
Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-1

TABLE OF CONTENTS – UNDERSTANDING PROGRAMMING THROUGH GRAPHICS AND ANIMATION

TABLE OF CONTENTS – UNDERSTANDING PROGRAMMING THROUGH GRAPHICS AND ANIMATION 1
A DETAILED DESCRIPTION OF GEORGE POLYA’S FOUR STEPS OF PROBLEM SOLVING ... 3

THE MOST IMPORTANT LESSON OF THE ENTIRE COURSE .. 4
THE MOST IMPORTANT LESSON OF THE ENTIRE COURSE .. 4
PLANNING AND DEVELOPING SOLUTIONS TO SOFTWARE DEVELOPMENT PROBLEMS .. 4

Wrong!!!!! (Most Students) .. 4
Right!!!!!! (George Polya) ... 4
How these Steps Apply to Software Development .. 4

IMPORTANT TERMINOLOGY ... 5
Program ... 5
Programming Language ... 5
Code ... 5
Algorithm .. 5

A COMPUTER AS A DATA PROCESSING MACHINE .. 5

LINE ART .. 6
INTRODUCTION .. 6
HOW CAN WE COMMAND A COMPUTER TO CREATE SUCH A PICTURE? ... 6
GRAPH PAPER AND PENCIL EXERCISES .. 7
WRITING A VB PROGRAM THAT GENERATES LINE ART .. 7
QUESTIONS .. 9
VB PROGRAMMING EXERCISES ... 9

DRAMATICALLY REDUCING THE LENGTH OF LINE ART PROGRAMS ... 10
INTRODUCTION – COUNTED LOOPS .. 10
ANALOGY – ADDING SUGAR TO COFFEE ... 10

Tedious, Long, Repetitive Method .. 10
“For…Next” Loop Method (Counted Loop Method) ... 10

USING A COUNTED LOOP TO REDUCE THE LENGTH OF THE LINE ART EXAMPLE CODE ON PAGE 8 .. 10
EXERCISES ... 10

A DETAILED SOLUTION ... 11
SOLUTION TO QUESTION 7 ON PAGE 9 ... 11

Planning the Solution ... 11
Writing the Code .. 11
Question ... 11
Using Grade 9 Math to Understand the Solution ... 11

CIRCLE ART .. 12
OBJECTS, PROPERTIES AND METHODS ... 12
UNDERSTANDING THE DIFFERENCES BETWEEN PROPERTIES AND METHODS ... 12
UNDERSTANDING THE DIFFERENCES BETWEEN VARIABLES AND OBJECTS .. 12

Variable .. 12
Object ... 12

DRAWING CIRCLES ON FORMS AND OTHER OBJECTS .. 13
QUESTIONS .. 13
EXERCISES ... 14

USING THE RGB FUNCTION TO INCLUDE COLOUR IN VB LINE/CIRCLE DRAWINGS ... 15
INTRODUCTION – PRIMARY COLOURS .. 15
THE RGB FUNCTION IN VB ... 15
A VB PROGRAM THAT HELPS YOU TO UNDERSTAND THE RGB COLOUR MODEL... 15
HOW TO USE THE RGB FUNCTION ... 15

Note on Random Numbers .. 15

USING TIMER CONTROLS IN YOUR VB PROGRAMS .. 16
EXAMPLE – CHANGE BACKGROUND COLOUR OF FORM AT REGULAR INTERVALS .. 16

MAKING DECISIONS – A BRIEF INTRODUCTION TO “IF” STATEMENTS ... 17

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-2

EXAMPLE – DRAWING SHAPES ONE AT A TIME ... 17

CREATE YOUR OWN ARTISTIC DESIGN – ASSIGNMENT TO BE HANDED IN! .. 18
DESCRIPTION OF ASSIGNMENT ... 18
WHAT YOU MUST HAND IN ... 18
EVALUATION GUIDE .. 18

ANIMATIONS IN VB ... 19
ANIMATED GIFS ON WEB PAGES ... 19
OTHER TYPES OF ANIMATIONS .. 19
QUESTION .. 20
OTHER GRAPHICS EXAMPLES .. 20
EXAMPLE – CANADIAN FLAG ANIMATION PROGRAM .. 21
USING MULTIPLE FORMS IN A VB PROJECT ... 21

Timer Controls ... 21
CONTROL ARRAYS ... 23

How to Create a Control Array .. 23

LEARNING TO READ TECHNICAL DOCUMENTS ... 24
IMPORTANT TERMINOLOGY ... 24

Syntax ... 24
Logic ... 24
Debug ... 24
Compile .. 24
Syntax Error ... 24
Logic Error ... 24

DESIGN-TIME ERROR ... 25
Run-Time Error .. 25
Argument .. 25

THE “FOR … NEXT” STATEMENT .. 25
Syntax ... 25
Remarks .. 25
Tip .. 25

LINE METHOD .. 26
Syntax ... 26
Remarks .. 26

CIRCLE METHOD .. 26
Syntax ... 26
Remarks .. 27

PSET METHOD ... 27
Syntax ... 27
Remarks .. 27

RGB FUNCTION ... 28
Syntax ... 28
Remarks .. 28

USING COLOUR PROPERTIES .. 28
Defining Colours .. 29
Using Direct Colour Settings ... 29
Using Defined Constants .. 29
Colours ... 29
System Colours ... 30

SUMMARY OF UNIT 1 .. 31
ENHANCEMENT PROBLEMS .. 34

QUESTIONS .. 34

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-3

A DETAILED DESCRIPTION OF GEORGE POLYA’S FOUR STEPS OF PROBLEM SOLVING

1. UNDERSTAND THE PROBLEM (DEFINE THE PROBLEM)

□ Carefully read the problem several times.
□ Identify what you are being asked to find.
□ Ensure that you understand all terminology.
□ Highlight all given information.
□ Identify all the information that is required to solve the problem.
□ Identify the given information that is required to solve the problem.
□ Identify any extraneous information (information that is not needed).
□ Identify any missing information.
□ Do research to find or estimate any missing information.
□ Keep an open mind.
□ Do not make any unnecessary or incorrect assumptions.
□ Think logically and creatively!
□ Consult colleagues, peers, experts, etc.
□ Do not worry about possible strategies yet.
□ Predict what a reasonable answer or range of answers would be.

2. CHOOSE A STRATEGY

□ Unleash your creative powers! Be imaginative!
□ Do not be afraid to take risks!
□ Do not dismiss any ideas at this stage. Feel free to be whacky!
□ Avoid feelings of frustration or inadequacy.
□ Do not give up quickly!
□ If you have the desire to quit, take a break and try solving the problem later.
□ Do not be afraid to be unconventional. Perhaps you are correct and everyone else is wrong!
□ Draw a diagram or visualize.
□ Compare the problem to an equivalent or similar problem that you have already solved.
□ Compare the problem to a simpler but related problem.
□ Solve a specific example of the problem.
□ Look for patterns.
□ Write a list of as many possible strategies as you can.
□ Do research to discover if anyone else has solved the problem.

3. CARRY OUT THE STRATEGY

□ Check your list of strategies and select one that you think is likely to work.
□ Carry out your strategy logically and carefully, paying close attention to detail.
□ If your strategy fails, return to steps 1 and 2.

4. CHECK THE SOLUTION

□ Is your answer reasonable?
□ Does your answer agree with the prediction you made in step 1?
□ Does your answer agree with the answers obtained by others?
□ Is there a better way to solve the problem?
□ Ask peers, colleagues, etc to check your solution.

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-4

THE MOST IMPORTANT LESSON OF THE ENTIRE COURSE

The Most Important Lesson of the Entire Course
The process of writing a program can be viewed as a form of “teaching.” Whenever you write any computer program,
you are, in a sense, “teaching” a computer how to solve a particular problem. KEEP IN MIND THAT YOU CANNOT “TEACH”
A COMPUTER TO SOLVE A PROBLEM THAT YOU DO NOT KNOW HOW TO SOLVE!

BEFORE YOU EVEN ATTEMPT TO WRITE CODE (PROGRAMMING INSTRUCTIONS), FIRST YOU MUST DEVISE A STRATEGY!
BEFORE YOU CAN DEVISE A STRATEGY, YOU MUST ENSURE THAT YOU UNDERSTAND THE PROBLEM! THE FOLLOWING
TABLE DESCRIBES A SOUND APPROACH TO SOFTWARE DEVELOPMENT. IF YOU HOPE TO BE SUCCESSFUL, FOLLOW THE
GUIDELINES IN THE SECOND AND THIRD COLUMNS. DO NOT FOLLOW THE STEPS IN THE FIRST COLUMN!

