ESSENTIAL PROBLEM SOLVING STRATEGIES FOR PROGRAMMING— TABLE OF CONTENTS

ESSENTIAL PROBLEM SOLVING STRATEGIES FOR PROGRAMMING- TABLE OF CONTENTS 1

A DETAILED DESCRIPTION OF POLYA’S FOUR STEPS OF PROBLEM SOLVING 4

IMPORTANT BACKGROUND KNOWLEDGE 5

DATA (INFORMATION) —A PARTIAL LIST OF VB AT A T Y PES. .ttt iuttitiiittitsiasetesisseesissssessassssessssssesssssssssassstessosssesssssssssassssessosssssssseees 5

A Computer as @ Data ProCESSING IMACIINE .. iiiueiiiiitiieiitiie s it etestetteeeseeteessassesestssesesasssesssassssessstesssassesessabesessastesessssessssbessssssbenesas 5

Some Useful INErinSiC (BUITE-IN) FUNCIIONSuuiiiiitiiiiittiisiittties et tiesetsetesieseeessstteessaseseessseeessteeeseaeseee s et ee s st es s sabesaesbbesssasnessssaneeas 5

IMPOItANT POINTS GDOUL DAL TYDEStiiiiituiiiiittieesesteissessetestsessssestesssesssssssasessssastssssssssesehteses o1t e s e easses s thbeeesehsbesesabaessssbbssasassbasssnns 6

QU STIOMSttt it et e ettt ettt e stk e e sttt et e e st e ettt e e et e et et e e £t £ £t e £ et £ £ Attt £ oA e e e e eh bt £ et te £t s e e b beeseanntesesarees 6

A COMPIELE LISt OF VISUBL BaSIC DAl Ty IS ..ttt iuuetiesietiieiassttesissesesssessesstesssessssessssssssaastesssassssssestesssessesessabesessehtesssessessssinessssssbesesas 7

A VB PROGRAM THAT PROCESSES NUMERIC | NFORMATIONuuuttttttittiiesusssessessiassssssssesssassnsssssssstannssssssssssstamsssssssssstammsssesssessmammnssnees 8

DT OO U T O L.ttt eet et eht e eht e eht e eht e st h ettt e b4 e ekt eh s e bt bt e e bt e bt e e bt e b e e beeeebbseebteeebbseenreaie 8

Simple Addition CalCUIAIOT VEISION 1.0 . .u ittt it s ietieietesstteeietsesstseestssssessestesthessbesetbessabeseeessbe et esebes st essabeessbbssbesssbbssanesases 8

A Pictorial Description of the Addition CalCulator PrOOIAIM ... ueeieii i it itisiiisieissisessieessesessisessesessisessasessssessssessisessssesassessnsess 8

QU TIONS .. vttt ittt ettt st te et e s et e et e bt s et e bt e et e bt e et e bt e ettt e et bt e et e bt s et e bt e oAb £ bt s e Abe s bt s oAbt e bt s ebe s b eseabesenbessaberesbessanesaies 9

A CLOSER LOOK AT “V AL” AND ST R L.ttt iituiiiittissiittetesiiteessiiteeesssssesesasssssssasssesssssesssassssssasssessanssessaansesssansssssassnsssanssssannssssansenes 10

T8 NV D77 UM ON. ..ttt ittt ettt it e ettt ettt e e e et e ettt e et e e h et ettt e e e ettt e e et e et e et e £ et e e et e e e bt e s sabneaesbbeneaas 10

T8 O T UM I O .ttt sttt ittt sttt ettt ettt e sttt e ettt ettt e ettt e ettt et e e ettt e ettt et e e ettt e et e e et e e et e s smbneaessbbeneaas 10

A PROGRAM THAT PROCESSES STRING (TEXT) INFORMATION ... uuetetiistttsiasesssssssesssssssssassssssossssstassssssasssssssssssssasssssasssssssssssssssssess 11

LI E OO U T O . ittt ettt e ettt eh e e ettt e et e et e et e £ et £ bt £ttt £ At e 4 e £ £kttt £ oAt e e bt e e ekt be e eAbereeatbbereaas 11

THhe StrING (TEXE) PrOCESSI NG EXAIMIDIE L. eiiiiittiiiiittiiisiteiesset et ietestesesisteeeesssteesessetessaste e e sttt e e e s e e ehb e e e e at e e e st e e eh e e e s esnbssssbneasssinenesas 11

EXErEMEIY I DO AT QUESTIONSvti ettt ieesiteisitessseeseteesasesssteesaesessteeeheeeshteeese e e s e e bt e e et e s b e bt e bt e b e e bt e eb b e s bt s e st basabeeesbbssanensans 12

HOW COMPUTERS MAKE DECISIONS (SELECTIONS) .t iuttttuttsistsiassssssssssssssssssssssssssssssssosssssssssossssnssssasssasssssssssssssssossssssssssesssssssssessssees 14

N OAUCTION 10 I S A OIS ...ttt ittt set ettt e sttt eeht e ettt eest e e eht e et eh e e bt e st e bt e b s et e e eh bt s e bt eh bt s emt e e eb bt s abbesabbasanbesaenis 14

[SEATEMENT DELAIISuviiitiiiiiis it ite ittt i et e it e s sttt e stte sttt e eheesshee s et e e ss e e b e e sht e e b e eh e e bt e e bt s e b e eb s s b e e eht e s abe s eb e s abeeeeb e s abeesabbasaneessntis 14

P iU NG 77 S O B BT S . 1ttt ittt ittesitie it s st s st e st e sttt e ettt e sasesesbe e e it e e sht e e ebt e e st e e e e b e e ebe e e b e s bt e b e e b e eb e e bt e eb b e s bee st basaneeesbbssanesanns 15

KB GBS .ttt ittt ettt e ittt ettt e ettt e ettt e ettt e et e ettt e eb e ee e e ehe e e et e e b e e bt e et e bt e e e bt s oAb e oAbt eeAbe e Rt e e ehe e b te e Re e Ets e be e ebesebeseabeseaneresbessaneraans 15

GENETAl STIUCTUIE OF AN 1T S A EIMIENT ... e i itiiie ittt i sttt ettt s ettt es sttt es et ee sttt ee s ettt e e s ettt e set e ettt e ettt e st e e e sttt e e s abn s s s ssbaeesanbenasnns 15

ANOTHER PROGRAM THAT REQUIRES I F ST ATEMEN TS 1ttiiiiiiiiuttttttitetteiisssesttssssssasssssssssssssassssssssssssssssssssssssssassssssssessssssssssssssssessasses 17

U STIOMIS .ttt ettt ettt ettt ettt et e e e st e ettt ettt e e ettt ettt e e ettt ettt £ttt e et e e oAttt e e eAbn et e eabaeesannbeeasnns 17

OVERVIEW: SEQUENCE, SELECTION AND REPETITION: THE UNDERPINNINGS OF PROGRAMMING ..ueiiiiiiiiiisseeeiiesiiesissseesiessiesisssseeesss 18

S U .ttt ettt ettt e e e e ettt e oAbttt Ahb bt e e e oo hb bt b e e e oAb b et e e e oo A th Attt s e e e oo h bt b et s e e e oAbttt s e e e e e At bebeeeseeeianbbrberasas 18

GBI T O Lttt ettt i ettt e ettt ettt ettt e ettt ekttt e ehb ettt e oAbt e e oAbt s ookt te e oAbt e e e oAbt e e oAbt s e oAt s e oAb e e e e oAt e e £ oAbt s e e bt e e e ehntesesberaesihbereaas 18

R BT O .ttt e ettt e ettt e ettt es e e eht e ee e eht e et e et et e et e et e bttt e oAt e et e et e bt ehe e At e et e e h b e e bt e bt e e beeeebtseebeeeibbsaaberains 18

QUESLIONS ANG PrOGrAMMING EXEICISES ...vviieuiiiittiietiiiittisitessttsserssstssssessistssssesstssssssesssstsssbesssbessshesshssssssessabsssbsssabesssbessresasbessisesas 18

USING VB TO GENERATE PSEUDO-RANDOM INUMBERS ..1ttttiiiiiietusttettettiassssseestsssiasssssssssesssassssssssssstasssssssssssstaimnssssssesssaimmssssessesasnnses 20

D OO U T ON Lttt ettt sttt ettt e et b e ettt e e bt e bt e s b e bt et e bt e e bt e b b e e bt b s e bt e eh e e ehe e s b e s eheee b besabeesanrreaneeeartis 20

VY P S BUO 2 ittt ittt sttt e ettt ete ettt eetee et e e b e et e e bt e et e e bt e e st e b e e e bt e ee et s e e bt sehb e s et e bt s e Abe s e Rt s eabe e ebessbesesbessaberanes 20

How to Generate Pseudo-RanNdOm NUMDEES 1N VB ...ttt ittt itiie ittt iesstttiesseeessistesesassesssassesessssesesasssssssbesesssssesesasssssssasses 20

A General Expression for Generating Pseudo-Random INtEJEIS IN VBiii ittt sitiiisiseiessisteieseseeessisersssisreresssessessseees 21

U STIOMIS .ttt ettt ittt ettt ettt et st e ettt e ettt ettt et e ettt ettt e e ettt £ttt ettt et s e et £ e e oAttt e e ebn et e eebaeesannbeeasanns 21

APPLYING PSEUDO-RANDOM INTEGERS— AN ENHANCED VERSION OF THE GAME OF GREED ...cciiiiiiiiiuuteeiiesiiaiisssesieesiesiissesseassessanes 22

1S U Ol 0N sttt ettt etttk e ettt ettt ettt ettt et £ £ttt £ e e e et £ £kttt oAt e e et e e et be s eAbeeaeaibbeneaas 22

