? It listens
even less than my

boyfriend does!

Why doesn’t this computer

understand what I’m typing?
It understands me even less

than my girlfriend does!

Doesn’t she know that I

don’t understand

English? I only
understand my CPU’s

machine language!

Doesn’t he realize that he needs

a programming language to

write software? I can’t process

instructions given in English!

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-6

LEARNING THE ESSENTIAL FEATURES OF APP INVENTOR

Brief Description and History of App Inventor for Android

 Allows anyone to create software applications (“apps”) for the Android Operating System

 The Android Operating System is used on several different mobile devices including models made by

Samsung, HTC, LG, Motorola, Sony, Alcatel, Archos, Kyocera, Dell, Xperia, Excite, Asus, Sanyo, Acer, etc

 Originally provided by Google and called “Google App Inventor”

 Google terminated support for App Inventor on December 31, 2011 but donated the project to MIT

 Since then, the application has been maintained by MIT (Massachusetts Institute of Technology)

 Now called “MIT App Inventor 2” (original version now called “MIT App Inventor Classic”)

Overview of App Inventor 2

How to Access App Inventor

 Requires a Google account. Visit https://accounts.google.com/NewAccount if you don’t have one.

 Once you have a Google account, log on to App Inventor at http://ai2.appinventor.mit.edu/

 To test your app while you are developing it, you may choose one of the following options:

(a) Preferred Method: Use any supported mobile device running the Android operating system.

Such a device can be connected to App Inventor by Wi-Fi or with a USB cable. In either case,

the “MIT AI2 Companion” app must be installed on your mobile device.

(b) Use the App Inventor Android Emulator. This option is provided to allow app development

even when an Android device is not available. (Unfortunately, the emulator tends to be slow

and crash prone.) To use this option, the “App Inventor 2 Setup Package” must be installed on

your computer. Details can be found at http://appinventor.mit.edu/explore/ai2/setup.html.

How to Work with App Inventor

 My Projects Web Page

What you usually see when you first log on

Create New Project, Open Existing Project, Delete Projects, etc

 Design Web Page
Tools for Designing the User Interface

Palette, Viewer, Components List, Properties List

 Blocks Editor Web Page
Tools for Specifying the Logic (i.e. Behaviour) of the App

In other words, the blocks editor allows the programmer to specify instructions for the app

App Inventor

My Projects
Web Page

Design Web
Page

Blocks Editor
Web Page

https://accounts.google.com/NewAccount
http://ai2.appinventor.mit.edu/
http://appinventor.mit.edu/explore/ai2/setup.html

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-7

The MyProjects Page

The Design Page

The Blocks Editor

Used to Select

Components for

the User

Interface

Used to View the

Arrangement of

Components on

the User

Interface

Components

Listed by Name

and Organized

by Hierarchical

Relationship

List of Properties

of the

Component

Selected in the

Components List

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-8

PAINTPOT: CREATING YOUR FIRST APP

Step 1: Creating the PaintPot App

This part is easy! All you need to do is follow the instructions on the following Web page:

http://www.appinventor.org/paintpot2-steps

If you follow the instructions very carefully, the app should function correctly. In the event that it does not

work as expected, check your blocks carefully to ensure that they are exactly as shown in the above document.

Step 2: Using the Cook/Chef Analogy to Understand the Logic of the PaintPot App

As can easily be appreciated from the above analogy, it is not enough merely to follow existing programs. All

programmers must also be able to develop new software from scratch. To accomplish this, it is obviously very

important to understand programming concepts. A detailed description of the programming concepts used in

PaintPot is given below.

Picture Programming Concepts

Variable

 A variable is a name that is used to represent a value that is

stored in a computer’s main memory (i.e. in the RAM).

 Variables are used whenever information needs to be

“remembered” (i.e. “memorized”) for later use.

 The concept of variable in computer science is similar but not

identical to the concept of variable in mathematics.

 One key difference is that in mathematics, variable names must

have a length of exactly one character. For example, the variable

name “x” is allowed but the variable name “xavier” is not allowed

because it would be interpreted as “x times a times v times i times

e times r.”

 In computer science, variable names can contain more than one

character because the multiplication operator (*) cannot be

omitted. Thus, the name “xavier” would be seen as a single

entity and not a series of multiplications.

 In most cases, variable names in programming should contain

more than one character because descriptive names make

programs far easier to understand. For example, “dotSize” is far

more meaningful than “x,” “y” or “d.”

Cook
Follows
Existing
Recipes

Chef
Understands
how to Create
New Recipes

You in Step 1

Followed
Existing
Program

An Experienced
Programmer

Understands
how to Create
New Programs

Name of

Variable

Value of

Variable

(a) In the first example, the variable

“dotSize” is created and given an

initial (starting) value of 10.

(b) In the second example, the value of

“dotSize” is changed. Its value is

set to the same value as that of the

variable “thumbPosition.”

(c) The modifier “global” means that

the variable is can be accessed and

changed by any procedure. In

addition, the value of the variable

will remain stored in memory for as

long as the app is running.

http://www.appinventor.org/paintpot2-steps

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-9

Picture Programming Concepts

Procedure (aka Subprogram, Subroutine)

 In App Inventor, a procedure is used to group

together one or more instructions.

 Each procedure has a unique name.

 Some procedures are executed automatically when a

specific event occurs. These are called event-

handling procedures or just event handlers.

 Other procedures are executed in response to a

specific instruction called a “call” of the procedure.

Event

 An event is an occurrence that takes place while a

program is running. Events are used to trigger the

execution of specific instructions.

 Examples of events include “Click,” “LongClick,”

“GotFocus,” “LostFocus,” “Dragged” and

“Touched.”

Property

 Every component has

Properties, which

store information on

characteristics of the

component.

 A property can be

considered a variable

that belongs to a

component.

 Examples of

properties include

“Height,” “Text” and

“Width.”

Method

 Every component has

Methods, which are

actions that are

associated with the

component.

 A method can be

considered a

procedure that

belongs to a

component.

 Examples of methods

include

“DrawCircle,” and

“DrawLine.”

Procedure. The instructions within

the block are executed when the

“Click” event occurs on “RedButton.”

Name of

Component

(aka Object)

Name of the Event

that causes execution

of procedure block

Name of a

Property of a

Component

Value of the

“PaintColor”

Property

Procedure Block with Parameters

The instructions within the block are executed when the

“Touched” event occurs on “DrawingCanvas.” The

parameters of this procedure block are the variables x, y

and touchedSprite.