Planning and Developing Solutions to Software Development Problems
Wrong!!!!!

(Most Students)
Right!!!!!!

(George Polya) How these Steps Apply to Software Development

1. Read problem

2. Type code

3. Click on the

 button

1. Understand
the problem
(Analysis)

1. Before you begin constructing a solution to a problem, you must know exactly what is
required. Otherwise, you run the risk of solving the wrong problem or providing an
incomplete solution to a given problem. In particular, you need to know what should be
the output of the program given every possible input and you need to understand what
features are needed (e.g. sound, graphics, networking, etc).

2. Choose a
strategy
(Design)

2. On paper, design a few different possible interfaces for your program. Do not write any
code yet! In addition, it is important to consider a wide variety of algorithms. Choose
the algorithms that best balance user ease, execution speed, programming complexity
(ease of implementation) and storage requirements.

3. Carry out the
strategy
(Implementation)

3. Write the code but not all in one fell swoop. Break up the large problem into several
smaller sub-problems. Solve each sub-problem separately. In addition, consider
different algorithms that can be used to solve a given sub-problem. Choose the
algorithm that best suits our application. Do not integrate a solution to a sub-problem
into the larger solution until you are confident that it is correct. It is also wise to save
each version of your program. In case of a catastrophe, you can always go back to an
earlier version.

4. Check the
solution
(Validation)

4. Extensive testing should take place to find bugs that were not noticed in the
implementation phase. It is best to allow the testing to be done by average computer
users who are not programmers. Because of their computer expertise, programmers
subconsciously tend to avoid actions that cause computer programs to fail. Once the
software is released, additional bug fixes will usually be necessary as users report
previously undiscovered bugs. This is known as the maintenance phase.

?  Input Output

I told you to solve
that problem for me!
It shouldn’t matter
that I can’t solve it!

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-5

Important Terminology
Program
• A program is a sequence of instructions that a computer can interpret and execute. (“Execute” means “carry out” in this context.)
Programming Language
• A programming language is a very precise and unambiguous language that is designed to allow instructions to be given to a

computer.
Code
Programming instructions are often called “code.” Programmers say that they are “writing code” when they write programs.
Algorithm
• An algorithm is a systematic procedure (finite series of steps) by which a problem is solved. Long division is an example.
• The steps of a particular algorithm remain the same whether you solve a problem by hand or by computer.
• In cooking, algorithms are called recipes.
• Algorithms have been worked out for a wide range of problems.
• For many problems, there exist many different algorithms.
• For some problems, there are no known efficient algorithms (too slow and/or require too much memory). e.g. Is a number prime?
• Some problems cannot be solved by a computer (i.e. no algorithm exists that can be implemented on a computer).

A Computer as a Data Processing Machine
A simple but very useful model of a computer is shown below. A computer can be viewed, at a very simple level, as a
machine that processes data (information). As the diagram suggests, information is given to a computer, the information
is then processed by the computer and finally, the results are displayed.

This process is similar to industrial processes such as plastic injection moulding. The main difference is that a computer
requires memory to store the information that it processes. The diagram below shows the basic idea of how a plastic
injection moulding machine produces its output.

Input Processing Output

Memory

Plastic pellets are the
INPUT of a plastic
injection moulding

machine.

The finished product (e.g.
recycling bin) is the

OUTPUT of a plastic
injection moulding machine.

The plastic injection moulding
machine PROCESSES the

INPUT (i.e. the plastic
pellets).

The MEMORY of this machine is the MOULD
that is used to make the plastic bins. The shape

of the bin is “memorized” by the mould.

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-6

y

x

(0, 0)

(100, 100)

LINE ART
Introduction
Line art, as the name suggests, involves the creation of interesting
designs using nothing but straight lines. An interesting example is
shown at the right. Although we perceive a curve, no curves
were actually drawn. It turns out that the straight lines in this
diagram are all tangent to a particular curve, which is why we
“see” the curve.

How can we COMMAND a Computer to create such a Picture?
As was mentioned on page 4, programming is much like teaching. Before
we can “teach” a computer to solve a problem, we must first figure
out how to solve it for ourselves!

The diagram shown below is an example of a good
method for understanding how such a picture is generated.

1. The drawing area is organized as a 100 by 100 Cartesian grid.
2. The horizontal axis (the x-axis) is just as it is usually presented in math

class. The vertical axis (the y-axis) is also the same except that it is
upside-down.

3. Each line is drawn from a certain point with co-ordinates (x1, y1) to another point with co-ordinates (x2, y2).
4. Usually, the lines are not drawn in a random fashion. Generally, they are drawn according to definite patterns.

As shown below, getting a computer to generate the picture in the above example is simply a matter of commanding the
computer to draw a series of twenty-one line segments according to the pattern established by using the table of values
shown below.

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-7

Graph Paper and Pencil Exercises
Using the example on the previous page as a model, determine the pattern(s) for generating each of the pictures shown
below. (Don’t be lazy! Use graph paper and tables of values.)

1.

2.

3.

4.

5.

6.

7.

8.

9.

Writing a VB Program that Generates Line Art
Before we begin writing code, we must ensure that the form (window) is properly prepared. For the sake of simplicity, a
100 × 100 grid is used in all our examples.

1. As described in class, launch Visual Basic and open a new
“Standard EXE” project.

2. Stretch the form (window) so that the “drawing area” is square.
To do this, stretch the width and the height of the form while
watching the properties window. Stop when the form has the
desired size and when the ScaleHeight and ScaleWidth
properties have the same value. Note that the ScaleMode
property by default has a value of “1-Twip.” One twip is a tiny
unit that is equivalent to one-twentieth of a printer’s point or
1/1440th of an inch (approximately

Use Google, MSDN help or visit http://msdn.microsoft.com for a
complete explanation of the various units that can be used to
describe co-ordinates on a form.

http://msdn.microsoft.com/�

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-8

(Name): cmdClose
Caption: Exit

(Name): cmdClear
Caption: Clear

(Name): cmdDraw
Caption: Generate

3. Change the ScaleMode property to “0-User” and the ScaleHeight and
ScaleWidth properties to 100. This turns your form into a 100 × 100 grid,
which is far more intuitive than a 4680 × 4680 grid.

4. Now enlarge the form somewhat to make room for a few command buttons.

5. Using the properties window once again, change the “Caption” and
“(Name)” properties to those suggested in the diagram at the right.

6. Double-click the “cmdClose” button. This will automatically create the first

statement and the last statement of a “Sub” (to be explained later) that will contain
a simple instruction that will be executed every time the “cmdClose” button is
clicked.

7. Type the instruction “End” between the first and last statements of the sub. Now
the sub for the “cmdClose” button is complete. Every time the user clicks this
button, the single instruction within the sub will be executed every time the user
clicks the “Exit” button.

8. Now do the same for the “cmdClear” and the “cmdDraw” buttons. Double-click

each button and type the code shown at the right.

9. Now add the command “Option Explicit” at the top of your program. By the time
you are done, your program should look exactly like the following:

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-9

10. Now you are ready to execute (i.e. run) your program. Do this by clicking the button.

Questions
1. What is the difference between the ScaleWidth and Width properties of a form (or any other object)? What is the

difference between the ScaleHeight and Height properties of a form (or any other object)?

2. Use Google, MSDN help, http://msdn.microsoft.com or any other source of information to define the terms twip, point,
pixel and character. (These are some of the units that can be used as a ScaleMode. The others are inch, millimetre and
centimetre, which hopefully, do not require an explanation.)

VB Programming Exercises
Now write VB programs to generate each of the following pictures.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

http://msdn.microsoft.com/�

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-10

DRAMATICALLY REDUCING THE LENGTH OF LINE ART PROGRAMS
Introduction – Counted Loops
You probably noticed that the programs that you wrote to generate line art turned out to be extremely long and repetitive.
Fortunately, there is a programming concept known as repetition or looping that allows us to reduce dramatically the
length of highly repetitive code. Instead of using the same statement (or very similar statements) multiple times in
succession, we can list the statement once and specify the number of times it needs to be repeated. Such a structure is
called a counted loop. In VB, counted loops are called “For … Next” loops.