QU TIOMIS ..ttt e ettt et s e e e sttt e et e ettt et e et £ £ttt £t e e et e £kt e £ ettt e et £ oAbt s e At e e e oAttt eeehets e ehbbeesanbeeasnes 22

ICS3MO0 - REVIEW OF FIRST HALF OF UNIT 2 23

DA T A T Y PE S ittt iiuuttttiie st it iitteeeeeeeeesttbe et eeeeeesassb e e e e e e eaasbs e e e e e e e e sbe s e e e e e oo Anes e e e s e e oo Amme b e e s s o4 4 annn b e e e e e e s e nnnnbeeseesssetnnsbnnssesssssnnnsnnsessssssnnsn 23

USING VB TO GENERATE PSEUDO-RANDOM INUMBERS ..1tttttiiiiieitusttettettiaissseesssssiasssssssssssstassssssssssssassssssssssstainnssssssesssaimmssssessssainnses 25

L ST AT EM N T S . tuttttiitteee ittt e e suteeesaaseessesseeessssseesaasseeseasseessemseseseaseesseamsssesehmsseseassessoamseessomseseseasseesoanneessemneessannnesssnnsnssannnnesanssnsssnns 25
PROBLEM SOLVING STRATEGY 1: SOLVE A COMPLEX PROBLEM BY INVESTIGATING SPECIFIC EXAMPLES

OF THE PROBLEM 26

CASE STUDY 1: TIME CONVERTER PROBLEMuuututiiiiiiiiiiststttttesstessssssstsssssssssssssssssssssissssssssssssssssssssssssssssssssssssssstassssssessssssamssseessaesss 26

GENET Al P OB EM S AEEMENT . ittiiisitttie ittt e s it tes sttt essatteeesessetesssseeeseasseeesase e ettt e e s et e eab e ettt e e ettt ettt e e e sttt e e s s s s s sabaeesanbeeasnns 26

VI8 SOUIT | BB O 2 ettt ittt ettt sttt et e sttt et s ettt e sttt e e e ettt e ettt et e ettt ettt et e ettt et e ettt £ ettt e e et e e sttt eesannessssanenas 26

QU EIOMIS ..ttt ittt e sttt ettt e st e e sttt et e e et e ettt et e e et £ £ttt e e et e £kttt £ et e 4o ettt e At e e e oAttt eeebets e thbeeesanberasnns 26

VI A A O I, ettt ettt e ettt e s eh et e e ettt e et e e eh e e st e e ettt e £t e £ttt £ et e 441ttt £ et e e ettt s e st beeesnbeesesnnenas 26

E X Gl SES ...ttt ittiii sttt ie e ettt i ettt e s sttt e ettt e ettt e ettt e ekt e et e e oAbt e et e ettt e oAttt £ £ At £ ettt £ oAbt te e eh bt e e kb et £ oAbt s e e h bt e e eenneesssbees 26

TIME CONVERTER VB SOLUTION — WV ERSION ..t iiiuuttttiiiiiiiittttttiessiaiusssssessstsissssssssssssssssssssssssssnssssssssssssansssssssssssianssssssesssssassssssnees 27

Copyright ©, Nick E. Noalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-1

A Review of the Basic PrinCiples Of Problem SOIVING ittt st ti s sttt ieseiteeesestesesassstssseseeessissssesassessssssssssssseeesssessessnnees 27

George Polya’s FOUr StEPS Of ProDIEm SO VNG . .. ittt ittt ettt i e ettt ettt eesttteeessasetessaseeeessbeeesssesestaseeeesastesesabssssssssseessassenasanns 27
Corresponding Steps in Software Development (SYStEMS ANGIYSIS).....uuiiiiteiesiitiiiiiitetisiiseieesisteresasesssissssssstsessassesssissresssseessaes 27

A Review of how we applied the above Steps to the Time ConVerter ProbIEM..... . cuuiiiiiiiiiiiii st esiieeissieressieeeeesssensssnenas 27
T8 CONV I T VB STON MM ..ttt ietties sttt iseseteesisteeesasseeeessseeeesases e e e st e et e e eht e e ettt e et e £ et £ e et e £ et e e et e e s et sesbneaessineneaas 27
Code for Time CoNVErtEr VErSION 1.0 Al N ... i ieii ittt ittt e stessittssesessstessesessatsssebessabessseesshbesssbessabessbessabessebessbesasbessnesas 28

E XN ONS OF TS PO O L. tiiitiii it ii i ittt s ke st e e sttt e st ses bt e eit e e th bt e ehe e et e e st e et e e bt e b e et e e eh bt et e e eh e e bt e eb bt et e e b basabesesbbasanensans 29
CASE STUDY 2: STORAGE SPACE AND DATA TRANSFER RATE UNIT CONVERTER PROBLEMccccutueiiiiiiiiiiiinsiieseeiiissssseeseeeiiassssseeeeenans 30
Conversion Table (FOr KITOTI024) ... ettt ittt ite st ssee s st e s st esseeessstessteeesbessebessassesebessabessnesshbe s s essabessbessnbessebesasbesabesanesas 31
Conversion Table (FOr KIIO=T000). cuueiuiiieeieittiittsittsseesietesssessestssssessssssssssssassssssessassssesessabsssnesshbssssessbesssbessnbesssnesssesassessnsesas 31
KB IS .ttt ittt s ittt e ittt ettt ettt e ettt e ettt e st e ettt eeb e e eh e e b e et e e b e e bt e e e bt e e b ettt s oAb e bt e e e bt e e he e R te e bt e btsebeeeeb et eabesesbeseabesesressaneraan 31

A PrROPOSAL TO AVOID THE CONFUSION CAUSED BY TWO POSSIBLE MEANINGS OF “ KILO" ..uuutiiiiiiiiiiiiuteeiiessiesissessiessesiiisseseeassessanses 32
a1 ol Vo3 ([] FUTTRRR PO TR PO TR P PO O T TR T TR PP PR PP PR T PP O TP TP O TP TP T PO O T PP TP PP O T PP PR TP TR U P PO T PP P T PP PRT O PP PR TP P POR TP PPRR T OPPPTTTPTTT 32

A Description Of “KiDiDYte”™ frOM WWIKIDEOIA ... ieiiiiittiiiiit it iitteiesiteetesstteesisessssesssassesteeesesses s sasesessstssssassessesassssesesbeesssnbessesanses 32

A Description of “Kibibyte™ frOmM FOLDOC uuuiiiiitiiiiiittiiesitetisietettesesttsesasessssossssssastessseasesssssessssestssssasstsssshssssssistesssassessssaneses 32

A Description of “Kibibyte” from http://www.robinlionheart.com/stds/NtMI4/gIOSSAIYccuuiiiiiieiiiiiiiieiiiiiisieres s iieeesreressaenas 32
QU EIONS .ttt ett e esee ettt e e e st et e et et e et et e et et e et et et £ 4ot e et d £t e oAbt s et oAbt et e oAbt et s ehb e s bt e ahbesabesaaresan 32
PROBLEMS THAT CAN BE SOLVED BY INVESTIGATING SPECIFIC EXAMPLES .1tiiiiiiiiiiiutietiesiiaiisstseetessiaiisssesessseaissssssseesesaissssseessesasnses 33
A SS GINIMIENT .. uuttttettesseesssseseeessessassssseeeeeessssasseeseeeesasasbeeeeeee e amssbee e e e e s o amasbeeeeese e tnnnsssseeseeannnnsseesesssnnnnsbesssesssannssnsssessessnssssssessessnnsen 33
Evaluation GUIOE fOr QUESTION L..... iuusiesiiiisisiiteiiitisisesittsssessstesssessiatessseesssssessseessessabeesebessemeesshtssabe e e b tssabees et bssabeeesbbasanesesbsssanessans 33
Evaluation Guide for Question 2 (Unit CONVEIrSION PrOOIAM) .uuiiuiiiiuiiiieisitiiieieitisssssiessssssisssssssssssssssssssssaasessssessssesssssssseeains 34
PROBLEM SOLVING STRATEGY 2: PLAN YOUR SOLUTION IN A LOGICAL, ORGANIZED FASHION......0ccos000ss00000 35