Name of

Component

(aka Object)

Name of the Event

that causes execution

of the procedure

Name of a

Method

The Arguments passed to the

“DrawCircle” method. The

values of x and y come from

the parameters x and y of the

procedure block

“DrawingCanvas.Touched.”

The radius of the circle comes

from the value of “dotSize.”

The Parameters of the

“DrawingCanvas.Touched”

procedure block. These are

special variables that are used

to pass information to the

procedure block. In this

example, the parameters x and

y store the co-ordinates of the

point that is touched on

“DrawingCanvas.” The

parameter “touchedSprite” is

used for animations.

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-10

Exercises

Study the following diagram. Then answer the questions found below the diagram.

1. “dotSize” is the name of a _______________________________. These are used to __________________

__.

2. “Touched,” “Dragged,” “AfterPicture,” “PositionChanged” and “Click” are names of _________________.

3. “Canvas1,” “Camera1,” “Slider1,” “RedButton,” “BlueButton,” “GreenButton,” “ClearButton” and

“Canvas1TakePictureButton” are names of _______________________.

4. “Canvas1.Touched,” “Canvas1.Dragged,” “Camera1.AfterPicture,” “Slider1.PositionChanged” and

“RedButton.Click” are names of _______________________________ , which are procedures that are

executed automatically in response to _________________.

5. “PaintColor” and “BackgroundImage” are ______________________________ , which are

____________________ or _______________________ of components.

6. “DrawCircle,” “DrawLine,” “Clear,”and “TakePicture” are ____________________________ , which are

____________________ that belong to _______________________ components.

7. The names “x,” “y,” “touchedSprite,” “startX” and “startY” are all examples of ______________________.

These are used to ___ .

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-11

SOME IMPORTANT NOTES ON MEANING!

The Meaning of the “Dot”

In App Inventor, the dot serves three purposes:

1. Separates the component name from a property name

2. Separates the component name from a method name

3. Separates the component name from an event name

The Meaning of “Set” and “Get”

According to the Oxford English Dictionary (OED) “Dictionary Facts” Web page

(http://public.oed.com/history-of-the-oed/dictionary-facts/), the verb “set” can be used in 430 different senses.

In fact, as shown in the following passage copied directly from the Web page mentioned above, the verb “set” is

the longest entry in the entire OED!

Longest entry in Dictionary: the verb ‘set’ with over 430 senses consisting of approximately 60,000 words or

326,000 characters

The word “get” also can also be used in numerous senses.

For our purposes, it is very important that we understand the senses in which “set” and “get” are used in App

Inventor. This is explained below.

Verb: set Verb: get
Decide upon definitely; give a value

“Set the thermostat to 20 degrees Celsius, please.”

Go or come after and bring or take back

“Get me those books over there, please.”

Assign (give) the variable “gradePoint” a value of 4.

Retrieve (bring back) the value of “gradePoint” from memory.

The Meaning of “Initialize”

Verb: initialize
Assign (give) an initial (starting) value to

This creates the global variable “x” and assigns it an initial value of 3.

The value of a global variable can be accessed and changed by any

procedure. A global variable should be used whenever two or more

procedures need to access or change its value.

The Meaning of “Call”

Verb: call
Execute a procedure (a named subprogram)

This calls (executes) the procedure (subprogram) called

“gradePointValue.” The variable “percentMark” can be

thought of as an “input” of the procedure.

Property

Method

Event

Component

http://public.oed.com/history-of-the-oed/dictionary-facts/

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-12

CREATING MORE APPS – MORE EXAMPLES

Resources

1. App Inventor 2 Course-In-A-Box: http://www.appinventor.org/content/CourseInABox/Intro/courseinabox

2. App Inventor 2 Book: http://www.appinventor.org/book2

3. S:\OUT\Nolfi\ICS3U0\00-AppInventor\0. App Inventor 2 Files

Warning!

By following the instructions in the resources listed above, you will be able to

create many impressive and interesting apps. However, you must always keep

in mind that the ultimate objective is to UNDERSTAND PROGRAMMING

CONCEPTS. This means that you must THINK CRITICALLY AS YOU

WORK. Once you develop a sufficient understanding of the concepts, you will

be well on your way to developing your own apps and more importantly, you

will be well on your way to being able to

THINK FOR YOURSELF!

CREATING MORE APPS – MAKING YOUR OWN!

Introduction

Now that you have gained experience creating apps by following detailed instructions, it’s time to “cut the

umbilical cord.” It should be obvious to you that to be a genuine software developer, you should be able to

create apps without following detailed instructions. If this seems difficult at first, don’t despair! Just keep the

following simple equation in mind and eventually you’ll develop the instincts that will allow you to create

software at will.

Problem

Solving Skills + Creativity + Logic +
Understanding

of Concepts +
Discipline and

Perseverance =
Great

Apps!

Method 1 – Improve an Existing App: MoleMash Extreme Version

A. Create the “MoleMash” app. (http://www.appinventor.org/bookChapters/chapter3.pdf). Before proceeding

to the next step, please ensure that you understand the “MoleMash” app fully!

B. Add the following features to the MoleMash app:

1. Levels of Difficulty: “Easy,” “Medium,” “Difficult” (e.g. the game can be made more challenging by

increasing mole speed, decreasing size of the mole picture, etc)

2. A pleasant sound is played when the mole is hit.

3. The mole picture changes briefly when the mole is hit.

4. A rude sound is played when the mole is missed.

5. The game ends after a certain number of hits and misses, after which the player is declared either a

winner or a loser.

6. To begin the game, the player enters his/her name.

http://www.appinventor.org/content/CourseInABox/Intro/courseinabox
http://www.appinventor.org/book2
http://www.appinventor.org/bookChapters/chapter3.pdf

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-13

7. A “bonus image” is occasionally displayed for a brief time. Bonus points are awarded for tapping the

bonus image.

8. A “penalty image” moves about the canvas in proximity to the mole image. If the player taps the

penalty image instead of the mole, the player loses points.

9. List any other improvements you can think of in the space provided below:

Method 2 – Create your own Apps!

There is no better way to learn about programming than to create your own apps! You are strongly encouraged

to unleash your imagination and explore whatever ideas come to mind!

Upcoming Assignment

Very soon, you will create your first app that is to be submitted to the teacher for evaluation.

At this stage, you should begin collecting ideas. Keep a record of ALL your ideas, regardless of how crazy you

might think they are. When the time comes to develop your app, you can select your most realistic ideas and

save the others for future projects.