Analogy – Adding Sugar to Coffee

Add Five Spoonfuls of Sugar to the Coffee
Tedious, Long, Repetitive Method “For…Next” Loop Method (Counted Loop Method)

' The following is not real VB. It is called
' “pseudo-code,” which means false code. It is a
' mixture of VB and English and is a useful method
' for planning the overall structure of your programs.

add 1st spoonful of sugar to the coffee

add 2nd spoonful of sugar to the coffee

add 3rd spoonful of sugar to the coffee

add 4th spoonful of sugar to the coffee

add 5th spoonful of sugar to the coffee

' The following is not real VB. It is called “pseudo-code,” which means
' false code. It is a mixture of VB and English and is a useful method for
' planning the overall structure of your programs

For I=1 To 5
 add Ith spoonful of sugar to the coffee
Next I

Note
In this example, the number of repetitions is exactly five. The value of “I”
begins at 1 and increases by 1 after each repetition. After the first repetition,
“I” becomes 2, after the second repetition, “I” becomes 3 after the third
repetition, “I” becomes 4 and after the fourth repetition, “I” becomes 5.
After the fifth repetition, the loop halts.

Using a Counted Loop to reduce the length of the Line Art Example Code on Page 8
Tedious, Long, Repetitive Method “For…Next” Loop Method (Counted Loop Method)

Exercises
Use “For…Next” loops to generate the pictures in the exercises on page 9.

“Option Explicit”
forces the programmer
to declare all variables

(see below).

This statement is called
a variable declaration.

It is used to state the
name and type of a

variable. In this
example, a variable
called “I” is being

declared.

This loop is used to
repeat the statement

“Me.Line (0,I)-(I,100)”
twenty-one times. The
value of “I” is set to 0
for the first iteration

(repetition). After each
repetition, the value of
“I” is increased by five.

The variable “I” is called a
loop counter variable (or
simply a loop counter).

Why is this an appropriate
name for such a variable? Name of Sub

Name of Object

Name of Event

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-11

A DETAILED SOLUTION
Solution to Question 7 on Page 9
Planning the Solution

Vertical Lines Horizontal Lines
Start End Start End
()0,100

()10,100

()20,100
…

(),100I
…

()100,100

()0,90

()0,80

()0,70
…

()0,90 I−
…

()0,100

 ()0,90

()10,80

()20,70
…

(),90I I−
…

()100, 10−

()10,90

()20,80

()30,70
…

()10,90I I+ −
…

()100, 10−

Writing the Code
Now that we have determined the patterns used to create the drawing, it’s a simple matter to write the code. Two different
methods are shown below.

Method 1 Method 2

Question
Both methods presented above produce the same picture. Is there any difference between the two methods? Explain.

Using Grade 9 Math to Understand the Solution

Start x y First
Differences

()0,90

()10,80

()20,70
…

(),90I I−
…

()100, 10−

0
10
20

…

80
90
100

90
80
70

…

10
0

−10

−
−10
−10

…

−10
−10
−10

How are the x-co-ordinate and the y-co-ordinate related?

Since the first differences are constant, x and y must be
linearly related! Therefore, we can write an equation, in the
form y mx b= + , that relates y to x.

2 1

2 1

80 90 10 1
10 0 10

y yym
x x x

−∆ − −
= = = = = −
∆ − −

90b = (since ()0,90 lies on the line)

1 90y x∴ = − + or more simply, 90y x= −

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-12

CIRCLE ART
Objects, Properties and Methods
Object-oriented programming is centred on objects. The diagram below shows examples of a few of the objects available
in Visual Basic, along with their conventional naming prefixes. Objects tend to model real-world entities and tend to have
extensive functionality. Each object is created from a template known as a class. For example, the CommandButton class
is used as a template to create as many command button objects as are desired by the programmer. A useful analogy is to
think of a class as a cookie cutter and an object as a cookie.

Each object is a collection of properties and methods. A property is a characteristic of an object while a method is an
action that can be performed by or to an object.

Understanding the Differences between Properties and Methods
Explain the differences between a property of an object and a
method that can be performed on or by an object.

Understanding the Differences between Variables and Objects
Variable
• A variable is a name that is used to represent a single value that is stored in the computer’s main memory (“RAM”).
• In VB, variables are created by using a “Dim” statement.

Object
• An object is a collection of properties and methods
• For the purposes of this course, objects in VB are created visually by using the form editor. “Dim” statements are not

required for VB objects that can be created visually.
• To increase code readability, object names in VB should begin with conventional prefixes such as “cmd” and “frm.”

This practice is called “Hungarian notation” and is not used in most programming languages.

Form Object
Naming Prefix: “frm”

Command Button Objects
Naming Prefix: “cmd”

Text Box Objects
Naming Prefix: “txt”

Picture Box Object
Naming Prefix: “pic”

Frame Objects
Naming Prefix: “fra”

Option Button Objects
Naming Prefix: “opt”

Label Objects
Naming Prefix: “lbl”

Methods

Properties

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-13

y

x

(0, 0)

(50, 50)

(100, 100)

Drawing Circles on Forms and Other Objects
The circles shown here were drawn using the Visual Basic “Circle” method. The “Circle” method can
be performed on forms, picture boxes and a few other objects. For more information, see the reference
notes below, use MSDN help or visit http://msdn.microsoft.com.

The statement “Me.Circle(X, Y) , R” draws a circle with centre (X, Y) and
radius R on the form.
'This program is stored in the folder
'I:\Out\Nolfi\Ics3mo\Drawing, Graphics, Game Program
' Examples\Drawing Circles…
Option Explicit

Private Sub cmdDraw_Click()
 Dim Radius As Byte
 For Radius = 5 To 50 Step 5

 'Draw a circle with centre(50, 50) and radius "Radius"
 Me.Circle (50, 50), Radius

 Next Radius
End Sub

Private Sub cmdClear_Click()
 Me.Cls
End Sub

Private Sub cmdQuit_Click()
 End
End Sub

Now try the following extension of the above program. It draws circles on the form and on a picture box. The
code and form are stored in I:\Out\Nolfi\Ics3mo\Drawing and Graphics\Drawing Circles on …

Questions
1. Describe how you would create the picture box shown at the right to

ensure that the given code would work properly and to ensure that the
grid is square.

2. The code that is used to generate the circles on the form is identical to the
code that is used to draw circles in the picture box. Why then, are the
circles in the picture box much smaller?

http://msdn.microsoft.com/�

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-14

Exercises
Use “For…Next” loops to generate the pictures shown below.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-15

USING THE RGB FUNCTION TO INCLUDE COLOUR IN VB LINE/CIRCLE DRAWINGS
Introduction – Primary Colours
In art class you may have learned that red, yellow and blue are primary colours. This means that any other colour can be
created by blending various amounts of these three colours.

For television and computer monitor purposes, however, red, green and blue are used instead as the primary colours.
This system of primary colours is called the RGB Colour Model. (For more information, see RGB color model.)

The RGB Function in VB
VB uses a 24-bit RGB colour model. This means that each colour is represented by a group of 24 binary digits (i.e. zeros
and ones). For example, the colour black is represented by the code “000000000000000000000000” and the colour white
is represented by the code “111111111111111111111111.” When converted from binary (base 2) form to decimal (base
10) form, these numbers are 0 and 16777215 respectively. Therefore, a 24-bit colour model allows for the representation
of over 16 million colours!

To “blend” the primary colours red, green and blue, VB uses a function called, of all things, “RGB.” The RGB function
requires three integers (whole numbers), each of which must be between 0 and 255 inclusive. Each number represents the
intensity of the primary colour, with 0 representing the lowest intensity and 255 representing the highest. Once the three
values are given to the RGB function, it produces a single whole number that represents the particular colour. This is
shown pictorially below.

lowest intensity highest intensity

0 255

A VB Program that helps you to understand the RGB Colour Model
Load the VB project “RGB.vbp” found in the folder
I:\Out\Nolfi\Ics3m0\Drawing, Graphics, Game Program Examples\RGB. Run the
program and experiment with both the “Show Colour” and “Generate Random Colour”
buttons. This program is also useful for finding values of “red,” “green” and “blue” for
desired colours.