THE PROBLEM THAT YOU NEED TO SOLV E ... uutttiiitteeeiittteeieisstesiisseesaasseestassssesssssesaassssesassssssssssessassssssasssssssnsseseansseessnnsssesssnseesassesesans 35
LOCAL VARIABLES VERSUS GLOBAL V ARIABLES.uuiiiiittittiitetetaitteeeiitsteesasseeeeaisssessasseesaasssessanssessaasssessasseeesassssesassseeanssesesnssesessssenes 35
THE P AN L.ttiiiiiititi ittt e e eett et e ittt e e eteeeeeetteeeeesseeeessseeeeesseeeesseeeeemsseeeeasseeeeanseeeeemnseeeeasbeeeeasneeesennseeeeasseeeeanneeeeennseeeannseeesansseessnnneesanssesesnns 36
P17ZA PROGRAM SOLUTIONS AND QUESTIONS. ..1eeetiutttieitseeeiasseeesassseeeanssseesassseetansssesaasssesaasssessanssssssnsssessasseeesassssessssssesaasseeesansseesssseees 37
T8 PO I B Lttt ittt ittt ettt sttt ettt et e ettt e bt e et e e ettt e et e e et e e eateeehbeeens e e st e e enbeeeh e e ehseeeh e e ehbee bt e e eheeeehbeeehbeeehbeeenree et beeanreeanbeeanneesrrs 37
TR PN L1ttt ettt ettt ettt e et e ettt e ettt e et e e ekt e ettt eeehtee ettt e eheeehbeeeheeehbeeeheee et beeehneeehbeeehreeahbeeenbeeahbeeenree et beeanreeanbeeanneesrrs 37
T8 GO0 Lttt ittt ettt ettt ettt e st ettt ettt ese e et e ebeeebe et eeab e et e et e ebeebeebe e b e e b e ebsebe e b e eateeh e eh e ebeeebeebe b e enneeReeabeeabeebeanreanbeerbeareerees 38
QU BT ONIS 11ttt etteetiettte ettt ettt ettt esseeseeehe et e est e et e et eebeeebe e eeneeeaseebseebs et e oAb e ehb e b e be e beebe ek eheeeRe e ebeebe oAb e eh b e ebeeeheetheetreeeeanesanseabeenreenreans 38
PROBLEM SOLVING STRATEGY 3: BREAK UP LARGE, COMPLEX PROBLEMS INTO A SERIES OF SMALLER,
SIMPLER PROBLEMS 39
THE INFINITE LOOP OF SOFTWARE DEVEL OPMENT 1.1 uttttutttitteitttiattetstttisseestsessssessessassesssssasessnssssasseensssaassesnsseanssesaseesasessnsesanseesnsesans 39
SOME GENERAL GUIDELINES FOR PRODUCING GREAT CODE ...uutiiiiitieitiiteeeiiteeesaesseeeiasssessasesesasssesssassssssassesesassssessnsseeesansesesassseeesnnnes 39
THE FRACTION CALCULATOR PROGRAM ... ittttiiitttetiitteesteiseeesiisseesaasseestassssesasssesaasseeesassssesansssesaassesssasssessnnseseanssesssansssesasnseesassesesans 40
IS UG IO . .1ttt ettt ettt ettt et e et e et e ettt e ette e et eeabe e et eemt e e et e e emt e et eeemt e e ht e e eet e e et eeehe e e et e e bt e b e e ne e e b e e ehne e b beeeheeenbbesabreeanreeanreesrris 40
OVBT AN PN L.ttt e ettt ettt e ettt s et e e eteeeeteeeabeeebeeeabeeeas e eabeeeebeeehbeeehbeeehb e e et e e eabe e oAb e e ehb e e e b e e enbeeenbeeanbe e e beeanreeanbeeanreean 40
P BUOC 00 ...ttt ittie ittt ittt ettt ettt ettt ettt ettt eeeteeeete e et e e etee e b e e beeese e et e e eabeeetbeeeab e e e st e e eabe et eeehe e b e e heee bt eeabee et bt eanneeabbeeanneesrbeeanneeans 40
Above Example done USING IMEMOIY IVAD ...ueiiuiiiiiee it it ettt ittt e ittt s steeestteestsesesseesteeeassesetseaseeabsesseessbseeasseesbsaeasseessseeanseessseeanseaes 40
USING THE FRACTION CALCULATOR ASSIGNMENT TO LEARN HOW TO IMPROVE EXISTING CODE (PART 1) ..uviieiiiiiiieiiiciecieecne e 41
DS U Gt ONS 11ttt ekttt ette et ettt ettt eeteeee et e et eebe et eenteeebeesse b e be et e et e ehseebe e be e b e eheeent e e b e b s enbeehbeeh e b e e be e be e b e e Aeeebeeehseabeebeanreenbeerbeareearees 41
USING THE FRACTION CALCULATOR ASSIGNMENT TO LEARN HOW TO IMPROVE EXISTING CODE (PART 2) ...uviiviiiiiiiieiricirecieeineseneas 43
DS U G i ONS 1ttt ettt t ettt ettt e st e bt et e et e et e e bt et eebe e be et e et e ebeeebe e b e e Rt e eRteeht e bt e Rt e e R e eh e bt e bt e be e bt e neeaReeabe e bt e bt enbeenbeerbeareeerees 43
USING THE FRACTION CALCULATOR ASSIGNMENT TO LEARN HOW TO IMPROVE EXISTING CODE (PART 3)....viiviiiiiiiieiiieireciieiieinnns 45
DN S U G i ONS 1ttt ettt ettt ettt ettt ete e e bt e bt e e et e e tb et eebeebe et e et e ebeeebe e b e e Rt e enteehe e bt e At e e R e eh e bt e bt e be e bt enbeaReeabe e bt ebeenbeenbeerbeabeearees 45
FUNCTION PROCEDURES AND SUB PROCEDURES — TECHNICAL INFORMATION 47
SUB PROCEDURES1tettitteteiittteesiteeeeaasseeetasseessansesesasseeesassesesassssesaasssesenseeesansesesanssesesnnssessansesesanssesssnnnssssansssesansssessnnnseesanseseeannseessnnses 47
GBNET Al PrOCEIUIES ..ttt ittt etee it e s etee et e s eteeeetteseteeeebseeebeessseesebeesess e et e eseeebeeeabs e et e e as e et eeabeeehbeeshbe s bbeeembesanbseanbesannasanresanseesnnesan 47
EVEINT PrOCEUUIES ... tiiiitieiiteii it e it e it ettt e et e ate e sttt e eteeetteeetseeesbeeeneeeshbeeehsee et e e s e e et beeehseeehseeehseethbe e b e et s e eabsee et beeanseeabbaeanneesbbeeannesans 47
FUNCTION PROCEDURESutetiiitttteiestteesiiseeesasseesaasssestasseeesassesesassseesassseesassseesassssessnssessassssssanssssssnssessassssesannssesansssesanssesesnnsseessnseeas 48
EXamples INCIUAING Te N0 OQY ..ueiitttiitieiiiteite ettt eitteeitteeetteeiteesateeseseeaaseeseteesseesbeesseeasssesaseessseeanseessbeeasseestbeeanseestseesnseesssessnsesns 48
A FUNCTION IS LIKE A IMACHINE 11ttt itttteiit ittt eettt e ettt e et ettt e et ettt e e easeeeeeasteeeeaseeeeaansseesasseeeeaasseeeesseeeeanseeeeaseeeeanseeesanseeeeassseesnnneeesansenens 49
KB CISES .t teitt ittt ittt eetteete e bt et e et e et e et e tbeeete e ee et e eaeeebeebeeaeeeaseehseebe et e et e et e e b e ebeeeheeeheeebe oAb e oAb e eh e eh b et b e ebeeebeeheetbeenreaneeaneeareereenrean 49
EXAMPLES SHOWING THE DIFFERENCES BETWEEN FUNCTION AND SUB PROCEDUREScuviiiitieiiieiisiesiiesiteesiesssseesiessnneessessnseesnees 50
AN EXAMPIE O 8 SUD PrOCEAUIE.....veitiitiitieitie ittt sttt ettt e e e et eteeete et e et e eteesbeesbeeebeeseessseasseabseebsebeenbeesbeabseabeesbeesbeenreanseanns 50
AN Example 0f @ FUNCHON PrOCEOUIEiiuiiitieitiiiteiiti ittt se et e ettt sttt et eeteeete et e et ettt e sbeesbeetaeanseasseabseabeeabeenbeasseatseabeeebeesbeenreanseanns 50
REVIEW OF UNIT 2 51

Copyright ©, Nick E. Noalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-2

CRITICALLY IMPORTANT PROBLEM SOLVING STRATEGIES FOR PROGRAMMINGuveiiiiuseeeiiiteeeeaisseesiiseeeiiiseeeeassssesssseeesssseeesassneeesnnes 51
ADDITIONAL GENERAL PROBLEM SOLVING STRATEGIES
IMPORTANT PROGRAMMING CON CEPT S, .. .tttttiutttetiteeeeaasseeetasseesinsseesaassssesasssesaassseeaassssesansssessanssessassssesassssessassseesasseesasseeesnnsseesaneses
GENERATING PSEUDO-RANDOM INTEGERS...
INTEGER DIVISION AND REMAINDER ...iutttiiietsetetitseesaasseestasseesinsssesaassssesasssesansssesaassssesansssessanssessassssesassssessansseesassssesasssesesnnsseesanseeas
SEQUENCE, SELECTION AND REPETITION
B LY 7N =Y 1= NSO PP OPPPPPPPPPN
DATA TYPES AND ENCODING SCHEMES.uttttiitttteiiittiteiittteetateeetaiseteeesseseesasteeeeaseseesansseeaasseeesaseseesseseesasseeesansssesanseeeeansseeesnnsesessnsenes
SOME USEFUL INTRINSIC (BUILT-IN) FUNCTIONS
IMPORTANT TERMINOLOGY

Copyright ©, Nick E. Noalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-3

A DETAILED DESCRIPTION OF POLYA'S FOUR STEPS OF PROBLEM SOLVING
1. UNDERSTAND THE PROBLEM (DEFINE THE PROBLEM)

Carefully read the problem several times.

Identify what you are being asked to find.

Ensure that you understand all terminology.

Highlight all given information.

Identify al the information that is required to solve the problem.
Identify the given information that is required to solve the problem.
Identify any extraneous information (information that is not needed).
Identify any missing information.

Do research to find or estimate any missing information.

Keep an open mind.

Do not make any unnecessary or incorrect assumptions.

Think logically and creatively!

Consult colleagues, peers, experts, etc.

Do not worry about possible strategies yet.

Predict what areasonable answer or range of answers would be.

2. CHOOSE A STRATEGY

Unleash your creative powers! Be imaginative!

Do not be afraid to take risks!

Do not dismiss any ideas at this stage. Feel free to be whacky!

Avoid fedlings of frustration or inadequacy.

Do not give up quickly!

If you have the desire to quit, take a break and try solving the problem later.

Do not be afraid to be unconventional. Perhaps you are correct and everyone else iswrong!
Draw adiagram or visualize.

Compare the problem to an equivalent or similar problem that you have already solved.
Compare the problem to asimpler but related problem.

Solve aspecific example of the problem.

Look for patterns.

Write alist of as many possible strategies asyou can.

Do research to discover if anyone else has solved the problem.

3. CARRY OUT THE STRATEGY

o Check your list of strategies and select one that you think islikely to work.
o Carry out your strategy logically and carefully, paying close attention to detail.
o If your strategy fails, return to steps 1 and 2.