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-14

UNDERSTANDING MOLEMASH

The Co-Ordinate System of a Canvas

The diagram at the right shows the co-ordinate system used in the

MoleMash game. Notice the following features of the co-ordinate system:

A. The origin is at the top-left corner of the canvas.

B. The x-axis is horizontal.

C. The y-axis is vertical but upside-down.

Questions

Refer to the diagram at the right whenever necessary.

1. Fill in the blanks. Your goal is to understand the logic and the meaning

of the given blocks.

(a) “MoveMole” is a _______________________________ , which is a ____________________________

__ .

(b) “MoveTo” is a _______________________________ , which is a ______________________________

__ .

(c) The special variables “x” and “y” are called ____________________ . They represent the ___ and ___

co-ordinates of the top-left corner of the _______________ image sprite. Both of these variables are

given random integer values. Explain the following:

Why is “x” given a random integer value ranging from 0 to Canvas1.Width – Mole.Width?

Why is “y” given a random integer value ranging from 0 to Canvas1.Height – Mole.Height?

2. The “MoleMash” app uses a “clock” component. Explain in detail how this component works and its

specific purpose in the “MoleMash” app.

x-axis

y-axis

The mole’s

co-

ordinates

correspond

to the
image

sprite’s

top-left

corner.

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-15

USING “MOLEMASHIMPROVED” TO REVIEW APP INVENTOR MAIN IDEAS

 Upload “MoleMashImproved” from “S:\OUT\Nolfi\ICS3U0\00-AppInventor\0. App Inventor 2 Files” to

your “My Projects” page.

 After testing “MoleMashImproved” and studying its blocks carefully, answer the following questions:

1. Identify and Explain Purpose

(a) List all the procedure names in the blocks shown at the left.

(b) List all the component names in the blocks shown at the left.

(c) List all the event names in the blocks shown at the left.

(d) List all the property names in the blocks shown at the left.

(e) Explain the purpose of “Screen1.Initialize.”

(f) Explain the purpose of “MoleClock.Timer.”

(g) Explain the purpose of “call MoveMole.”

(h) Explain the purpose of “call resetGame.”

(i) Explain the purpose of the “resetGame” procedure. Is

“resetGame” an event handler?

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-16

2. Explain Purpose

(a) What are “x,” “y” and “touchedAnySprite?” What is their purpose? Be specific!

(b) Explain the purpose of the “if” block as well as the “not” and “and” blocks. Again, be specific!

(c) What is the purpose of “set MissesLabel.Text to MissesLabel.Text +1?”

3. Explain Concepts

(a) Explain why it makes sense to create a procedure like “MoveMole” rather than copying and pasting

instructions.

(b) How many times is “MoveMole” called in “MoleMashImproved?” Explain the purpose of these calls.

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-17

REVIEW: EXPLAIN APP INVENTOR MAIN IDEAS

Explain each of the following:

1. Component

2. Property

3. Method

4. Event

5. Procedure

6. Event Handler

7. Click Event

8. Initialize Event

9. Timer Event

10. Text Property

11. Variable

12. Call

13. Parameter/Argument

14. if block

15. Image

16. Sprite

17. random integer

18. Canvas

19. Width Property

20. Height Property

21. Co-ordinate System

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-18

APPRECIATING THE POWER OF PROGRAMMER-DEFINED PROCEDURES

Overview of Procedures

Examples

Event Handlers Methods

Programmer-Defined (without Result) Programmer-Defined (with Result)

Mathematical Functions String (Text) Functions

Procedures
(aka "Subroutines" and

"Subprograms)

Event Handlers Methods
Programmer-

Defined
Procedures

Built-in (Intrinsic)
Procedures

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-19

Advantages of Programmer-Defined Procedures

 Eliminate repetitive code by encapsulating (i.e. enclosing) the solution to a problem in a procedure.

 The program is more concise and better organized, making it much easier to understand.

 Debugging is much easier because bugs are localized to a particular procedure.

 Making changes is much easier because modifications only need to be made within a particular

procedure.

 Well-designed procedures can be reused in other programs. (The problem is solved once and for all!)

Examples

1. Write a procedure that disables all the sprites in the “SplitterBust” game.

2. Write a procedure (with a result) that calculates the length of a line segment given the co-ordinates of its

endpoints.

A = horizontal distance = difference of the x-co-ordinates

B = vertical distance = difference of the y-co-ordinates

C = distance between the two points = hypotenuse of right triangle

By the Pythagorean Theorem,
2 2 2C A B and therefore,

2 2C A B

A

B

2 2A B

2 2A B

Return (“Output”) the Result

Local Variables
 Should be used whenever possible

 Exist only within the procedure in which they are

defined and only while the procedure is being

executed

 Only use memory (RAM) while procedure is running

 Cannot cause bugs in other procedures

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-20

Exercises

1. Write a procedure with a result that takes the endpoints of a line segment as inputs and returns

(i.e “outputs”) the midpoint of the line segment. Hint: Use a list to store the co-ordinates of the midpoint.

2. Write a procedure with a result that takes the coefficients of a quadratic function 2f x ax bx c as

inputs and returns (i.e “outputs”) the roots (solutions) of the quadratic equation
2 0ax bx c .

Hint: Use a list to store the roots of the quadratic equation.

Challenge: Return the roots even when there are no real roots. Use i to represent 1 .

Theory

The quadratic formula
2 4

2

b b ac
x

a

 is the general solution of the quadratic equation

2 0ax bx c .

Examples

1. 2 5 6 0x x

25 5 4 1 6

2 1
x

 2x or 3x (two real roots)

2. 2 2 1 0x x

2
2 2 4 1 1

2 1
x

 2x (one real root)

3. 2 4 5 0x x

24 4 4 1 5 4 4 4 2 1 4 2 1
2 1

2 1 2 2 2 2
x

In this case there are no real roots but there are two complex roots: 2x i , 2x i

The x-co-ordinate of the midpoint is the

average of the x-co-ordinates of the endpoints.

This means that it is located exactly halfway

between the x-co-ordinates of the endpoints.

The y-co-ordinate of the midpoint is the

average of the y-co-ordinates of the endpoints.

This means that it is located exactly halfway

between the y-co-ordinates of the endpoints.

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-21

GENUINE PROBLEM SOLVING

SPLITTERBUST: A VARIATION OF MOLEMASH/MILEYBASH

Understanding the Nature of the Game

SplitterBust is a variation of the much loved

MoleMash and MileyBash games. Instead of one or

two sprites moving about a canvas, SplitterBust has

seven sprites moving simultaneously! Each sprite

contains a picture of one of the members of the

notorious rappers known as the Split Personalities.