How to use the RGB Function
1. Examples involving the Assigning of a Specific Colour

Me.ForeColor = RGB(72, 202, 136) 'Change the form’s foreground colour
Me.BackColor = RGB(72, 202, 136) 'Change the form’s background colour

2. Examples involving the Assigning of a Random Colour
Me.ForeColor = RGB(Int(Rnd*256), Int(Rnd*256), Int(Rnd*256))
Me.ForeColor = RGB(Int(Rnd*256), Int(Rnd*256), Int(Rnd*256))

Note on Random Numbers
At this point, it suffices to say the VB expression “Int(Rnd*256)” produces a random integer (whole number) between
0 and 255 inclusive. In the next unit we shall take a far more detailed look

RGB
0 to 255

0 to 255

0 to 255

Colour Code: Integer ranging from
0 to 16777215= 242 1−

http://en.wikipedia.org/wiki/RGB_color_model�

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-16

USING TIMER CONTROLS IN YOUR VB PROGRAMS

Example – Change Background Colour of Form at Regular Intervals

Load the VB project “ChangeBackColor.vbp” found in the folder
I:\Out\Nolfi\Ics3m0\Drawing, Graphics, Game Program Examples\Timer Examples. When you run the program,
you will discover that that there are two ways to change the background colour of the form.

• The background colour of the form can be changed manually by clicking the button “Change Form’s Background
Colour …” Every time this button is clicked, the form’s “BackColor” property is changed to a random value.

• The background colour of the form can also be changed automatically at regular intervals. This is accomplished by
using a timer control (see below). A timer control’s only purpose is to generate a “Timer” event at regular intervals.
The interval is set by the programmer using the “Interval” property, whose value is a time specified in milliseconds.
For example, if the “Interval” property is set to 250 and the “Enabled” property is set to “True,” the timer will generate
a “Timer” event every 250 milliseconds (i.e. every 1 4 of a second). Every time that a “Timer” event is generated, the
“Sub” corresponding to the timer is executed.

This object is known as a timer control. It is used to execute
code automatically at regular intervals. Timer controls are
only visible at design-time. At run-time, they are invisible.

The name of the object
is

“tmrChangeBackColor”

The name of
the event is

“Timer”

The name of the “Sub” is “tmrChangeBackColor_Timer”
This sub is executed automatically every time the

“tmrChangeBackColor” object generates the “Timer” event.

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-17

MAKING DECISIONS – A BRIEF INTRODUCTION TO “IF” STATEMENTS
Example – Drawing Shapes One at a Time

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-18

CREATE YOUR OWN ARTISTIC DESIGN – ASSIGNMENT TO BE HANDED IN!
Description of Assignment
Now it is time to put into practice what you have learned in this unit. You will create an artistic design of your own that
consists of lines and circles. If you have the desire to earn a very high mark (i.e. 4+, 4++), then you need to go beyond
what we have learned and include ellipses (ovals), arcs and whatever else you fancy!

What you must hand in
(a) Before you write your VB code, you must use a pencil and graph paper to design your art. It is not necessary to

sketch every line and circle that will be included. It suffices to sketch enough to reveal the patterns that will be used
to create a VB program that is as short as possible. Alternatively, you may use “Geometers’ Sketchpad” instead of
pencil and paper if you wish. If you do not know how to use Geometers’ Sketchpad, it is worthwhile learning how
because it is a valuable tool in math courses.

(b) You must also include tables of values with your pencil and paper sketch (or with your Geometers’ Sketchpad
sketch). Once again, it is only necessary to include enough points in your tables to reveal patterns!

(c) Obviously, you must also hand in your VB program. Make sure that you submit both your “.vbp” file and your “.frm”
file(s). If you hand in only your “.vbp” file, there will be nothing for me to mark!

Evaluation Guide

Categories Criteria Descriptors
Level Average

Level 4 Level 3 Level 2 Level 1 Level 0

Knowledge and
Understanding

(KU)

Ability to Distinguish between Constant and
Variable Information. Extensive Good Moderate Minimal Insufficient

Loops used Wherever Possible
To what degree are repetitive steps implemented
using “For…Next” loops?

Very High High Moderate Minimal Insufficient

Application
(APP)

Declaration of Variables
To what degree are the variables declared with
appropriate data types?

Very High High Moderate Minimal Insufficient

Pencil and Paper Sketch and Table of Values
To what degree has the student employed a logical,
thorough and organized debugging method?

Very High High Moderate Minimal Insufficient

Thinking,
Inquiry and

Problem
Solving
(TIPS)

Degree to which Design differs from Examples
To what degree has the student created a design that
differs significantly from the examples given in the
course notes?

Very High High Moderate Minimal Insufficient

Inclusion of Elements not Explicitly Taught
To what degree has the student included elements
not covered in the unit? (e.g. arcs, ellipses, etc.)

Very High High Moderate Minimal Insufficient

Communication
(COM)

Indentation of Code
Insertion of Blank Lines in Strategic Places
(to make code easier to read)

Very Few
or no
Errors

A Few
Minor
Errors

Moderate
Number of

Errors

Large
Number of

Errors

Very Large
Number of

Errors

Descriptiveness of Identifier Names
Variables, Constants, Objects, Functions, Subs, etc
Inclusion of Property Names with Object Names
(e.g. ‘txtName.Text’ instead of ‘txtName’ alone)
Clarity of Code
How easy is it to understand, modify and debug the
code?
Adherence to Naming Conventions
(e.g. use “txt” for text boxes, “lbl” for labels, etc.)

Masterful Good Adequate Passable Insufficient

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-19

ANIMATIONS IN VB
Animated GIFs on Web Pages
If you have surfed the Internet, then surely you have seen what is known as an animated GIF. “GIF” is a lossless image
compression format that very effectively reduces the size of pictures that contain only a few solid colours (such as comic
strip characters or cartoons). GIF also supports simple animations. If you find or create an animated GIF that you would
like to include in a Visual Basic program, however, you would soon discover that Microsoft does not provide any controls
that support animated GIFs. How can this problem be solved? There are two strategies that you could apply.
1. A Lazy but Intelligent Method – Find a Third Party VB Control that Supports Animated GIFs

Find a third party VB control that supports animated GIFs. Besides the controls that are listed in the standard VB
toolbox, many others are available through the “Components…” option in the “Project” menu (see Yet another Lazy
Method – Use a Windows Media Player Control). By searching the list of components, you might find one that
supports animated GIFs. If you do not find one, you might be able to download such a component from the Internet.
The CNET site www.download.com is a good source of shareware and freeware. If you use such a site to download a
component such as a GIF animator control, once the component is installed it will appear in the “Components…”
dialogue box in VB.

2. The Brute Force Method
If you search high and low and are unable to find a VB control that supports the type of animation that you would like
to use, then you can simply write your own VB code. Advanced VB programmers would know how to write their own
controls. For the purposes of this course, however, we can write some simple code that involves a picture box or image
control, a timer and a control array of picture boxes or image controls.

To gain insight into this method, load, run and study
I:\Out\Nolfi\Ics3m0\Drawing, Graphics, Game Program Examples\Animation\Flag Animation.vbp. Also, see the
note that begins on the next page, which is entitled “Using Timer Controls in your VB Programs.”

Note: If you use method 2, you must first extract all the frames from your animated GIF. This can be accomplished using
a good image editor or animation program.

Other types of Animations
1. Another Lazy Method – Find a Third Party VB Control that Supports other types of Animations

Web pages support a host of other animations such as “Adobe Macromedia Flash” animations. Such animations can be
used as long as you can find or develop VB controls that support them.

2. Yet another Lazy Method – Use a Windows Media Player Control
You can use “Windows Media Player” controls on your VB forms.
1. Choose “Components”

from the “Project”
menu.

2. In the “Components” dialogue box, choose the “Controls” tab.
Scroll down to find “Windows Media Player” and check its check
box.

3. Once steps 1 and 2 are completed,
the Windows Media Player icon
will appear in the tool box.

Once you have the Windows Media Player control on your form, you will need to study its properties and methods to
learn how to use it.

http://www.download.com/�

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-20

Question
You will notice that the “Flag Animation” program mentioned above has two forms, one of which the user will never see.
Explain the purpose of this “invisible” form. Why would it be a poor idea to load all the animation frames from files each
time they need to be displayed?

Other Graphics Examples
The folder “I:\Out\Nolfi\Ics3m0\Drawing, Graphics, Game Program Examples” contains a large number of examples
of many simple programming techniques that you would likely use in your video game programs. Study each example
carefully to learn many simple tricks that will help you create programs that will dazzle your non-programmer friends!