4. CHECK THE SOLUTION

Isyour answer reasonable?

Doesyour answer agree with the prediction you madein step 1?
Doesyour answer agree with the answers obtained by others?
Isthere a better way to solve the problem?

Ask peers, colleagues, etc to check your solution.

O0OO0OoOooooooooooaoao 000000 O0o0ooooaoaoao

O 0o ooad

Copyright ©, Nick E. Noalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-4

IMPORTANT BACKGROUND KNOWLEDGE

Data (Information) — A Partial List of VB Data Types

A computer can be viewed as adata processing machine. Since data can be categorized into various forms that require
differing amounts of memory and different types of operations, programming languages offer diverse data types. A
summary of the most commonly used types of data studied in this courseis given in the following diagram.

Data\
Numeric Text Logical
+ = 5 LS &, And,
Left, Or,
Right, Not.
. . . . Mid, .
Integers Floating Point Numbers Fixed Point
\ / \ Numbers
Byte Integer Long Single Double Currency String Boolean
(1 byte (2 bytes storage) (4 bytes storage) (4 bytes storage) (8 bytes storage) (8 bytes storage) (10 bytes + (2 bytes storage)
storage) string length
storage)
0..28-1 2%...2%_-1 2% . 2%_1 -3402823E38.. -1.79769313486232E308... -922,337,203,685,477.5808 Used to True False
—1.401298E-45 —4.94065645841247E-324 . store text
(0...255) (-32768... (-2147483648 for negative values for negative values 922,337,203,685,477.5807 information.
32767) ...2147483647) 1.401298E45 ...)
3.402823E38 for 4.94065645841247E-324 ... Used to store money
positive values 1.79769313486232E308 for values.
positive values

(7 significant
digits)

A Computer as a Data Processing Machine

(15 significant digits)

Input Processing Output
e.g. textbox, |[===——=P| o + — * [|[==———=P e.g.textbox,
InputBox CStr, Val, Sgr MsgBox, label
Memory
e.g. variables,
files

Some Useful Intrinsic (Built-In) Functions
eVal Convertsastring valueto anumeric value e.g. Val ("23.47") — 23.47
o CStr Convertsany valueto astring value e.g. CStr (23.47) — "23.47"
eSqr Returnsthe square root of any non-negative numeric value e.g. Sgr (100) — 10
oChr Convertsan ASCII (ANSI) valueto its corresponding character e.g. Chr (122) — "2"
eAsc Returnsthe ASCII (ANSI) value of a character e.g. Asc ("2") — 122
eTrim Remove al leading and trailing blank spacesfrom astring e.g. Trim(" Ashley Walsh

Copyright ©, Nick E. Noalfi

ICS3MO Essential Problem Solving Strategies for Programming

") > "Ashley Walsh"

EPSSP-5

Important Points about Data Types

e Although computer circuits can process only the binary values 0 and 1, programs need to process a wide variety of
types of dataincluding numbers, text and logical values (i.e. values that are either true or false).

e Encoding schemes are used to give ameaning to raw binary data. That is, encoding schemes use binary numbers to
represent information. See the table below for afew common examples of encoding schemes.

o Variables need to be declared so that both of the following are known:
Amount of Memory Required

Encoding Scheme that should be used to interpret the Raw Binary Data

Bits and Bytes
1 bit = 1 binary digit
1 Byte=8hits (1B =8b)

The following table gives several examples of commonly used encoding schemes.

Type of | Name of Encoding Memory Examples
Data Scheme Required Raw Binary Data Stored in RAM What the Raw Binary Data Represent
Integer .
(Integer 16-bit Twos 2 bytes 0111111111111111 32767
. Complement
in VB)
String Unicode 2 bytes 0111111111111111 T'i",'H
(Text) (Fd
Integer .
(Long in gz-bnl Twos Abytes 11000011100110001101000000000000 1013395456
VB) omplement
Floating
(SPIC:: g}e 32-bit IEEE754 4 bytes 11000011100110001101000000000000 -305.625
in VB)
Questions

1. Why do programming languages offer so many different data types?

2. Visit www.unicode.org and find the Unicode hexadecimal (base 16) code for each of the following characters. Then
use a Web-based converter or the Windows calculator to convert to binary. (Windows calculator must be in

“Scientific” view.)

(a) 5 (Hiragana, Japanese) Hex code:

(b) « (Gujarati, Indic) Hex code:

Binary code:

Binary code:

3. Now interpret the codes that you found in question 2 as 16-bit integers. Convert each code from binary form to
decimal form. Again, you may use a Web-based converter or the Windows calculator.

4. Without an encoding scheme, does raw binary data have any meaning?
5. Complete the following table:

Standard Form Scientific Notation

23400000 2.34x10’
9.10938188x10 %! kg
(mass of an electron)
1.99x10% kg
(mass of sun)
0.000000475 m
(wavelength of blue light)
0.000000045 m

(distance between conductorsin a CPU,
known as the fabrication process size)

Copyright ©, Nick E. Noalfi

ICS3MO Essential Problem Solving Strategies for Programming

Scientific Notation (Programming Format)
2.34E7

1.79769313486232E308
(largest Double valuein VB)

EPSSP-6

http://www.unicode.org/

A Complete List of Visual Basic Data Types

A computer can be viewed as adata processing machine. Since data can be categorized into various forms that require differing amounts of memory, designers of programming languages separate datainto
diverse types. A complete list of all the types of data availablein VB is given in the following diagram.

Integers
Byte Integer
(1 byte of (2 bytes of
storage) storage)
0...255 2B 2B

Copyright ©, Nick E. Nolfi

1

Long Single
(4 bytes of (4 bytes of storage)
storage)
2% .. 2%_1 -3402823E38t0
—1.401298E —45 for
negative values
1.401298E 45 to
3.402823E38 for

positive values

(7 significant digits)

Numeric

Floating Point Numbers

Double
(8 bytes of storage)

—1.79769313486232E308
to
—4.94065645841247E-324
for negative values

4.94065645841247E —324
to 1.79769313486232E308
for positive values

(15 significant digits)

Data

Variant

Fixed Point Numbers

Decimal
(14 bytes of storage)

+/-79,228,162,514,264,337,593,543,950,335
with no decimal point;
+/-7.9228162514264337593543950335 with
28 places to the right of the decimal;

smallest non-zero number is
+/-0.0000000000000000000000000001

Note: In VB, variables cannot be declared as type
“Decimal.” However, the CDec intrinsic function
can be used to convert a given numeric type to type
“Decimal.”

A Variant variable can be used to store data of any type. However, as aways,
thereisapriceto be paid! Variant variables use up agreat deal of memory, so
they should be used sparingly. Whenever the data type of a variable is known
beforehand, a specific type such as Integer should be used. This reduces memory
requirements, which in turn improves the overall efficiency of a program.

Text

Currency
(8 bytes of storage)

-922,337,203,685,477.5808
to
922,337,203,685,477.5807

Used to store money values.

ICS3MO Essentia Problem Solving Strategies for Programming

Logical

String
(20 bytes + string length
of storage)

Used to store text
information.

Boolean
(2 bytes of
storage)

True

False

Date
(8 bytes of storage)

January 1, 100 to
December 31, 9999

Object
(4 bytes of
storage)

Any Object
reference

EPSSP-7

A VB Program that Processes Numeric Information
Introduction

In the first unit of this course we focused entirely on programs that generate artistic designs using lines, circles and other
shapes. Although these programs produced a dazzling output, they did not process awide variety of data. Now we shall
begin examining how we can use VB to create programs that process all sorts of different kinds of data. The first example
deals with the processing of numeric data.

Simple Addition Calculator Version 1.0

The following is a portion of the code for the “ Simple Addition Calculator Version 1.0” program. Y ou can find the
complete program in the folder I:\Out\Nolfi\lcs3mo\Simple VB Examples\Addition Calculator. Study the program
and the following notes. Then compl ete the questions at the end of this section.

Cption Explicit Force Variable Declarations

Frivate Sub cmdhdd Click()
"MEMORY: Declare wariables to allocate memory.

The numeric variables are declared

Dim Mumberl A= Double, Number2 As Double, Sum As Double astype “Double” to alow both
whole and “non-whole” numbers to

'"INPUT: Cbtain walues from user and store in wvariables. beprocessed.

Humberl Val (txtNumberl.Text)

Number2 = Val (extHumber2.Text) These are assignment statements
'"PROCESSING: Calculate the sum and assign to "Sum" that giveva]ueStOthenumeric
Sum = Numberl + Huamber? variables “Numberl” and
“Number2.” The values are read
'"OUTPUT: Display results. from text boxesin “String” form,
txt5um.Text = CS5tr(Sum) converted to numeric form by using

the “Va” function and then stored
in “Double’ form using the variable
names “Numberl” and “Number2.”

txtHumberl.SetFocus
End Sub

Private Suk cmdClear Click()
'Clear all the text boxes by assigning the NULL STRING The values of the variables
'"fempty string) to the "Text"™ property of eagh text box) “Numberl” and “Number?2’ are
. = W c
Ezzﬁﬂ‘t:ifgzz o recalled from RAM (main memory)
.JI[Il': & . = o o
and added. Theresultisstoredin

RAM using the variable name

txtSum.Text = "7

txtHumberl.SecFocus “Sum.”
End Sub
&, Simple Addition Calculator Vers... g@@ The value of the variable “Sum” is recalled
from RAM (main memory). It is converted
+ = |7 from numeric form (Double) to text form
(String) and then assigned to the “ Text”
property of the “txtSum” text box. The “Text”
fad Dear ‘ - property isitself avariable, which means that
itsvalueis stored in RAM.