In addition to more sprites moving at the same time,

SplitterBust also has ALL the following features:

 Each splitter moves at a different speed. Some

move slowly while others move more quickly. The

faster-moving sprites move in front of the slower-

moving ones (see the “Z” property).

 The slow-moving sprites move in straight lines. They change direction only when bouncing off an edge.

 The fast-moving sprites move rapidly from one random location to another. Unlike the slow-moving sprites,

the path taken from one random location to another is not seen by the user. The sprites simply “pop” quickly

from one location to another.

 Each time a picture of one of the slow-moving splitters is touched, the picture disappears for exactly thirty

seconds. Immediately after the thirty-second period elapses, the splitter reappears moving twenty-five

percent faster. Once the slow-moving sprite achieves a speed that is at least twice that of its original speed,

its behaviour changes to that of a fast-moving sprite.

 Each time a picture of one of the fast-moving splitters is touched, the picture disappears for exactly thirty

seconds. Immediately after the thirty-second period elapses, the splitter reappears moving twenty-five

percent slower. Once the fast-moving sprite achieves a speed that is half that of its original speed or slower,

its behaviour changes to that of a slow-moving sprite.

 If the user is fast enough to make all the pictures disappear before

any of them reappear, the game ends and the user wins.

 If any of the pictures are still in motion after ten minutes of play,

the game ends and the user loses the game. In this case, Mr. T’s

picture appears and the line, “I pity the fool who messes with the

splitters!” is played over the speakers.

Planning BEFORE Coding

Programming is the art of “TEACHING” computers how to solve problems.
You CANNOT “teach” a computer to solve a problem that you DO NOT know how to solve!

A. Important Components and their Properties/Methods/Events

ImageSprite

Properties: Picture, Enabled, Interval, Rotates, Visible, Heading, X, Y, Z, Speed, Width, Height

Methods: Bounce, CollidingWith, MoveIntoBounds, MoveTo, PointInDirection, PointTowards

Events: CollidedWith, Dragged, EdgeReached, NoLongerCollidingWith, Touched, TouchDown, TouchUp, Flung

Jazzy

Street

YouTube

Junkie

Mono

Tune

SPLIT

Poppa

Cricket Rabid

JiveMan

Addy

Manic

I pity the fool

who messes

with the

splitters!

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-22

Clock

Properties: TimerEnabled, TimerInterval, TimerAlwaysFires

Methods: SystemTime, Now, MakeInstant, MakeInstantFromMillis, GetMillis, … (too many to list)

Events: Timer

References

http://ai2.appinventor.mit.edu/reference/components/animation.html

http://ai2.appinventor.mit.edu/reference/components/sensors.html

B. THINKING about the Features of SplitterBust

Write a brief explanation of how you will implement each of the features described above.

1.

2.

3.

4.

5.

6.

7.

Building the App

(a) Implement only ONE feature at a time.

(b) Test thoroughly after adding each feature. Do not wait until it is too late!

(c) Reflect upon your work. Could your coding be made simpler, more efficient or easier to understand?

(d) Be creative! Think of new features that could make the game more challenging or more enjoyable.

http://ai2.appinventor.mit.edu/reference/components/animation.html
http://ai2.appinventor.mit.edu/reference/components/sensors.html

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-23

APP INVENTOR: REVIEW OF MAIN IDEAS

Complete the following table. Please ensure that your responses are brief, to the point and accurate.

Concept Appearance/Examples of Use Explanation

Variable

 Global

 Local

 Parameter

Address the following in your answer:

purpose of variables, difference between “get” and “set,”

why it is preferable to use local variables whenever possible,

the circumstances under which global variables must be used

Component

 Properties

 Methods

 Events

Address the following in your answer:

purpose of properties, methods, events, why a property can

be considered a variable that belongs to a component, why a

method can be considered a procedure that belongs to a

component

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-24

Concept Appearance/Examples of Use Explanation

Procedure

 Event Handler

 Method

 Programmer-

defined (with

and without

result)

 Built-in

Function/Proc-

edure

Address the following in your answer:

purpose of procedures, purpose of parameters, how an

event handler differs from other procedures, how a

method differs from other procedures, how a programmer-

defined procedure differs from a built-in procedure,

meaning of call

Conditional

 If…Then

 If…Then

Else

 If…Then

ElseIf … Then

ElseIf … Then

…

Else

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-25

Concept Appearance/Examples of Use Explanation

Math Operations

 +, −, *, /, ^

 Random

Numbers

 Rounding

 Quotient and

Remainder

Address the following in your answer:

How does a computer generate random numbers? Are

these numbers truly random? What is the difference

between “/” and “quotient?” On what type of data can

mathematical operations be applied?

Types of Data

 Numeric

 Text (“String”)

 Logical

Address the following in your answer:

Why are these three types of data incompatible with one

another?

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-26

Concept Appearance/Examples of Use Explanation

List

 Create list

 Add item to list

 Delete from list

 Select item from

list

 Search for an

item in a list

Address the following in your answer:

Why would you use a list? What does a list allow you to do?

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-27

INTRODUCTION TO LOOPS: LINE DRAWING PROBLEMS

Introduction

Although we most definitely perceive a curve in the picture at

the right, the picture itself was created by drawing only a

series of straight lines. No curves were actually drawn! Why

then do we seem to see a curve? The answer to this question

has everything to do with how our brains construct the

“reality” that we “see.” Since every straight line in this

diagram is tangent to the curve that we “see,” our brains take

all the points of tangency and “connect” them to create the

perception of a curve.

Problem

Use App Inventor to create an app that can generate the

diagram at the right.

Hints

1. Use a “Canvas” component.

2. In addition, your app will need to use the “DrawLine” method of a “Canvas” component.

3. You need to understand the co-ordinate system that is used for “Canvas” components.

4. There is a definite pattern that governs how the lines are drawn. Before attempting to create blocks for your

app, you must figure out the pattern!

Explanation

The main idea behind reproducing pictures like the one given above is to use the idea of “reverse engineering.”

That is, we try to “take apart” the picture to understand how it was created in the first place.

For convenience, the canvas size is set to 300 pixels by 300 pixels. This not only fits nicely on most cell phone

screens but it also takes advantage of the fact that the number 300 has many divisors (i.e. 1, 2, 3, 4, 5, 6, 10, 12,

15, 20, 25, 30, 50, 60, 75, 100, 150, 300).