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-21

Example – Canadian Flag Animation Program
Load and run the program

I:\Out\Nolfi\Ics3m0\Drawing, Graphics, Game Program Examples\Animation\Flag Animation.vbp.
Then read the notes below to understand how the flag animation is accomplished.

Using Multiple Forms in a VB Project
As shown below, it is possible to create a VB project that contains two or more forms. Carefully take note of the
following important points.

1. The project file “Flag Animation.vbp” stores important information regarding all the files required for the project. The
filename extension “.vbp” stands for “Visual Basic Project.”

2. Please keep in mind that “.vbp” files do not store any code. The VB code used for your forms is actually stored in files
with a “.frm” extension, which naturally, stands for “form.” The flag animation project contains two forms,
“frmMain,” which is stored in the file “Flag Animation.frm” and “frmPics,” which is stored in the file “frmPics.frm.”

3. When the user runs this VB project, he/she will only see the “frmMain” form. The “frmPics” form is loaded into main
memory (RAM) but it remains hidden from the user. The purpose of the “frmPics” form is to store the still pictures
(known as “frames”) used for the animation.

4. Whenever you create a VB project, it is best to store all the required files in a single folder.

Timer Controls
As stated above, a timer control is used to execute code at regular intervals without user intervention. Applications of
this include the following:
• Update a picture at regular intervals (e.g. traffic camera picture, second hand of clock)
• Cancel an action that is taking a long time to complete (i.e. every so often check if the

user has clicked the “Cancel” button)
• Check periodically for new email messages
• Almost anything that you can imagine that occurs at regular intervals

Shown at the right is the property list for the timer used in the flag animation example. There
are only two properties that are of great interest to us.

Enabled: When this property is set to False, the timer control does not generate the “Timer” event. This means that no
code is executed at regular intervals. If this property is set to True, the timer control will generate the “Timer” event at
regular intervals as specified by the “Interval” property.
Interval: This property specifies how much time (in milliseconds) should elapse between calls to the timer control’s
“Timer” event. If “Enabled” is set to True and “Interval” is set to a positive value, the “Timer” event will be generated
every “Interval” milliseconds. Otherwise, the “Timer” event is not generated.

This object is known as a timer control.
It is used to execute code automatically
at regular intervals. Timer controls are

only visible at design-time. At run-time,
they are invisible.

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-22

The following is the code used in the “frmMain” form. Note that there is no code needed for the “frmPics” form because
it serves entirely as a convenient storage area for the individual frames in the animation.

By using the above table we can see clearly how the “Mod” operator can be used to “cycle through” a range of integers.
In the flag animation example, the “Mod” operator is used to cycle through the integers 0, 1, 2, …, 9. Once 10 is reached,
the value of “Frame” becomes zero once again and the cycle starts anew.

Force variable
declarations.

Examples of Various Events
• Click: Press and release a mouse button
• Load: Form is loaded into RAM
• Timer: Interval for timer control has elapsed

To shorten the code considerably, a structure known
as a control array is used (see next page). Using
this idea allows us to use one statement to access a
large number of objects. In this example, we are
able to access any of the flag animation frames just
by altering the value of the “Frame” variable.

• tmrAnimation: name of object
• Timer: name of event
• tmrAnimation_Timer: name of Sub
• Sub: Subroutine, a set of instructions that

performs a specific task for a main routine,
requiring direction back to the proper place
in the main routine on completion of the task.

The Mod operator is used to calculate the
remainder obtained when one integer quantity is
divided by another. For example,

31 Mod 7 = 3
because 7 divides into 31 four times with three
left over.

Note that the backslash (“\”) is used to compute
the quotient obtained when one integer quantity
is divided by another. For example,

31 \ 7 = 4
The forward slash is used for general division.
For example,

31 / 7 = 4.42857142857143

How the Value of the “Frame” Variable Changes

Value of
“Frame” Calculation New Value

of “Frame”
0 (0+1) Mod 10 1
1 (1+1) Mod 10 2
2 (2+1) Mod 10 3
3 (3+1) Mod 10 4
4 (4+1) Mod 10 5
5 (5+1) Mod 10 6
6 (6+1) Mod 10 7
7 (7+1) Mod 10 8
8 (8+1) Mod 10 9
9 (9+1) Mod 10 10
10 (10+1) Mod 10 0

This is called a trace chart or a memory map. It is a
tool that is used to figure out how the values of
variables change as a program executes.

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-23

Control Arrays
An array is a programming structure that allows us to use a single name to access any member of a collection of variable
or objects. Since each member of the collection has the same name, a number called the index or subscript is used to
identify any particular member, which is called an element. Arrays make it easy to process large amounts using loops.
When arrays are used to process large amounts of data, the code tends to be much shorter than equivalent code written
without the use of arrays. A much more detailed study of arrays will be done in unit 3 of this course.

A control array is an array of VB controls. A control in VB, speaking very loosely, is an object on a form that acts in the
same manner as a control on a machine. A control on a machine is used to guide it and regulate it. Similarly, a control on
a form is used to “guide” and “regulate” a program.

The idea of an array is similar to that of street addresses. All buildings on Kennedy Road North, for example, have the
same street name. If you were to tell someone who is unfamiliar with Brampton that Central Peel is located on Kennedy
Road North, then he/she would only have a vague idea of its location. On the other hand, if you specify the complete
address, 32 Kennedy Road North, then the school would be much easier to find.

How to Create a Control Array
There are three ways to create a control array at design-time.

• Copy an existing control and then paste it onto the form.

• Assign the same name to more than one control.

• Set the control’s “Index” property to a non-negative integer value.

The series of image controls on the form at
the left is a control array of image controls.
The following is a summary of its features:
• Each image control has the same name,

that is, “imgFrame.” The name of an
array is analogous to a street name.

• To distinguish one element of the control
array from another, its index is used.

• The index or subscript of a particular
element is an integer that uniquely
identifies it. The index of an element is
analogous to a street number.

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-24

LEARNING TO READ TECHNICAL DOCUMENTS
Important Terminology
Syntax
Linguistics: The study of the rules for the formation of grammatical sentences in a language.
Computer Science: The grammatical rules and structural patterns governing the ordered use of appropriate words and
symbols for creating valid programming statements using a programming language.
Logic
Philosophy: The study of the principles of reasoning, especially of the structure of propositions as distinguished from their
content and of method and validity in deductive reasoning.
Computer Science: The non-arithmetic operations performed by a computer, such as sorting, comparing and matching,
that involve “yes-no” or “true-false” decisions.
Debug
Computer Science: Locate and correct errors in a computer program.

Compile
Computer Science: Use a computer program called a compiler to translate source code, written in a particular
programming language such as Visual Basic, into computer-readable machine code that can be executed by a CPU.
To compile a program in VB, use the “Make…” option from the “File” menu. For example, if your project were called
“LineArt.vbp,” there would be an option in the “File” menu “Make LineArt.exe.” In Windows operating systems, the
filename extension “.exe” stands for “executable.” Executable files contain machine code that can be executed directly by
a processor (CPU).

Syntax Error
Computer Science: An invalid use of the grammatical rules governing the structure of programming statements. Programs
that contain syntax errors cannot be compiled.
In VB, statements that contain syntax errors are displayed in bright red.

Logic Error
Computer Science: A programming error that causes a program to behave in an unexpected or unpredictable manner
(i.e. a bug).
Unfortunately, the VB software development environment (or any other for that matter) cannot detect and correct logic
errors. The only way to correct such errors is to use your problem solving skills in conjunction with the debugging
strategies that we shall be learning throughout this course.

Debugging

Syntax Error or
Logic Error?

Design-Time
Error or

Run-Time Error?

The VB keyword “Step” is misspelled. Therefore,
this statement contains a syntax error. Another

way of expressing this is to say that the statement is
syntactically invalid.

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-25

Design-Time Error
Computer Science: A programming error that occurs while a program is being designed (which obviously means that the
program is not running).
Run-Time Error
Computer Science: An error that occurs while a program is executing. Run-time errors are also known as exceptions.
Argument
Mathematics: A variable in a logical or mathematical expression whose value determines the value of the dependent
variable. For instance, if f(x) = y, then x is called the independent variable or the argument.
Computer Science: A value that is passed to a function or some other programming construct. For example, the RGB
function in VB takes three arguments, each of which is an integer from 0 to 255 inclusive.

The “For … Next” Statement
Syntax
The “For … Next” statement repeats a group of statements a specified number of times.