A Pictorial Description of the Addition Calculator Program

1. Thefirst statement in the “cmdAdd_click” sub is called avariable declaration. 1t is used to state the name and type of
variables. The diagram below shows the effect of this statement on RAM (main memory).
'MEMORY: Declare wariables to allocate memory.
Dim Numberl A= Doubkle, Nunber? As Double, Sum A= Double

RAM
Numberl Number?2 Sum
8 bytesreserved in RAM for “Number1” 8 bytesreserved in RAM for “Number2” 8 bytesreserved in RAM for “Sum”

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-8

2. The next two statements are used to get input from the user.
'THEFUT: Cbtain wvalues from user and store in wvariables.
Humberl = Val (CxtHumberl.Text)
Humber2 = Val (txtHumber?Z.Text)

RAM
Numberil Number2

Val / 12 45
a

- 3 \ Val
Converts from . i c o
String form to onverts from

numeric form. txtNumberl.Text txtNumber2.Text String form to
o "4 numeric form.

3. The next statement actually calculates the sum of the two numbers entered by the user.
'"PROCESSING: Calculate the sum and assign to "Sum”
Sum = Humberl + Humber?
RAM

Numberil Number?2 Sum
12 45 57

12+45=57
CPU

4. Finally, the output is displayed by setting the value of the “ Text” property of “txtSum” equal to the value of “Sum.”
(The vaue of “Sum” must first be converted to String (text) form before it can be assigned to the “Text” property of
“txtSum.”)

'"QOUOTPUT: Display results.
txtSum.Text = CS5tr (Sum)

RAM
Sum
57
CStr ;
Converts from

icf t -
numenictormto tXtSum.Text

String form. \
Vl57"

Questions

1. Load the addition calculator program from I:\Out\Nolfi\lcs3mo\Simple VB Examples\Addition Calculator. Edit the
code by deleting the “Val” function. For example, use the statement “Numberl = txtNumberl.Text” instead of
“Numberl = Val (txtNumberl.Text).” Then run the program and experiment by entering both numeric and
non-numeric values. What happens when you enter non-numeric values? Does this problem still occur if you use the
“Va” function?

2. Modify the addition calculator program in such away that it is also able to perform subtraction, multiplication and
division. Note: It isimportant that you use terminology correctly. “Sum” refersto the quantity obtained by adding a
group of numbers. You should use the terms difference, product and quotient for subtraction, multiplication and
division respectively.

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-9

A Closer Look at “Val” and “CStr”
The “Val” Function

Aswe have learned, the “Val” function is used to convert astring value to anumeric value. Asthe examples below
show, the “Val” function scans the given string character-by-character from left to right. As soon asanon-digit isfound

or theend of the string is reached, Val haltsits search and returnsits result. The result isthe numeric value of the string,

represented using an appropriate numeric encoding scheme.

String Passed to “Val”
n 12"

Binary Unicode Representation
00000000001100010000000000110010

String Passed to “Val”
|I52><Il

Binary Unicode Representation

\ 4

Val

000000000011010100000000001100100000000011010111

String Passed to “Val”
IIBUSI

Binary Unicode Representation

\ 4

\ 4

Val

\ 4

Number Returned by “Val”
12

Binary 16-Bit Integer Representation
0000000000001100

000000000100001000000000010101010000000001010011

The “CStr” Function

The“CStr” function is used to convert any value to astring value. The“CStr” function always returns a string consisting

Val

\ 4

Number Returned by “Val”
52

Binary 16-Bit Integer Representation
0000000000110100

of Unicode characters. Some examples are shown below.

Number Passed to “CStr”
12

Binary 16-Bit Integer Representation
0000000000001100

Number Passed to “CStr”
52

Binary 32-Bit Integer Representation
00000000000000000000000000110100

A 4

CStr

\ 4

Number Returned by “Val”
0

Binary 16-Bit Integer Representation
0000000000000000

Boolean Passed to “CStr”
False

VB Boolean Representation
0000000000000000

A 4

CStr

\ 4

String Returned by “CStr”
n 12"

Binary Unicode Representation
00000000001100010000000000110010

Copyright ©, Nick E. Nolfi

\ 4

CStr

\ 4

String Returned by “CStr”
II52II

Binary Unicode Representation
00000000001101010000000000110010

A 4

String Returned by “CStr”
"False"

Binary Unicode Representation
100000000010001100000000001100001000000000110110000000000011100110000000001100101

ICS3MO Essential Problem Solving Strategies for Programming

EPSSP-10

A Program that Processes String (Text) Information
Introduction

The main purpose of the previous programming example was to show how a computer can process numeric information
using mathematical operations. The following example shows how computers can process text (e.g. words, addresses,
phone numbers, etc).

In the first unit of this course, we encountered the idea of anumeric constant. If, for example, we needed to draw several
circles with a constant radius of 10 units, we could use a statement such as

Me.Circle (X, X), 10

Numeric Variable Numeric Constant

The example given below will introduce the ideas of string variables and string constants. String variables work in much
the same way as any other variables. The only difference is that they are declared astype “String” instead of some
numeric type. String constants, on the other hand, look very different from numeric constants. Asyou will seein the
following example, string constants are always enclosed in quotation marks.

The String (Text) Processing Example
Y ou will find the following program in the folder

[:\Out\Nolfi\Ics3mo\Example Programs\Simple VB Examples\Friendly Message
L oad the program, experiment with it and study its code. Then answer the questions on the next page.

COption Explicit This operator is caled the string concatenation operator. Its
purposeisto create a new string by joining one string to
Private Sub cmdMessage Click() another. Although the symbol “&” is called the “ ampersand”
and it is often used as an abbreviation of the word “and,” its
'"MEMORY: Variable declaration meaning in VB is entirely unrelated to the word “and.”

Dim UserMName A= String

This combination of a space followed by an underscore is

' IHEUT _ used in VB to spread out very long statements over two or
UzerName \= Trim(txtHame.Text) more lines of code.
'QOUTEUT
lblMesggage.Caption = "Hi1 " & UserName & "! I'm glad you can spell your name. "A
& "Your name can't possibly be Balraj since you know how to spell! ™
& "It was nice meeting yvou " & UserMHame & ". Bye!"™
End Sub
String Variable String Constant

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-11

Extremely Important Questions

1. Thefirst statement in every VB program should be “Option Explicit.” What isits purpose? How doesit help
you to debug your programs? What can go wrong if you forget to include it?

2. An apostrophe (single quotation mark) is used to begin certain statementsin VB. (Theword “Rem” can aso be used to
begin thistype of statement.) What are such statements called? What is their purpose? How does the computer
process such statements? How can these statements be used to remove a statement from a program without deleting it?

3. A “Sub” isaprogram subroutine, that is, aportion of a program that is named so that it can be accessed whenever
needed. The“Sub” shown above isautomatically named “cmdMessage_Click” when you double click the
“cmdMessage” command button. Explain how VB determines this name.

4. The statement “Dim UserName As String” isused to declare the variable “UserName.” The name of the

variable being declared is . Itstypeis , which means that it is used to store

information. Declaring variables helps programmers to their
programs, allows an operating system to determine how much is needed to store the values of
the variables and which scheme to use, and it hel ps to determine which

can be used to process information of agiven

5. Thestatement “UserName = Trim(txtName.Text)” iscaled an assignment statement becauseit is used to
assign (give) avalue toavariable. Complete the following:

Name of the variable being assigned a value:

Name of the object from which a property is being used in the assignment statement

Name of the property whose value is being assigned to the variable:

Purpose of the “Trim” intrinsic (built-in) function:

6. Explain the difference between the name of a variable and the value of a variable. Give an exampleto illustrate your
answer.

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-12

7. Explain the difference between the name of an object and the name of a variable. Give an exampleto illustrate your
answer.

8. What isthe purpose of the“&” operator? What isit called? To what type of data doesit apply? Why isit
inappropriate to call it an “and” or an “ampersand” in the context of VB?

9. What isthe purpose of quotation marks in VB programs? What will happen if you forget to use quotation marks
when they are needed? What will happen if you use guotation marks when they are not needed?

10. What is the purpose of using a space followed by an underscore? Why isthis useful ?

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-13

How Computers make Decisions (Selections)
Introduction to “If” Statements

So far we have only considered programs in which the next statement to be executed immediately follows the previously
executed statement. However, there are many circumstances under which the next statement to be executed will depend
on auser action, a system event or some other unpredictable occurrence. In such cases, programs must select a statement
or agroup of statements and reject others. In VB thisis accomplished through “If” statements. Study the following
program carefully. It can be found in the folder

I:\Out\Nolfi\Ics3m0\Simple VB Examples\Friendly Message - Sneaky Version

Private Sub cmdMessage Clicki)

\'"MEMORY: Variable declaration
Dim UserName &= String, LowerCaselUserName A= 5tring, Mezsage A= 5tring

'Based on the name entered by the user, create an appropriate message.

' INPUT “LCase” isan intrinsic function that

Useriame = Trim(cxtHame.Text) converts astring to lower case. “UCase”
converts a stri ng to upper case.

'PROCESS5ING

LowerCazellzerName = LCase (UserName) 'Store lower case copy of the user's name.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

|

1

If prerCaseUserNamE = "palraj"™ Then

| ﬁessage = "Hi Balraj! I'm glad that wyou have learned to spell your name. Unfortunately,™ _
| ! & " some people =still think that vour name is spelled 'Balrash.'"™
:Else;f LowerCaseUserName = "nolfi™ Then

| Message = "Greetings, oh great master and creator of lowly programs like me!"™
| ! & " b= usual, it is an honour to be in your presence!”™

:Elsng LowerCaseUserName = "maham"™ Then

1

1 :Message = WIHEY! Nolfi wasn't supposed to hear that comment! I suppose that he™
, —
! ! & " can't help it. After all, I am wvery LOUD whenever I make such remarks!"
! ! & " Psssst, Ehyandra. Isn't he supposed to be deaf by his age?'"
:Elsglf LowerCaselzserName = "abhay" Or LowerCaselUserName = "chad" Then

! :Hessage = THOH??7?23™

:ElsqIf LowerCaselUserName = "matt™ Then

| :Message = "I defy all those who attempt to coerce me to do school work."™

. ! & "MNEVER' NEVER! Long live the 'World of Warcraftc.'"™

Else

| Message = "Hi " & UserName &£ "! I'm glad you can spell your name. " _

| } & "Your name can't possibly be Balraj since you know how to spell! ™
| . & "It was nice meeting yvou " & UserMName & ". Bye!"