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-28

Generating the Pictures in App Inventor

Method 1- Easy to Understand but Tedious Method 2 – Harder to Understand but much more Efficient

.

.

.
The remaining eighteen blocks have been

omitted to save space.

Explanation of the more Efficient Method

The “for range” block is an example of what computer

scientists call counted loops. Counted loops are used to repeat

one or more instructions a set number of times. The following

explains the details of the above “for each” loop:

 The call to the “DrawLine” method is shown only once

BUT it is repeated a number of times determined by the

values of “from,” “to” and “by.” Assuming that the value of

“by” is 15, the loop repeats exactly twenty-one times.

 The variable “y” is called a loop counter variable. Its value is

changed automatically after every repetition.

 The amount by which the loop counter’s value changes is

specified by the value of “by.” To generate the picture on the

first page of this section, the value of “by” must be set to 15.

In the above example, the value of “y” increases by 15 after

each repetition because the value of “by” is 15.

 The value of “y” ranges from 0 to 300 because the “from”

and “to” values are set respectively to 0 and 300. This

explains the name of the “for each” block.

 Thus, assuming that the value of “increment” is 15, “y” takes

on the values 0, 15, 30, 45, …, 270, 285, 300, after which the

loop terminates (i.e. stops repeating).

Summary

Counted Loops (“For Loops”)

These are used when the number of repetitions is known at design-time (i.e. while the program is being

designed) or can be calculated at run-time (i.e. when the program is running). Whether looping continues or

terminates is based on a count. The number of repetitions of such loops is always predictable.

Analogy: Add three teaspoons of sugar to the coffee. Repeat the act of adding one teaspoon of sugar 3 times.

Initial Value of “y”

Final Value of “y”

Amount by which the

value of “y” changes

after each repetition

The variable “y” is called a loop

counter variable. Such variables

are local to the “for each loop” in

which they are defined. Their

purpose is to keep track of the

repetition count.

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-29

Problems

Use graph paper and a table of values to determine the pattern that is used to create each picture. Then create

App Inventor apps that generate each of the following pictures. Your app must be able to draw the picture all at

once and in an animated way (i.e. one line at a time)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-30

LINE DRAWING CHALLENGE – THE PLACEMAT SPIRAL

Challenge

Create an App Inventor app that generates the following picture (often called a “placemat spiral”) using nothing

but straight lines!

Hints

For more information, see http://larc.unt.edu/ian/art/4ants/ .

http://larc.unt.edu/ian/art/4ants/

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-31

CIRCLE DRAWINGS

Exercises

Create App Inventor apps that generate each of the following pictures. Your app must be able to draw the

picture all at once and in an animated way (i.e. one circle at a time)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Co-ordinates of

Centre of Circle

Radius of Circle

Circle not Filled

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-32

GPA: APP INVENTOR CHALLENGE PROBLEM

1. Most high schools in the United States, as well as almost all universities in North America, use a grading

system known as the grade point system. In the grade point system, letter grades (i.e. A, B, C, etc.) are

replaced with numeric values. This allows an average, known as the grade point average or GPA, to be

computed. The actual scale used for grade point averaging purposes varies from jurisdiction to jurisdiction

and from institution to institution. The one shown below is used at the University of Toronto.

Percentage Grade Grade Point Value

85% 100% 4.0

80% 84% 3.7

77% 79% 3.3

74% 76% 3.0

70% 73% 2.7

67% 69% 2.3

64% 66% 2.0

60% 63% 1.7

57% 59% 1.3

54% 56% 1.0

50% 53% 0.7

0% 49% 0.0

Create an App Inventor app that allows the user to enter any number of percentage grades. After the user

clicks “Submit,” the app displays the user’s GPA as well as his/her percentage average.

2. Improve your app in the following ways:

(a) Calculate the averages “on the fly.” (The averages are updated every time a mark is entered.)

(b) Allow the user to delete one or more of the entered marks.

(c) Display all the marks and courses entered, as well as the GPA and percent average.

(d) Anything else that comes to mind!

Hints

1. Create a programmer-defined procedure like

the one shown at the right.

2. Use an “if” statement within the procedure

that has a structure like the one shown at the

right.

3. Use lists to “remember” the courses and

marks entered by the user.

Example

Subject Percentage Mark Grade Point Value

Math 76% 3.0

Computer

Science
84% 3.7

Chemistry 63% 1.7

Physics 45% 0.0

English 49% 0.0

GPA =
3.0 3.7 1.7 0.0 0.0

1.68 60%
5

Percent Average =
76 84 63 45 49

63.4%
5

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-33

PROGRAMMING PROBLEMS WHOSE SOLUTIONS REQUIRE THE USE OF

COUNTED (“FOR”) OR CONDITIONAL (“WHILE”) LOOPS

Algorithm

 An algorithm is a systematic procedure by which a problem is solved. Long division is an example.

 In cooking/baking/mixing drinks etc, algorithms are called recipes.

 Many of the problems given below can be solved using an exhaustive search (aka brute-force search)

algorithm. An algorithm that employs an exhaustive search systematically checks all possible candidates for

the solution to see which of them, if any, satisfies the statement of the problem.

 Exhaustive search is guaranteed to find a solution if one exists. However, when the number of possible

candidates is very large, brute-force methods are excruciatingly slow. Shortly, we’ll be investigating a better

solution to (g) to help us understand the limitations of brute-force algorithms.

Looping Structures: Counted versus Conditional

Counted Loops (“For”) Conditional Loops (“While”)

 Use a counted loop

when the # of

repetitions is known

at design-time

 Analogy: “Add

three spoonfuls of

sugar to the coffee.”

 Use a conditional loop when the # of repetitions is

not known at design-time

 Analogy: “Keep stirring the coffee while the sugar

has not dissolved yet.”

Complete the following table. Then write App Inventor programs to solve each problem.

Programming Problem
Can you write a solution that only

requires a counted loop? Explain.

(a) Write a program to calculate the sum of all positive even integers

less than or equal to 1000.

Yes / No (Circle One)

Why?

(b) Write a program to calculate the sum of all positive odd integers

until the sum exceeds 1000.

Yes / No (Circle One)

Why?

(c) Write a program to calculate the product of all positive integers

divisible by 5 and less than or equal to 645. (What happens if

you try a value ≥ 650?)

Yes / No (Circle One)

Why?