For counter = start To end [Step step]
 [statements]
 [Exit For]
 [statements]
Next [counter]

The “For …Next” statement syntax has these parts:

Part Description

counter Required. Numeric variable used as a loop counter. The variable cannot be a Boolean or an array element.

start Required. Initial value of counter.

end Required. Final value of counter.

step Optional. Amount counter is changed each time through the loop. If not specified, step defaults to one.

statements Optional. One or more statements between For and Next that are executed the specified number of times.

Remarks
The step argument can be either positive or negative. The value of the step argument determines loop processing as follows:

Value Loop executes if

Positive or 0 counter <= end

Negative counter >= end

After all statements in the loop have executed, step is added to counter. At this point, either the statements in the loop execute again
(based on the same test that caused the loop to execute initially), or the loop is exited and execution continues with the statement
following the Next statement.
Tip
Changing the value of counter while inside a loop can make it more difficult to read and debug your code.
Any number of Exit For statements may be placed anywhere in the loop as an alternate way to exit. Exit For is usually used after the
evaluating of some condition, for example If...Then, and transfers control to the statement immediately following Next.
You can nest For...Next loops by placing one For...Next loop within another. Give each loop a unique variable name as its counter.
The following construction is correct:

For I = 1 To 10
 For J = 1 To 10
 For K = 1 To 10
 ...
 Next K
 Next J
Next I

Note: If you omit counter in a Next statement, execution continues as if counter were included. If a Next statement is encountered
before its corresponding For statement, an error occurs.

The square brackets are used to denote optional
arguments or statements.

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-26

(a)

Line Method
Draws lines and rectangles on an object.
Syntax
object.Line [Step] (x1, y1) [Step] − (x2, y2), [colour], [B][F]

The Line method syntax has the following object qualifier and parts:

Part Description

object Optional. Object expression that evaluates to a Form object, PictureBox control, Printer object, Printers collection, Forms collection, PropertyPage
object, UserControl object or a UserDocument object. If object is omitted, the Form with the focus is assumed to be object.

Step Optional. Keyword specifying that the starting point co-ordinates are relative to the current graphics position given by the CurrentX and CurrentY
properties.

(x1, y1) Optional. Single values indicating the coordinates of the starting point for the line or rectangle. The ScaleMode property determines the unit of measure
used. If omitted, the line begins at the position indicated by CurrentX and CurrentY.

Step Optional. Keyword specifying that the end-point co-ordinates are relative to the line starting point.

(x2, y2) Required. Single values indicating the co-ordinates of the end-point for the line being drawn.

colour Optional. Long integer value indicating the RGB colour used to draw the line. If omitted, the ForeColor property setting is used. You can use the RGB
function or QBColor function to specify the colour.

B Optional. If included, causes a box to be drawn using the coordinates to specify opposite corners of the box.

F Optional. If the B option is used, the F option specifies that the box is filled with the same colour used to draw the box. You cannot use F without B. If B
is used without F, the box is filled with the current FillColor and FillStyle. The default value for FillStyle is transparent.

Remarks
To draw connected lines, begin a subsequent line at the end point of the previous line.
The width of the line drawn depends on the setting of the DrawWidth property. The way a line or box is drawn on the background
depends on the setting of the DrawMode and DrawStyle properties.
When Line executes, the CurrentX and CurrentY properties are set to the end point specified by the arguments. This method cannot
be used in a “With…End” block.

Circle Method
Draws a circle, ellipse or arc on an object.

Syntax
object.Circle [Step] (x, y), radius, [colour, start, end, aspect]

The Circle method syntax has the following object qualifier and parts:

Part Description

object Optional. Object expression that evaluates to a Form object, PictureBox control, Printer object, Printers collection, Forms collection,
PropertyPage object, UserControl object or a UserDocument object. If object is omitted, the Form with the focus is assumed to be object.

Step Optional. Keyword specifying that the center of the circle, ellipse or arc is relative to the current coordinates given by the CurrentX and CurrentY
properties of object.

(x, y) Required. Single values indicating the coordinates for the center point of the circle, ellipse or arc. The ScaleMode property of object determines the
units of measure used.

radius Required. Single value indicating the radius of the circle, ellipse or arc. The ScaleMode property of object determines the unit of measure used.

colour Optional. Long integer value indicating the RGB colour of the circle’s outline. If omitted, the value of the ForeColor property is used. You can use
the RGB function or QBColor function to specify the colour.

start, end Optional. Single-precision values. When an arc or a partial circle or ellipse is drawn, start and end specify (in radians) the beginning and end
positions of the arc. The range for both is –2 π radians to 2 π radians. The default value for start is 0 radians; the default for end is 2 π radians.

aspect Optional. Single-precision value indicating the aspect ratio of the circle. The default value is 1.0, which yields a perfect (non-elliptical) circle on any
screen.

This symbol is not a subtraction sign! In the
context of the “Line” method, the “−”

symbol means “to.” A line is drawn from
the point with co-ordinates (x1, y1) to the

point with co-ordinates (x2, y2).

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-27

Remarks
To fill a circle, set the FillColor and FillStyle properties of the object on which the circle or ellipse is drawn. Only a closed figure can
be filled. Closed figures include circles, ellipses or pie slices (arcs with radius lines drawn at both ends).

When drawing a partial circle or ellipse, if start is negative, Circle draws a radius to start, and treats the angle as positive; if end is
negative, Circle draws a radius to end and treats the angle as positive. The Circle method always draws in a counter-clockwise
(positive) direction.

The width of the line used to draw the circle, ellipse, or arc depends on the setting of the DrawWidth property. The way the circle is
drawn on the background depends on the setting of the DrawMode and DrawStyle properties.

When drawing pie slices, to draw a radius to angle 0 (giving a horizontal line segment to the right), specify a very small negative value
for start, rather than zero.

You can omit an argument in the middle of the syntax, but you must include the argument’s comma before including the next
argument. If you omit an optional argument, omit the comma following the last argument you specify.

When Circle executes, the CurrentX and CurrentY properties are set to the centre point specified by the arguments.

This method cannot be used in a “With…End” block.

PSet Method
Sets a point (pixel) on an object to a specified colour.

Syntax
object.PSet [Step] (x, y), [colour]

The PSet method syntax has the following object qualifier and parts:

Part Description

object
Optional. Object expression that evaluates to a Form object, PictureBox control, Printer object, Printers collection,
Forms collection, PropertyPage object, UserControl object or a UserDocument object. If object is omitted, the
Form with the focus is assumed to be object.

Step Optional. Keyword specifying that the coordinates are relative to the current graphics position given by the
CurrentX and CurrentY properties.

(x, y) Required. Single values indicating the horizontal (x-axis) and vertical (y-axis) coordinates of the point to set.

colour Optional. Long integer value indicating the RGB colour specified for point. If omitted, the current ForeColor
property setting is used. You can use the RGB function or QBColor function to specify the colour.

Remarks
The size of the point drawn depends on the setting of the DrawWidth property. When DrawWidth is 1, PSet sets a single pixel to
the specified colour. When DrawWidth is greater than 1, the point is centred on the specified coordinates.

The way the point is drawn depends on the setting of the DrawMode and DrawStyle properties.

When PSet executes, the CurrentX and CurrentY properties are set to the point specified by the arguments.

To clear a single pixel with the PSet method, specify the coordinates of the pixel and use the BackColor property setting as the colour
argument.

This method cannot be used in a “With…End” block.

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-28

RGB Function
Returns a “Long” whole number representing an RGB (red, green, blue) colour value.

Syntax
RGB(red, green, blue)
The RGB function syntax has these named arguments:

Part Description

red Required; Variant (Integer). Number in the range 0–255 inclusive that represents the red component of the colour.

green Required; Variant (Integer). Number in the range 0–255 inclusive that represents the green component of the colour.

blue Required; Variant (Integer). Number in the range 0–255 inclusive that represents the blue component of the colour.

Remarks
Application methods and properties that accept a colour specification expect that specification to be a number representing an RGB
colour value. An RGB colour value specifies the relative intensity of red, green and blue to cause a specific colour to be displayed.
The value for any argument to RGB that exceeds 255 is assumed to be 255.
The following table lists some standard colours and the red, green and blue values they include:

Colour Red Value Green Value Blue Value

Black 0 0 0

Blue 0 0 255

Green 0 255 0

Cyan 0 255 255

Red 255 0 0

Magenta 255 0 255

Yellow 255 255 0

White 255 255 255

Using Colour Properties
Many of the controls in Visual Basic have properties that determine the colours used to display the control. Keep in mind that some of
these properties also apply to controls that are not graphical. The following table describes the colour properties.