End If

1 . . .

| Indentation Margin Lines

1

1 "OUTEUT

;lblﬂessage.ﬂaption = Message

End Sub

If Statement Details

If statements are used in programs to make decisions or selections. Therulesfor If statements are as follows:

e If statements begin with the word If and end with the words End If

e Theremust be exactly one If and one End If

e Theremay be zero or more Elself clauses. Elself clauses must follow If and precede Else.
e Both If and Elself clauses must have a condition and must have the keyword Then.

e Theremay be zero Else clauses or one Else clause. Else must follow If and Elself, and Else must not have a condition
or the keyword Then. Else means“if al elsefails.”

Copyright ©, Nick E. Nalfi

ICS3MO Essential Problem Solving Strategies for Programming

EPSSP-14

e There must be exactly one If.

e There may be zero or more
Elself clauses.

e There may be zero or one Else
clauses.

e There must be exactly one
End If (to mark the end of the
selection structure).

Picturing “If” Statements

General Structure of an
If Statement

If condition Then
statements

Elself condition Then
statements

Elself condition Then
statements

Else
statements

End If

e A condition isformed by using
conditional operators such as
=, <, >, <=, >=, <>, Is and Like.

e.g. If Age>=19 Then

e Conditions can be combined by
using logical operators such as
And, Or and Not.

e Theterm statements refersto any
group of valid VB statements.
Notice that the statements are
further indented one TAB within
If statements. The statements
that begin with If, Elself and
Else are NOT indented further.

The following diagram can be useful in understanding the flow of information during the execution of an “If” statement is
executed. “If” statements are alot like travelling along a path and suddenly reaching a“fork.” When this happens, a

decision needs to be made.

After | finish high school, should I go to
university, college or find ajob?

University is Chosen

Apply to Universities

Exercises

Collegeils Chosen

Apply to Colleges

Job is Chosen

Apply for Jobs

1. Write a program that allows a user to enter amark in an input box. The program then displays “ Congratul ations you
have PASSED,” or “Sorry, you have FAILED” in alabel depending on whether the mark is greater than or equal to 50

or less than 50.

2. Most universities in North America use a grading system known as the GPA (grade point average) system. Itis
summarized in the table given below.

Grade Point Score

Percentage Grade
85% — 100%
80% — 84%
77% — 79%
74% — 76%
70% — 73%
67% — 69%
64% — 66%
60% — 63%
57% — 59%
54% — 56%
50% — 53%
0% — 49%

4.0
3.7
3.3
3.0
2.7
2.3
20
1.7
13
1.0
0.7
0.0

I

For a solution to this problem, see

N\Out\Nolfi\Ics3m0\GPA Solution

Write a VB program that displays the grade point score given the percentage grade. In addition, your program should
display an error message for invalid percentage grades (i.e. grades lower than 0% or higher than 100%).

Copyright ©, Nick E. Nalfi

ICS3MO Essential Problem Solving Strategies for Programming EPSSP-15

3. Copy the contents of the folder I:\Out\Nolfi\lcs3mO\If Statement Example — Date to your “g:” drive. Within this
folder you will find a VB project file called “Date.vbp.” Load the “Date.vbp”

project and experiment with it for afew minutes. You will discover that three JREUULLIASEES FEX
combo boxes are used to allow the user to select the month, day and year. (A Month Day Year
combo box combines the functionality of atext box with that of alist box.) danuay »| 1w Jams |
When you examine the VB code for this project, it may look very complicated 01/01/2015

toyou. Please do not be discouraged by the appearance of the code! All you :

need to do is write the code for the command button. That is, you must write DisplayDiate in Format DD /MM A

code that takes the date given by the values stored in the combo boxes and

convertsit to the format DD/MM/Y'Y (2 digitsfor the day, 2 digitsfor the
month and four digits for the year).

Note: Although it is not required at this point, students who are confident enough may wish to study the code given in
this project. Since this program contains a plethora of new ideas to explore, it is possible to learn agreat deal from it!

4. Here is the game of GREED v1.0. The player clicks New
Game and then the dice are allowed to roll. Theidea of the
gameis to make as much money as possible.

Your FIRST roll isrecorded and if at any time during the
game you roll that number again, you lose everything. Each
time you click ROLL, and theroll is not the same as the
FIRST roll, you double your money. You can click STOP at
any time and you keep the money you have earned.

Use the following code to generate two random integers Fl rSt RD”
between 1 and 6 and store the results using the variable names

“Diel” and “Die2.” How this code works will be explained Next RD"
later in the unit.

Diel = Int(Rnd*6+1)

Die2 = Int(Rnd*6+1)

Y ou can find a very sophisticated solution to this problemin
the folder ; ;
I:\OUT\Nolfi\Ics3m0\Game of Greed - Enhanced Version Mew Game Close the Program

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-16

Another Program that Requires “If” Statements

~. Area Calculator. CEx

[/ /N

@ Calculate Area of Cicle " Calculate Ares of Parallelogram " Calculate Area of Triangle

" Caleulate Area of Trapezoid

" Calculate Area of Rectangle

The“Area Caculator” program can be found in I:\Out\Nolfi\Ics3m0\Area Calculator. Load this program and study the
code carefully. Noticethat an “If” statement is used to determine the shape that has been selected by the user.

Private Sub cmdGo_Click()

If optRectangle.Value = True Then

frmChosenShape.imgShape. Pi cture=imgRectangle.Picture
frmChosenShape.Caption = "Area of Rectangle”
frmChosenShape.lbiDimensionl.Visible = True
frmChosenShape.lblDimension2.Visible = True
frmChosenShape.|blDimension3.Visible = False
frmChosenShape.|bl Dimensionl1.Caption = "[="
frmChosenShape.|bl Dimension2.Caption = "w="
frmChosenShape.|bl Dimension3.Caption = ""
frmChosenShape.txtDimension1.Visible = True
frmChosenShape.txtDimension2.Visible = True
frmChosenShape.txtDimension3.Visible = False
frmChosenShape. Show

Elself optParallelogram.Vaue = True Then

frmChosenShape.imgShape.Picture = imgParallelogram.Picture
frmChosenShape.Caption = "Area of Parallelogram”
frmChosenShape.|blDimensionl1.Visible = True
frmChosenShape.|blDimension2.Visible = True
frmChosenShape.|blDimension3.Visible = False
frmChosenShape.|bl Dimensionl.Caption = "b="
frmChosenShape.|bl Dimension2.Caption = "h="
frmChosenShape.| bl Dimension3.Caption = ""
frmChosenShape.txtDimensionl.Visible = True
frmChosenShape.txtDimension2.Visible = True
frmChosenShape.txtDimension3.Visible = False
frmChosenShape. Show

Elself optTriangle.Value = True Then

frmChosenShape.imgShape.Picture=imgTriangle.Picture
frmChosenShape.Caption = "Area of Triangle"
frmChosenShape.lblDimensionl.Visible = True
frmChosenShape.lblDimension2.Visible = True
frmChosenShape.|blDimension3.Visible = False
frmChosenShape.|bl Dimensionl1.Caption = "b="
frmChosenShape.|bl Dimension2.Caption = "h="
frmChosenShape.|bl Dimension3.Caption = ""
frmChosenShape.txtDimension1.Visible = True
frmChosenShape.txtDimension2.Visible = True
frmChosenShape.txtDimension3.Visible = False
frmChosenShape. Show

Elself optCircle.Vaue = True Then

frmChosenShape.imgShape.Picture=imgCircle.Picture
frmChosenShape.Caption = "Area of Circle"
frmChosenShape.lblDimensionl.Visible = False
frmChosenShape.lblDimension2.Visible = True
frmChosenShape.|blDimension3.Visible = False
frmChosenShape.| bl Dimensionl1.Caption = ""
frmChosenShape.|bl Dimension2.Caption = "r="
frmChosenShape.|bl Dimension3.Caption = ""
frmChosenShape.txtDimensionl.Visible = False
frmChosenShape.txtDimension2.Visible = True
frmChosenShape.txtDimension3.Visible = False
frmChosenShape. Show

Elself optTrapezoid.Vaue = True Then

frmChosenShape.imgShape.Picture=imgTrapezoid.Picture
frmChosenShape.Caption = "Area of Trapezoid"
frmChosenShape.|blDimensionl1.Visible = True
frmChosenShape.|blDimension2.Visible = True
frmChosenShape.|blDimension3.Visible = True
frmChosenShape.|blDimension1.Caption = "a="
frmChosenShape.| bl Dimension2.Caption = "b="
frmChosenShape.| bl Dimension3.Caption = "h="
frmChosenShape.txtDimensionl.Visible = True
frmChosenShape.txtDimension2.Visible = True
frmChosenShape.txtDimension3.Visible = True
frmChosenShape. Show

Else
MsgBox "Please select one of the shapes before clicking 'Go!"', vbExclamation
End If

End Sub

Questions

1. The area calculator program uses two forms, one that is used to select the shape and another that is used to allow the
user to enter the dimensions of the shape. How is this accomplished?

2. Once the user chooses a shape and clicks “ Go,” another form is displayed to allow the user to enter the dimensions of
the shape. How would you prevent the user from returning to the original form (the parent form) unless the new form
(the child form) isfirst closed?