(d) Write a program to calculate the product of all positive integers

divisible by 5 while the product is less than or equal to 1000000.

Yes / No (Circle One)

Why?

(e) An integer is called prime if it has exactly two divisors, one and

itself. The following is a list of the first 10 prime numbers: 2, 3,

5, 7, 11, 13, 17, 19, 23, 29

Write a program that determines whether a given number is

prime. (Exhaustive Search)

Yes / No (Circle One)

Why?

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-34

Programming Problem
Can you write a solution that only

requires a counted loop? Explain.

(f) A proper divisor of an integer is any integer that divides evenly

into the integer, except for the number itself. For example, the

proper divisors of 12 are 1, 2, 3, 4 and 6. A number is called

perfect if the sum of its proper divisors is equal to the number

itself. Two examples of perfect numbers are 6 and 28 because

6 = 1 + 2 +3 and

28 = 1 + 2 + 4 + 7 + 14.

Write a program that determines whether a given number is

perfect. (Exhaustive Search)

Yes / No (Circle One)

Why?

(g) Write a program that finds the greatest common divisor of any

two integers. For example, the greatest common divisor (GCD)

of 24 and 40 is 8. (Exhaustive Search)

Yes / No (Circle One)

Why?

(h) Write a program that finds the least common multiple of any

two integers. For example, the least common multiple (LCM)

of 24 and 40 is 120. (Exhaustive Search)

Yes / No (Circle One)

Why?

(i) The numbers 220 and 284 are called an amicable pair because

the sum of the proper divisors of 220 is 284 and the sum of the

proper divisors of 284 is 220. Write a program that finds all

amicable pairs within the search range 1 ≤ x ≤ 1000000.

(Exhaustive Search)

Yes / No (Circle One)

Why?

(j) Horses cost $10, pigs cost $3 and rabbits cost only $0.50. A

farmer buys 100 animals for $100. How many of each animal

did he buy? Write a program to search for the solution to this

problem. (Exhaustive Search)

Yes / No (Circle One)

Why?

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-35

EUCLID AND THE GCD

Definition of gcd

The Greatest Common Divisor (gcd) of two positive integers is the largest integer that divides both integers

exactly.

Examples

 gcd 8,12 4 because 4 is the largest integer that divides into both 8 and 12

 gcd 14,42 14 because 14 is the largest integer that divides into both 14 and 42

 gcd 9,28 1 because 1 is the largest integer that divides into both 9 and 28

Brute Force (Exhaustive Search) Algorithm for Computing the GCD of Two Integers

The most obvious method for computing the gcd of two integers is to perform an exhaustive search of the set of

all possible divisors. The search may not find any divisors other than one or it may find several divisors. In

either case, the gcd must be the largest divisor found. This is illustrated below.

 a, b: These variables store the two integers for which the gcd must be found. The values of these two

variables do not change throughout the execution of the code.

 y: This variable stores the values of all the integers that we try to divide into both a and b. The value

of this variable is controlled by a “for each” loop.

 gcd: This variable stores the greatest common divisor found so far. Before entering the loop, it is

initialized to 1 because 1 divides into every number. If no other common divisor is found by the “for each”

loop, the value of ‘gcd’ never changes, meaning that its final value will be 1 (see the second table).

a b y
Remainder obtained when

‘a’ is divided by ‘y’

Remainder obtained when

‘b’ is divided by ‘y’
gcd

8 12 ? ? ? 1

8 12 2 0 0 2

8 12 3 2 0 2

8 12 4 0 0 4

8 12 5 3 2 4

8 12 6 2 0 4

8 12 7 1 5 4

8 12 8 0 4 4

8 12 9 1 3 4

a b y
Remainder obtained when

‘a’ is divided by ‘y’

Remainder obtained when

‘b’ is divided by ‘y’
gcd

9 28 ? ? ? 1

9 28 2 1 0 1

9 28 3 0 1 1

9 28 4 1 0 1

9 28 5 4 3 1

9 28 6 3 4 1

9 28 7 2 0 1

9 28 8 1 4 1

9 28 9 0 1 1

9 28 10 1 3 1

Values Before

Entering Loop

Values After

Exiting Loop

Values Before

Entering Loop

Values After

Exiting Loop

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-36

App Inventor Code for “Brute Force” GCD Algorithm

The following is a procedure that calculates and displays the GCD of the integers “x” and “y.” Study the code

and then answer the questions found below.

Questions

1. Explain the purpose of the “if” statement that immediately precedes the “for each” loop.

2. Why does the search for common divisors end at the smaller of “x” and “y?”

3. The greatest common divisor of 1,000,000,000 and 500,000,000 is 500,000,000. How many times do the

instructions within the “for each” loop need to be repeated before the procedure finds this answer?

Comment on the efficiency of using an exhaustive search to compute the gcd of a pair of very large

numbers. Can you think of any ways of improving the efficiency of the process?

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-37

Description of Euclid’s (Fast) Method for Computing the GCD of Two Integers

Background

More than 2000 years ago, Euclid published an algorithm for finding the GCD of two numbers. His version

was strictly geometric since algebra had not been invented yet, but the algebraic version is described below.

Summary

The Euclid algorithm can be expressed concisely by the following recursive formula:

gcd(a, b) = gcd(b, a mod b)

Note: a mod b means the remainder obtained when a is divided by b.

Example

Here is an example of Euclid’s algorithm in action.

Find the GCD of 2322 and 654.

gcd(2322, 654) = gcd(654, 2322 mod 654) = gcd(654, 360)

gcd(654, 360) = gcd(360, 654 mod 360) = gcd(360, 294)

gcd(360, 294) = gcd(294, 360 mod 294) = gcd(294, 66)

gcd(294, 66) = gcd(66, 294 mod 66) = gcd(66, 30)

gcd(66, 30) = gcd(30, 66 mod 30) = gcd(30, 6)

gcd(30, 6) = gcd(6, 30 mod 6) = gcd(6, 0)

gcd(6, 0) = 6

Therefore, gcd(2322,654) = 6.

Your Task

1. Use Euclid’s method to

calculate gcd(4896, 830).

a b

2. How many repetitions would be required by the “slow GCD” algorithm

to compute gcd(4896, 830)?

3. Try to write App Inventor code to implement the Euclid GCD

algorithm. Test your code thoroughly and debug if necessary.