Property Description

BackColor Sets the background colour of the form or control used for drawing. If you change the “BackColor” property after
using graphics methods to draw, the graphics are erased by the new background colour.

ForeColor Sets the colour used by graphics methods to create text or graphics in a form or control. Changing “ForeColor”does
not affect text or graphics already created.

BorderColor Sets the colour of the border of a shape control.

FillColor Sets the colour that fills circles created with the “Circle” method and boxes created with the “Line” method.

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-29

Defining Colours
The colour properties can use any of several methods to define the colour value. The “RGB” and “QBColor” functions described
above are two different ways. This section discusses two other methods.

• Using defined constants
• Using direct colour settings

Using Direct Colour Settings
Using the RGB function or the intrinsic constants to define colour are indirect methods. They are indirect because Visual Basic
interprets them into the single approach it uses to represent colour. If you understand how colours are represented in Visual Basic,
you can assign numbers to colour properties and arguments that specify colour directly. In most cases, it’s much easier to enter these
numbers in hexadecimal form.
The valid range for a normal RGB colour is 0 to 16,777,215 (&HFFFFFF&). Each colour setting (property or argument) is a 4-byte
integer. The high byte of a number in this range equals 0. The lower 3 bytes, from least to most significant byte, determine the
amount of red, green and blue, respectively. The red, green and blue components are each represented by a number between 0 and
255 (&HFF).

Consequently, you can specify a colour as a hexadecimal number using this syntax: &HRRGGBB&.

e.g. txtName.BackColor = &HFF0000&
The BB specifies the amount of blue, GG the amount of green, and RR the amount of red. Each of these fragments is a two-digit
hexadecimal number from 00 to FF. The median value is 80. Thus, the following number specifies grey, which has the median
amount of all three colours:

&H808080&
Setting the most significant bit to 1 changes the meaning of the colour value: It no longer represents an RGB colour, but an
environment-wide color specified through the “Windows Control Panel.” The values that correspond to these system-wide colours
range from &H80000000& to &H80000015&.

Note: Although you can specify over 16 million different colours, systems with old video cards may not be able to display them
accurately.

Using Defined Constants
You do not need to understand how colour values are generated if you use the intrinsic constants listed in the “Object Browser.” In
addition, intrinsic constants do not need to be declared. For example, you can use the constant “vbRed” whenever you want to
specify red as a colour argument or colour property setting:

e.g. txtName.BackColor = vbRed
The tables below summarize the defined intrinsic colour constants available in VB.

Colours
Constant Value Description

vbBlack &H0 Black

vbRed &HFF Red

vbGreen &HFF00 Green

vbYellow &HFFFF Yellow

vbBlue &HFF0000 Blue

vbMagenta &HFF00FF Magenta

vbCyan &HFFFF00 Cyan

vbWhite &HFFFFFF White

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-30

System Colours

Constant Value Description Constant Value Description

vbScrollBars &H80000000 Scroll bar color vbHighlightText &H8000000E Text color of items selected
in a control

vbDesktop &H80000001 Desktop color vbButtonFace &H8000000F Color of shading on the
face of command buttons

vbActiveTitleBar &H80000002 Color of the title bar for the
active window vbButtonShadow &H80000010 Color of shading on the

edge of command buttons

vbInactiveTitleBar &H80000003 Color of the title bar for the
inactive window vbGrayText &H80000011 Grayed (disabled) text

vbMenuBar &H80000004 Menu background color vbButtonText &H80000012 Text color on push buttons

vbWindowBackground &H80000005 Window background color vbInactiveCaptionText &H80000013 Color of text in an inactive
caption

vbWindowFrame &H80000006 Window frame color vb3DHighlight &H80000014 Highlight color for 3D
display elements

vbMenuText &H80000007 Color of text on menus vb3DDKShadow &H80000015 Darkest shadow color for
3D display elements

vbWindowText &H80000008 Color of text in windows vb3DLight &H80000016 Second lightest of the 3D
colors after vb3Dhighlight

vbTitleBarText &H80000009 Color of text in caption,
size box, and scroll arrow vb3DFace &H8000000F Color of text face

vbActiveBorder &H8000000A Border color of active
window vb3Dshadow &H80000010 Color of text shadow

vbInactiveBorder &H8000000B Border color of inactive
window vbInfoText &H80000017 Color of text in ToolTips

vbApplicationWorkspace &H8000000C

Background color of
multiple-document
interface (MDI)
applications

vbInfoBackground &H80000018 Background color of
ToolTips

vbHighlight &H8000000D Background color of items
selected in a control

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-31

SUMMARY OF UNIT 1
1. The most important lesson of the entire course is __

___.

2. If you choose to ignore the most important lesson of the course, you are likely to ______________________________

___.

3. George Polya’s four steps of problem solving are ___

___.

4. A program is __.

Code is __.

A programming language is ___.

An algorithm is __.

5.

6. For two-dimensional computer graphics, the origin of the Cartesian co-ordinate system is located at the

___________________________________ of the screen. The x-axis is ________________ and runs along the very

_________ of the screen. The x-co-ordinates increase as we move toward the ______________. The y-axis is

________________ and runs along the __________________ of the screen. The y-co-ordinates increase as we move

______________ the screen. The orientation of the y-axis is somewhat unusual because we are accustomed to seeing it

_________________________ in math class. For three-dimensional computer graphics everything is the same as in

the two-dimensional case except that there is an additional __________ called the __________ that is directed

_____________ the screen.

7. To draw a line segment in VB, we can use the ____________________ method. This method requires two pieces of

information, namely the _________________________ of the line segment. To draw a circle in VB, we can use the

_____________________ method. This method also requires two pieces of information, the ___________ of the circle

and the ________________ of the circle.

8. When we access a property or method, we use the formats objectName.propertyName or objectName.methodName.

In the case of a form object, we can use the word __________ as a substitute for the name of the form. This is helpful

because no changes in the VB ___________ are required if we ever decide to change the name of the form.

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-32

9. A variable is ___.

If “Option Explicit” is used, all variables must be ____________________. This means that the ________ and

the ___________ of the variable are specified using the _________ statement. Although in VB it is possible to use

variables without declaration, it is a very bad idea because ___

__.

10. An object is a collection of ________________ and _________________. By convention, object names should begin

with suggested prefixes such as _________ for command buttons and __________ for forms. Also by convention,

“CamelCase” is used for variable and object names. This makes the names much easier to ________. For example, it

is much easier to __________ the variable name “NumberOfGamesSold” than the name “numberofgamessold.”

11. Debugging a program means to ___. The VB

development environment has several features and tools that help us to debug our programs. For example, a

________________________ can be set by clicking in the left margin of the code editor window. This allows the

programmer to ___. In

addition, VB displays syntactically invalid statements in bright ___________________. Unfortunately, __________

__________ cannot be detected by VB. These errors will manifest themselves while a program is ______________.

12. The CPU (central processing unit) of a computer is also known as a ___________________. CPUs cannot execute

programs written in higher level languages such as Visual Basic, C++ and Java. Therefore, higher level language

____________ code must be translated into _______________ code using a special program called a ____________.

13. Unless an object’s “AutoRedraw” property is set to “True,” any image that is drawn on the object will __________

___.

14. We used the ________________, _________________ and __________________ properties to create a more

convenient 100×100 grid on a form or a picture box. By default, distance on an object is measured using a tiny unit

called a __________________, which is equal to ______________________________________. Distance can also

be measured using _____________, _____________, _____________, _____________, _____________ and

_____________.

15. To avoid using a massive number of identical or similar statements, a programming concept called repetition is used.

In this unit, we have learned to use ____________________________ loops to implement this concept in VB.

Debugging

Syntax Error or
Logic Error?

Design-Time
Error or

Run-Time Error?

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-33

16. In VB, certain objects are called controls because ___.

17. Whenever it is necessary to process a reasonably large number of controls all of which are of the same type, it is

convenient to use a ______________________________. The advantage of using such a structure is that each control

will have the same ____________, making it possible to access all the controls using a single statement. Since all the

controls in such a structure have the same name, it is necessary to have a method of distinguishing one from another.

To do this, an integer value called an _____________ or a ______________ is used. The ____________ of an

element of a control array is similar to the __________________ in a person’s address.