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-17

Overview: Sequence, Selection and Repetition: The Underpinnings of Programming

Sequence

Selection

Repetition

Instructions are executed (carried out) in
sequence (in order, one after the other). All
statements are executed exactly once; none
of the statementsis omitted.

Example

" Friendly greeting program

Option Explicit

Private Sub cmdPressMe_Click()
“"Memory
Dim FirstName As String
"Input
FirstName = Trim(txtName.Text)
"Processing and Output
IblGreeting.Visible = True
IblGreeting.Caption = "Have a " &

w "nice day " & FirstName & “{"

End "Sub p

Based on a condition or a set of conditions,
certain statements are selected while others
arergjected. Theideaof selection should
be used whenever your program needs to
make a decision.

Example

® Which number is larger?
Option Explicit

Private Sub cmdLarger_Click()

“Memory

Dim Numl As Double, Num2 _
As Double, _
Larger As Double

"Input

Numl = Val (txtNuml.Text)
= Val (txtNum2.Text)

"Processing
IT Numl > Num2 Then
Larger = Numl
Else
Larger = Num2
End If

"Output
IblLarger.Caption = CStr(Larger)
End Sub

Whenever your program needs to
repeat certain instructions two or more
times, the concept of repetition
(looping) isused. Many different types
of loops can be constructed, depending
on the particular situation.

Example

" Program to add the cubes of

* the numbers from 1 to 5

Option Explicit

Private Sub cmdSumOfCubes_Click()
“"Memory

Dim I As Byte
Dim Total As Double

"Processing

Total = 0O

"1 is called a loop counter
"variable

For 1 =1 To 5
Total = Total
Next 1
"Output
IblSum.Caption = CStr(Sum)
nd Sub

+1 73

read if they are broken up into two or
more physical lines. To do this, use
the statement continuation
character “ " (aspace followed by
an underscore).

Very long VB statements are easier to " .

Notice the indentation used in these programs. Although your programs will

~{ work without proper indentation, they will be extremely difficult to read,
understand and debug. The rules of indentation are simple and must be
observed by all students. Failing to indent properly will result in asignificant
loss of marks. RULES OF INDENTATION: Indent one tab space within subs, if
statements and loops (more details will be given in subsegquent examples).

Questions and Programming Exercises

1. What is the purpose of the statement continuation character?

Why isit important to indent programs properly?

Explain the terms sequence, selection and repetition.

2
3
4. Definetheterm underpinning.
5

To understand the example of repetition given above, it is very helpful to trace the execution of the program by using
something called amemory map. A memory map is simply atable that displays the changing values of variables.
Compl ete the memory map shown below.

Before I 1”3 Total
Loop] 0 0 0
Each of these 1 1 1
Rows Shows
Values of 2 9
Variables 3
after each 4
Repetition 5
After
Loop | 6
Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-18

6. In the example shown above for repetition, you will find the assignment statement Total = Total + I*3. Since you
are accustomed to mathematical equations, you may misinterpret this Visual Basic statement. In Visua Basic, the
statement above should be interpreted as follows:

Total = Total + 1 " 3

(The new value of the variable ‘ Total’) is assigned the value of (The current value of the variable ‘' Tota’) plus (I to the exponent 3)

Now consider the mathematical equation x = x + 3. How does the meaning of this equation differ from that of the
assignment statement shown above? Does this mathematical equation have a solution? Explain.

7. Consider the “sum of the cubes’ program given on the previous page (in the “Repetition” column of the table).

1. sothat it can calculate the sum of the cubes from Lowest to Highest, where Lowest and Highest are
integer values. To prevent numeric overflow errors, think carefully about the type of the Total variable.

8. Write Visua Basic programsthat use “For” loopsto

(a) print the following on your form (b) fill your form with asterisks (i.e. *)
*kkkok *kkkk *kkkkhkk
*kkkk *kkKhk *kkkkhkk
. . ok Ak (c) find the sum of the numbers from 1 to 1000
*kkkk *kkKhk *kkkkhkk
Kok kok ok Kok kokk dkkokkkkk
kkkkkkkkkkkkkokk *okkokkkkok (d) find the sum of the even numbers from 2 to 1000
dokkokkkkokokokokkkkok *hkkkkKhkk
kkkkkhkhkkkkkkk Kok okok kK ok ok
*kokkk *okkokk *kkkkKhkk (e) find the sum of thesquar&of the numbers from 1 to 1000
Kok kok ok Kok kokk *kkkkKkkk (Note: The Integer datatype does not havealarge enough
*kokk ok *kkkk *kkkkKk KK rangefor this program. Try Long insiead.)
*kkokk *kkokk *kkkkhkk
*okkokk *kkokk *kkkkkkk

9. Modify further the program in question 8 so that it can calculate the sums of consecutive numbers to any exponent.
Do not expect your program to work for all values that you enter. Remember that like your calculators, computers
can only represent numbers that are so large or so small. Try different valuesto find out the limitations of your
program.

&, The Great Summing Progra % — |E||i|

Start at I End at I
Raize each number to the exponent I

The zum iz I
Calculatel | Cloze |
10. WriteaVisual Basic program for a number guessing game. Y our ;. -loix

. I i

program should generate a random integer between 1 and 100. Then Clck o gereree e | $§§on,'“;en’é°ﬁ§ 'rfodm Tt
. . . . - secrel number!

the user keeps guessing until the number is found or until the “I give s penerae
up” button isclicked. Each time the user enters an incorrect guess, your _— |7 o B |

program should indicate whether the secret number is higher or lower.
If the guessiis correct, your program should output a congratul atory | give el Whatis the

mme Mumber?
NOTE: Usethe VB code SecretNumber = Int (Rnd * 100 + 1) to generate Sorry, try a lower number!

the secret numbers. If you are observant, you will notice that your game
will be very predictable. We shall soon discuss a solution to this problem.

Close |

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-19

Using VB to Generate Pseudo-Random Numbers
Introduction

Without an element of randomness, many computer applications would be extremely dull. Can you imagine playing your
favourite video game if there were no surprises whatsoever? The evil enemy would always appear at exactly the same
place and time and the outcome of every battle would be tiresomely predictable. Under such conditions, would it still be
your favourite game? Luckily, pseudo-random numbers come to the rescue! The unpredictability of our favourite
games is due entirely to a computer’ s ability to generate sequences of seemingly random numbers.

Why Pseudo?

It isnot possible for acomputer to generate random numbers, at least not in the strictest sense of the word “random.”
Since computers can only function by following the stepsin algorithms, it follows that computers can only produce
numbers that result from the execution of algorithms. Clearly, there is nothing random about this process because the
steps of any agorithm can be carried out by anyone who knows the algorithm. Therefore, it appears that we are trapped
inavicious circle. Computers cannot function without algorithms but the output of any algorithm s, at least in theory,
completely predictable. How then, can randomness spring from predictability?

Fortunately, there is away to resolve this conundrum. Computers can simulate randomness by executing algorithms that
produce sequences of numbers that cannot be distinguished from true sequences of random numbers. Such algorithms
are known as pseudo-random number generators.

pseudo-: false, counterfeit, fake, sham, deceptive

Other words beginning with the prefix “pseudo-"
pseudonym, pseudoscience, pseudopod, pseudocode

How to Generate Pseudo-Random Numbers in VB

“Rnd” isanintrinsic function in VB that generates pseudo-random numbers greater than or equal to zero and less than
one. In other words, “Rnd” produces a pseudo-random Single value as low as 0.0000000 and as high as 0.9999999.

0.0000000
0.0000001

Rnd

0.9999999
By applying appropriate transformations, we can use “Rnd” to generate pseudo-random NUMBERS in any range.
Complete the following. The first one is done for you.

1. Rnd*2 generates a pseudo-random number that is greater than or equal to 0 and lessthan to 2 .

2. Rnd*100 generates a pseudo-random number that is greater than or equal to and less than
3. Rnd*9+7 generates a pseudo-random number that is greater than or equal to and less than
4. Rnd*6-5 generates a pseudo-random number that is greater than or equal to and less than
5. Rnd*3+1.5 generates a pseudo-random number that is greater than or equal to and less than
6. Rnd*6—0.5 generates a pseudo-random number that is greater than or equal to and less than

By applying the “Int” intrinsic function along with “Rnd” and appropriate transformations, we can generate
pseudo-random INTEGERS in any range. The “Int” intrinsic function ROUNDS DOWN to the nearest integer.

Examples — Expressions Involving “Int”
Int(3.9) =3 Int(3.1) =3 Int(4) =4 Int(-3.9)=-4 Int(-3.01) =4

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-20

Complete the following. The first two are done for you.

1.

2.

8.

9.

1

Int(Rnd*2) generates a pseudo-random integer intherange _0, 1 .

Int(Rnd*100) generates a pseudo-random integer intherange 0,1, 2,3, ... ,97,98,99 .

Int(Rnd*100+1) generates a pseudo-random integer in the range

Int(Rnd*6-5) generates a pseudo-random integer in the range

Int(Rnd*6) generates a pseudo-random integer in the range

Int(Rnd*6+1) generates a pseudo-random integer in the range

Int(Rnd*100-50) generates a pseudo-random integer in the range

Int(Rnd*1000+1) generates a pseudo-random integer in the range

Int(Rnd*1001+1) generates a pseudo-random integer in the range

0. Int(Rnd* +) generates a pseudo-random integer in therange 1, 2, 3, 4, ... , 9998, 9999, 10000.

A General Expression for Generating Pseudo-Random Integers in VB
Based on your answers to questions 1 to 10 above, complete the following.

To generate a random integer greater than or equal to “Lowest” and less than or equal to “Highest,” use the expression

Int(Rnd * +)

Questions
Write VB expressions to generate pseudo-random integers in each of the following ranges.