Enrichment Questions

1. Who was Euclid? Why do historians of mathematics consider him an extremely important figure?

2. Prove that gcd(a, b) = gcd(b, a mod b).

Essentially, the Euclidean algorithm

performs the following two steps:

1. The value of ‘b’ is copied to ‘a.’

2. The value of ‘b’ changes to the

value of ‘a mod b” (the original

value of ‘a’ must be used,

i.e. the value of ‘a’ before step 1

was carried out).

This process continues until the

value of ‘b’ is zero.

a b

2322 654

654 360

360 294

294 66

66 30

30 6

6 0

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-38

SOLUTIONS TO SELECTED PROBLEMS REQUIRING LOOPS

Problem App Inventor Solution Notes

(a) Write a

program to

calculate the

sum of all

positive even

integers less

than or equal

to 1000.

number sum

− 0

2 2

4 6

6 12

8 20
.

.

.

.

.

.

998 249500

1000 250500

− 250500

Think of this algorithm as the

“cash register algorithm.”

Values are successively added to

the total until the final total is

obtained. For this problem, a

“for” loop can be used because

the number of repetitions is

known at design-time.

(b) Write a

program to

calculate the

sum of all

positive odd

integers until

the sum

exceeds 1000.

The solution to this problem also

makes use of the cash register

algorithm.

x sum

−1 0

1 1

3 4

5 9

7 16
.

.

.

.

.

.

61 961

63 1024

− 1024

However, this time a “for” loop

cannot be used because the

number of repetitions is not

known at design-time. The

instructions within the body of

the loop are repeated as long as

the sum remains smaller than or

equal to 1000.

{
Values of variables

after each repetition

of the loop

Values of variables

before entering loop

Values of variables

after exiting loop

Unlike “for each” loops, “while” loops do not have a

built-in loop counter variable. However, it’s a very

simple matter to include a variable that behaves just

like a loop counter.

The procedure “addUpIntegers”
can find the sum of any

arithmetic series (within the

numeric range available in App
Inventor). Arithmetic series

take the following form:

2a a d a d

a nd

The series 2+4+6++1000 is

an example of an arithmetic

series.

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-39

Problem App Inventor Solution Notes

(g) Write a program

that finds the

greatest

common divisor
of any two

integers. For

example, the

greatest common

divisor (gcd) of

24 and 40 is 8.

(Exhaustive

Search)

See page 36.

For this example, suppose

that x=12 and y=20. Then

‘smaller’ has a value of 12.

divisor gcd

- 1

2 2

3 2

4 4

5 4

6 4

7 4

8 4

9 4

10 4

11 4

12 4

− 4

The final value of the

variable “gcd” turns out to

be 4. Therefore,

gcd(12, 20) = 4.

The Euclidean

GCD algorithm

is much more

efficient than the

brute force

algorithm given

above.

The following table shows

how gcd(2322, 654) is

computed by the Euclidean

algorithm. Notice that the

number of steps required to

calculate the gcd is

significantly smaller than for

the brute force algorithm.

a b

2322 654

654 360

360 294

294 66

66 30

30 6

6 0

6 0

The search ends when b=0.

The value of ‘a’ is the gcd.

In this example,

gcd(2322,654)=6.

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-40

Problem App Inventor Solution

(h) Horses cost

$10, pigs

cost $3 and

rabbits cost

only $0.50.

A farmer

buys 100

animals for

$100. How

many of

each animal

did he buy?

Write a

program to

search for

the solution

to this

problem.

(Exhaustive

Search)

The outer loop controls the

value of the ‘horses’ variable.

With each repetition of the

outer loop, the value of

‘horses’ increases by 1.

The inner loop controls the value

of the ‘pigs’ variable. With each

repetition of the inner loop, the

value of ‘pigs’ increases by 1.

The values of the ‘pigs’

variable must be reset to

zero before the inner loop is

executed. What goes

wrong if this is not done?

The page is not wide enough

to contain this entire

statement. This is why a

portion of the statement is

displayed vertically.

This solution involves a “while”

loop contained within another

“while” loop. When one loop is

contained within another, we

say that the loops are nested.

Keep in mind that this procedure has a major bug. If a solution exists, this procedure

will find it. However, if there is no solution, an erroneous result will be produced.

In class, you were asked to correct this bug.

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-41

First Repetition of Outer Loop
Inner Loop Repeats 17 Times

 Second Repetition of Outer Loop
Inner Loop Repeats 13 Times

horses pigs rabbits cost horses pigs rabbits cost

1 1 98 $62.00 2 1 97 $71.50
1 2 97 $64.50 2 2 96 $74.00
1 3 96 $67.00 2 3 95 $76.50
1 4 95 $69.50 2 4 94 $79.00
1 5 94 $72.00 2 5 93 $81.50
1 6 93 $74.50 2 6 92 $84.00
1 7 92 $77.00 2 7 91 $86.50
1 8 91 $79.50 2 8 90 $89.00
1 9 90 $82.00 2 9 89 $91.50
1 10 89 $84.50 2 10 88 $94.00
1 11 88 $87.00 2 11 87 $96.50
1 12 87 $89.50 2 12 86 $99.00

1 13 86 $92.00 2 13 85 $101.50

1 14 85 $94.50

1 15 84 $97.00

1 16 83 $99.50

1 17 82 $102.00

Third Repetition of Outer Loop
Inner Loop Repeats 9 Times

 Fourth Repetition of Outer Loop
Inner Loop Repeats 5 Times

horses pigs rabbits cost horses pigs rabbits cost

3 1 96 $81.00 4 1 95 $90.50
3 2 95 $83.50 4 2 94 $93.00
3 3 94 $86.00 4 3 93 $95.50

3 4 93 $88.50 4 4 92 $98.00
3 5 92 $91.00 4 5 91 $100.50

3 6 91 $93.50

3 7 90 $96.00

3 8 89 $98.50

3 9 88 $101.00

Fifth Repetition of Outer Loop
Inner Loop Repeats 1 Time

horses pigs rabbits cost

5 1 94 $100.00

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-42

Questions

1. What is the purpose of the variable ‘copyOfY’ in the Euclidean GCD program? What would go wrong

without this variable?

2. Explain how the brute force GCD program could be made more efficient. Would these gains of efficiency

make a significant difference when computing the GCD of very large numbers?

3. What is a loop counter variable? Explain how to implement a loop counter in a “while” loop.

4. In the “Horses, Pigs, Rabbits” program, what will go wrong if the value of the variable ‘pigs’ is not reset to

zero just before the inner loop is executed?

5. Write an App Inventor program that uses the Sieve of Eratosthenes algorithm to generate a list of all prime

numbers less than 400.