18. VB programs are subdivided into structures know as _______________________, or simply _________ for short.
(See question 19 for a hint.)

19. The “Subs” that we have encountered in VB so far are known as event procedures because _____________________

___. Such subs (short for “subroutine”) are named automatically by

joining the name of the _______________ to an ___________________, which is then joined to the name of the

__________________. The VB event monitor waits for an _____________ to occur on a particular ___________.

When this happens, the corresponding ________ is called, which means that certain code is executed.

20. An easy way to specify a colour in VB is to use the __________ function. The RGB function requires three

___________, each of is an integer ranging from ________ to _______. In binary, these two values are represented

by the eight-bit codes ____________ and ____________.

21. The purpose of a video card (also known as a graphics card or a graphics adaptor) is to ________________________

_____________________. Graphics cards require RAM (random access memory) because ____________________

___. Among other capabilities, video cards can be used to set the

___________ ______________ of a monitor. This determines the number of ______________ in each row and each

column. The total number of ________________ on the screen is determined by multiplying the _______________

___.

22. There are four properties of objects that deal with colour, namely _____________, _____________, _____________

and _____________. Colours can be specified in a variety of ways. VB has built-in ________________ such as

“vbWhite” for commonly used colours. For other colours, it is easy to specify the required colour by using the

________ function.

23. A loop within another loop is called a _________________ loop. If the outer loop repeats m times and the inner loop

repeats n times, then the total number of repetitions is __________.

24. In computer science, the term argument refers to __.

This is similar to the mathematical meaning of this term, which is __.

25. In technical documents about programming, square brackets are used to denote ______________________________

___________________________________. The square brackets should _______ be used in the actual code. They

simply mean that the programmer may include the arguments or statements if he/she wishes to do so. It is not

_________________ to include items that are enclosed in square brackets.

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-34

ENHANCEMENT PROBLEMS
1. The following example will help you to begin learning about nested loops.

In addition, you will see the “RGB” function and the “Line” method in
action. Study the code and then answer questions (a) to (g).
'''
'You can use this program to learn about nested loops
'and generating random integers. The random integers
'are used to generate random colours.
'''
Option Explicit

Private Sub cmdBlowYourMind_Click()
 Dim I As Integer, J As Integer
 Dim ShadeOfRed As Integer
 Dim ShadeOfGreen As Integer
 Dim ShadeOfBlue As Integer
 For I = 0 To 120 Step 10
 For J = 0 To 120 Step 10
 ShadeOfRed = Int(Rnd * 256)
 ShadeOfGreen = Int(Rnd * 256)
 ShadeOfBlue = Int(Rnd * 256)
 Me.ForeColor = RGB(ShadeOfRed, _
 ShadeOfGreen, ShadeOfBlue)
 Me.Line (0, 0)-(I, J)
 Next J
 Next I

End Sub

Questions
(b) You will find a copy of this program on the “Courses” page of www.misternolfi.com or in the following folder:

I:\Out\Nolfi\Ics3mo\Drawing, Graphics, Game Program Examples\Psychedelia

(c) Run the program and click on the “Blow Your Mind…” button a few times. Then minimize the program and
immediately restore it. Repeat the above steps but this time, set the “AutoRedraw” property of the form to “False.”
What do you notice? Write a brief explanation of the “AutoRedraw” property.

(d) Using a piece of graph paper, explain the order in which this program plots the lines. Do not forget to label the axes
and to orient them in the same manner as they are oriented on the screen. In addition, be sure to check the values of
the ScaleWidth and ScaleHeight properties before you scale your axes.

(e) Explain the purpose of the “ScaleMode” property.

(f) The RGB function requires integer arguments in the range 0 to 255 inclusive. Explain how this program uses the
“Int” and the “Rnd” functions to generate random integers between 0 and 255.

(g) Modify the above program so that a Timer object is used to change the pattern instead of a command button. (See
page 17 for more details).

http://www.misternolfi.com/�

Copyright ©, Nick E. Nolfi ICS3MO Introduction to Programming through Graphics and Animation IPGA-35

Questions 2, 3 and 4 deal with how a display screen (i.e. a monitor screen) is organized into pixels. The colour of each
pixel (short for “picture element”) is determined by a binary code (sequence of zeros and ones). The video card (also
known as graphics card or graphics adaptor) sets the colour of each pixel according to the binary code stored for each
pixel. The screen resolution determines the number of pixels in each row and the total number of rows of pixels. For
example, a screen resolution of 1600 × 1200 means that there are 1600 pixels in each row and 1200 rows altogether.

2. How many different colours can be displayed by a video card set to each of the following modes? In each case, show

your work. (The first one is done for you as an example.)
(a) Four-bit colour

The possible binary codes are
0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.
Therefore, only 16 colours can be displayed using 4-bit colour. (Shortcut: 24 = 16)

(b) Eight-bit colour

(c) Sixteen-bit colour

(d) Twenty-four bit colour

(e) Thirty-two bit colour

(f) Sixty-four bit colour

3. How much memory is required to display a full-screen image if the video card is set to a screen resolution of
800 pixels × 600 pixels and to 32-bit colour mode? Show your work! (Note: 1 KB=1024 bytes, 1 MB=1024 KB)

What is the largest screen resolution possible if a video card with 32 MB of RAM is set to 32-bit colour mode? Show

your work!

This is a magnified section of an image on a
computer monitor screen. Each small
square is called a pixel (“picture element”),
which is the smallest addressable segment
of the picture. The colour of each pixel is
determined by a binary code.

1600

1200

	Table of Contents – Understanding Programming through Graphics and Animation
	A Detailed Description of George Polya’s Four Steps of Problem Solving
	The most Important Lesson of the Entire Course
	The Most Important Lesson of the Entire Course
	Planning and Developing Solutions to Software Development Problems
	Important Terminology
	Program
	Programming Language
	Code
	Algorithm

	A Computer as a Data Processing Machine

	Right!!!!!!(George Polya)
	Wrong!!!!!(Most Students)
	How these Steps Apply to Software Development
	Line Art
	Introduction
	How can we COMMAND a Computer to create such a Picture?
	Graph Paper and Pencil Exercises
	Writing a VB Program that Generates Line Art
	Questions
	VB Programming Exercises

	Dramatically Reducing the Length of Line Art Programs
	Introduction – Counted Loops
	Analogy – Adding Sugar to Coffee
	Using a Counted Loop to reduce the length of the Line Art Example Code on Page 8
	Exercises

	“For…Next” Loop Method (Counted Loop Method)
	Tedious, Long, Repetitive Method
	A Detailed Solution
	Solution to Question 7 on Page 9
	Planning the Solution
	Writing the Code
	Question
	Using Grade 9 Math to Understand the Solution

	Circle Art
	Objects, Properties and Methods
	Understanding the Differences between Properties and Methods
	Understanding the Differences between Variables and Objects
	Variable
	Object

	Drawing Circles on Forms and Other Objects
	Questions
	Exercises

	Using the RGB Function to Include Colour in VB Line/Circle Drawings
	Introduction – Primary Colours
	The RGB Function in VB
	A VB Program that helps you to understand the RGB Colour Model
	How to use the RGB Function
	Note on Random Numbers

	Using Timer Controls in your VB Programs
	Example – Change Background Colour of Form at Regular Intervals

	Making Decisions – A brief Introduction to “If” Statements
	Example – Drawing Shapes One at a Time

	Create your own Artistic Design – Assignment to be Handed in!
	Description of Assignment
	What you must hand in
	Evaluation Guide

	Animations in VB
	Animated GIFs on Web Pages
	Other types of Animations
	Question
	Other Graphics Examples
	Example – Canadian Flag Animation Program
	Using Multiple Forms in a VB Project
	Timer Controls

	Control Arrays
	How to Create a Control Array

	Learning to Read Technical Documents
	Important Terminology
	Syntax
	Logic
	Debug
	Compile
	Syntax Error
	Logic Error

	Design-Time Error
	Run-Time Error
	Argument

	The “For … Next” Statement
	Syntax
	Remarks
	Tip

	Line Method
	Syntax
	Remarks

	Circle Method
	Syntax
	Remarks

	PSet Method
	Syntax
	Remarks

	RGB Function
	Syntax
	Remarks

	Using Colour Properties
	Defining Colours
	Using Direct Colour Settings
	Using Defined Constants
	Colours
	System Colours

	Summary of Unit 1
	Enhancement Problems
	Questions