Please note! You will need to do some research to solve this problem! For starters, visit the following Web

page:

http://www.hbmeyer.de/eratosiv.htm

http://www.hbmeyer.de/eratosiv.htm

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-43

APP INVENTOR REVIEW PROBLEMS #1

1. Give a step-by-step explanation of how the

following could be accomplished:

A variation of the MoleMash game replaces the

picture of the mole with pictures of members of

the Split Personalities. Each time a picture of

one of the splitters is tapped, the member’s

favourite rap line is heard over the speakers and

displayed in a label. Otherwise, if the user taps

the screen without hitting any of the moving

images, Mr. T’s picture appears, and the line “I

pity the fool” is played over the speakers.

2. Create an App Inventor program that calculates the sum shown below, where the values of x, d, k and n are

chosen by the user.

1

2 1 1
n

kk kk

i

x x d x d x n d x i d

For example, if the user chooses x = 3, d = 2, k = 4 and n = 10, then the program would compute the sum
4 4 4 4 43 5 7 9 21 . You should create a procedure with a result that is devoted to calculating the

sum.

3. Create an App Inventor program just like the one in question 2 except that the user specifies the maximum

(or minimum) sum instead of specifying the number of terms (i.e. instead of n).

4. Create an App Inventor program that can add, subtract multiply or divide any two fractions.

Jazzy

Street

YouTube

Junkie

Mono

Tune

SPLIT

Poppa

Cricket
Rabid

JiveMan

Addy

Manic

I pity the fool

who messes with

the splitters!

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-44

APP INVENTOR REVIEW PROBLEMS #2

1. Give a step-by-step explanation of how the

following could be accomplished:

A variation of the MoleMash game replaces the

picture of the mole with pictures of members of

the Split Personalities.

 Each time a picture of one of the splitters is

tapped, the picture disappears but reappears

exactly one minute later.

 If the user is fast enough to make all the

pictures disappear before any of them

reappear, the game ends and the user wins.

 If any of the pictures are still in motion after

five minutes of play, the game ends and the

user loses the game. In this case, Mr. T’s

picture appears and the line, “I told you not to mess with the splitters!” is played over the speakers.

2. Create an App Inventor procedure with a result that takes a percentage mark as input and returns the

equivalent grade point score. (See page 32 for details.)

3. Create an App Inventor program that factors quadratic expressions. The app takes as input the coefficients

a, b and c of the quadratic in standard form (i.e.
2ax bx c) and then displays the factored form of the

quadratic.

Jazzy

Street

YouTube

Junkie

Mono

Tune

SPLIT

Poppa

Cricket
Rabid

JiveMan

Addy

Manic

I pity the fool

who messes with

the splitters!

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-45

APP INVENTOR REVIEW PROBLEMS #3

Write an App Inventor program that can produce string art. Examples of string art are shown below:

The following is a pseudocode description of an algorithm for producing string art:

Initialize the values of A and B

Set A=1

Set B=some value between 1 and N

loop

**join point A to point B

**add 1 to A

**join point B to point A

**add 1 to B

**if B > N

****set B=1

while A < N

Note

 The prefix “pseudo” means “false.”

 Other words beginning with this prefix:

pseudonym, pseudoscience, pseudohistorical

 The co-ordinates of the points spaced uniformly around the perimeter of the polygon (e.g. octagon) can be

generated mathematically. Once generated, the co-ordinates can be stored in lists.

Pseudocode

Statements outlining the operation of a computer program,

written in something similar to computer language but in a more

understandable format.

“Points” Referred to in Pseudocode

 The points are equally spaced along the perimeter of a shape

such as an octagon.

 The points are numbered 1, 2, 3, …, N where N represents the

total number of points

In this picture, there are 64

equally spaced points along

the perimeter of an octagon.

The picture is formed by

joining points to other points.

	Unit 1 – Introduction to Programming through App Inventor
	The most Important Lesson of the Entire Course
	The Most Important Lesson of the Entire Course
	Planning and Developing Solutions to Software Development Problems
	What is a Program? What is a Programming Language?
	Important Terminology
	Program
	Programming Language
	Code
	Bug
	Algorithm

	Learning the Essential Features of App Inventor
	Brief Description and History of App Inventor for Android
	Overview of App Inventor 2
	The MyProjects Page
	The Design Page
	The Blocks Editor

	How to Access App Inventor
	How to Work with App Inventor
	PaintPot: Creating your First App
	Step 1: Creating the PaintPot App
	Step 2: Using the Cook/Chef Analogy to Understand the Logic of the PaintPot App
	Exercises

	Some Important Notes on MEANING!
	The Meaning of the “Dot”

	Creating More Apps – More Examples
	Resources

	Creating More Apps – Making your OWN!
	Introduction
	Method 1 – Improve an Existing App: MoleMash Extreme Version
	Method 2 – Create your own Apps!
	Upcoming Assignment

	Understanding MoleMash
	The Co-Ordinate System of a Canvas
	Questions

	Using “MoleMashImproved” to Review App Inventor Main Ideas
	Review: Explain App Inventor Main Ideas
	Appreciating the Power of Programmer-Defined Procedures
	Overview of Procedures
	Examples
	Examples
	Exercises

	Genuine Problem Solving SplitterBust: A Variation of MoleMash/MileyBash
	Understanding the Nature of the Game
	Planning BEFORE Coding
	Building the App

	App Inventor: Review of Main Ideas
	Introduction to Loops: Line Drawing Problems
	Introduction
	Problem
	Hints
	Explanation
	Generating the Pictures in App Inventor
	Summary
	Counted Loops (“For Loops”)

	Problems

	Line Drawing Challenge – The Placemat Spiral
	Challenge
	Hints

	Circle Drawings
	Exercises

	GPA: App Inventor Challenge Problem
	Hints

	Example
	Programming Problems whose Solutions Require the use of Counted (“For”) or Conditional (“While”) Loops
	Algorithm
	Looping Structures: Counted versus Conditional

	Euclid and the GCD
	Definition of gcd
	Examples

	Brute Force (Exhaustive Search) Algorithm for Computing the GCD of Two Integers
	App Inventor Code for “Brute Force” GCD Algorithm
	Questions

	Description of Euclid’s (Fast) Method for Computing the GCD of Two Integers
	Example
	Your Task
	Enrichment Questions

	Solutions to Selected Problems Requiring Loops
	Questions

	App Inventor Review Problems #1
	App Inventor Review Problems #2
	App Inventor Review Problems #3
	Note