1

[

. From1to6:

.FromOto5:

. From-5to5:

. From 1 to 999:

. From 1 to 1000:

. From —-5000 to 10000:

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-21

Applying Pseudo-Random Integers — An Enhanced Version of the Game of Greed
Instructions

L oad the enhanced version of the “Game of Greed” found in I:\Out\Nolfi\lcs3m0\Game of Greed - Enhanced Version.
Study the program carefully and then answer the following questions. Note that this program contains a few advanced
programming concepts that we have not yet learned. Do not be deterred by this. The main point of this exerciseisto
understand how pseudo-random numbers can make programs more versatile and more interesting.

Questions

1. Explain the difference between random numbers and pseudo-random numbers.

2. The following statements are used to generate the pseudo-random integers for the dice roll:
'Generate two random integers beween 1 and & inclusive
Diel = Int(Rnd * & + 1)
Die2 = Int(Rnd * & + 1)
Why would it be incorrect to replace these two statements with the following single statement?
Roll = Int(Rnd*11 + 2) "This statement generates a pseudo-random integer from 2 to 12 inclusive

3. The purpose of this question is to understand the importance of using the “Randomize” statement in VB programs that
use the “Rnd” intrinsic function.

(a) Youwill notice that the “ Game of Greed” code includes asub called “Form_Load.” Explain how such subs
behave and when it is appropriate to use them.

(b) Youwill also notice that the “Form_Load” sub contains the “Randomize” statement. To understand the
importance of this statement, remove it temporarily by turning it into a comment as shown below.
'Randomize
Now play the game several times and take careful note of the rolls that are generated. What do you notice? Use
your observations to explain the purpose of the “Randomize” statement.

(¢) Now use “MSDN” help to look up the “Randomize” statement. Explain the meaning of the term “seed.”

4. You will notice that certain local variablesin the “Game of Greed” are declared using the keyword “Static” instead of
the keyword “Dim.” Explain the difference between the two types of declarations.

5. What is the purpose of the “DoEvents’ statement? What happens if you delete the “DoEvents’ statement from the loop
found within the “cmdRoll_Click” sub?

6. “DoEvents’ should be used with caution because it can cause problems. In the “cmdRoll_Click” sub, temporarily
remove the statement “cmdRol 1 .Enabled = False” by turning it into acomment (shown below).

'cmdRoll.Enabled = False

Then play the game and click the “Roll” button repeatedly while the dice animation is running. What happens?
Explain what causes this strange behaviour.

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-22

1CS3MO - REVIEW OF FIRST HALF OF UNIT 2

Data Types
1. Complete the following diagrams.
Data
Numeric Text Logical
&, And,
Left, Or,
Right, Not.
Mid,
(1 byte (2 bytes storage) (4 bytes storage) (4 bytes storage) (8 bytes storage) (8 bytes storage) (10 bytes +
storage) string length
storage)

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-23

The“Va” function is used to convert a toa . Asthe examples below

show, the “Val” function scans the given string from left to right. Assoonasa

isfound or the , Va hatsits search and

returnsitsresult. Theresult isthe numeric value of the string, represented

String Passed to “Val” Number Returned by “Val”
"69" N N
Binary Unicode Representation . Val - Binary 16-Bit Integer Representation
String Passed to “Val” Number Returned by “Val”
"52x" N N
Binary Unicode Representation : Val - Binary 16-Bit Integer Representation

000000000011010100000000001100100000000011010111

String Passed to “Val” Number Returned by “Val”
IIGOII
Binary Unicode Representation . Val - Binary 16-Bit Integer Representation
2. The*CStr” function is used to convert toa . The“CStr” function always
returns a string consisting of characters.
Number Passed to “CStr” String Returned by “CStr”
69
Binary 16-Bit Integer Representation . C Str - Binary Unicode Representation
Number Passed to “CStr” String Returned by “CStr”
-1
, , , » CStr — . . .
Binary 32-Bit Integer Representation Binary Unicode Representation
Boolean Passed to “CStr” String Returned by “CStr”
True
VB Boolean Representation > C Str > Binary Unicode Representation
11111111111111211

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-24

Using VB to Generate Pseudo-Random Numbers

1

[

8.

9.

1

. Why are random numbers produced by a computer called “ pseudo-random numbers?’

. Why isit important in software development to be able to generate random integers?

Int(Rnd*50+20) generates a pseudo-random integer in the range

Int(Rnd*10-8) generates a pseudo-random integer in the range

Int(Rnd*20) generates a pseudo-random integer in the range

Int(Rnd*6+1) generates a pseudo-random integer in the range

Int(Rnd*100-50) generates a pseudo-random integer in the range

Int(Rnd* +) generates a pseudo-random integer in therange-10, -9, -8, ... , 13, 14, 15.

Int(Rnd* +) generates a pseudo-random integer in the range Lowest, ..., Highest.

0. Write VB expressions to generate pseudo-random integers in each of the following ranges.
(a) From1to6:

(b) From 0 to 50:

(¢c) From-15to 25:

(d) From 1 to 9999:

(e) From 1 to 10000:

(f) From —5000 to 10000:

If” Statements

Write aVB program that displays a friendly message based on the temperature, in degrees Celsius, entered by the user.
Hereisalist of suggested temperature ranges and one suggested message. Feel freeto modify them as you see fit.

Temperature Entered Message

Below —40°C Get inside before some important body parts freeze off!
-40°Cto-20°C
-20°Cto0°C
°Cto10°C
10°Cto20°C
20°Cto30°C
30°Cto40°C
Above 40°C

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-25

PROBLEM SOLVING STRATEGY 1:
SOLVE A COMPLEX PROBLEM BY INVESTIGATING SPECIFIC EXAMPLES OF THE PROBLEM
Case Study 1: Time Converter Problem
General Problem Statement
Input a value specified in seconds and convert to hours, minutes and seconds.
Where Should | Begin?

If you do not know how to select a strategy for solving this (or any other) problem, examining a specific example often
helps to shed some light on the situation.

Quotient
e.g. Convert 35356 stotheformat h : min : s.
hours | minutes | seconds 9 49
3600)35356 60)2956 - =
Step 1 0 0 35356 32400 510 35356 + 3600 = 9 R 2956
Step 2 9 0 2956
P 24518 2956+ 60=49 R 16
Step 3 9 49 16 —=24J
Questions Remainder

1. Why was 35356 divided by 3600? Why was 2956 divided by 60?

2. Explain how Visua Basic can be used to compute a quotient and aremainder. (Use Google to find an answer to this
question if you don’t know the VB operators used to find quotient and remainder. Also, near the bottom of this page,
you will find an “upside-down answer” to this question.)

Writing an Algorithm

. The user enters atime in seconds: seconds

. Set hours to the quotient of seconds divided by 3600

. Set seconds to the remainder of seconds divided by 3600
. Set minutes to the quotient of seconds divided by 60

. Set seconds to the remainder of seconds divided by 60

. Theresult ishours : minutes : seconds

SN Ut A W N -

P EEE
pIemIo] 91 LM pAsnIuod AJISEa 00 ST 1] UOISTATD Ja5 21UT 10 [0QUIAS U1 58 YSR[SHIRG Ayl BUlsooyd Uotsiaap
Joodw apew g A JO sIaUBISap Ay, C(uworstatp jutod Funworr) g It (UOTSTATR JAFajur) |\ 2snjuod joU o] =

yuanponh 2y ayen(eas o (worstalp JaBajun) Jogerade 4y aylas)) =
IBPUTENIAT 31]] a1EN[EAS o] IojeIado POTA] a1 23] =

0D JISVT IPISLA 24T SUITLL

Exercises
1. Convert 234567 secondsto the format h : min : s.

2. Convert 8999.78 minutes to the format h : min : s.
3. Convert 84.69 hoursto theformat h : min : s.
4. Convert 723.2952 hours to the format days : h : min : s.

5. Write a VB program that can convert atime specified in seconds to the format h : min : s. Usethe“Addition
Calculator” program as a model of how to write code for inputting the number of seconds.

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-26

Time Converter VB Solution — Version 1
A Review of the Basic Principles of Problem Solving

George Polya’s Four Steps of Problem Solving | Corresponding Steps in Software Development (Systems Analysis)

1. Analysis: Analyze the problem and understand exactly what is

1. Understand the problem. required.

2. Choose a strategy. 2. Design: Select algorithms and data structures. Several aternatives
should be investigated.

3. Execute the strategy. 3. Implementation: Write code!

4. Check the solution. 4. Validation: Test and debug your code.

5. Maintenance: Release patches, updates. Plan new versions.

A Review of how we applied the above Steps to the Time Converter Problem
Analysis We gained an understanding of the problem by reading carefully and asking questions.

We worked out aspecific example of the problem to gain some clues about a general strategy. We
quickly learned that the quotient of integer division by 3600 (the number of secondsin one hour) is equal
to the number of hours. The remainder of integer division by 3600 is equal to the remaining number of
seconds. Repeating this process with integer division by 60 leads to the number of minutes and the
number of seconds.

e Hours
Total Number _ \
of Seconds 3 Minutes

Seconds

We learned about the “Mod” and “\” VB operators. (Note that the “\” is sometimes called “div.”)

Implementation We wrote the code for version 1 (see code below).

We carefully tested the program to expose any bugs or limitations. We discovered that the program
worked well as long as the value entered for the total number of seconds was within the range of a“Long”

Validation integer variable. In addition, we learned that the program behaved strangely if a negative integer was
entered.
. This part isyet to be done. We shall soon attempt to resolve the limitations mentioned above and to add
Maintenance

functionality to the program.

Time Converter Version One

i, Time Converter Yersion 1.0 Alpha

Please enter a time in seconds: ||

The equivalent time in
hours : minutes : seconds

(h:m:s)is

Convert Close

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-27

Code for Time Converter Version 1.0 Alpha

" PROGRAMMER®"S NAME: Nick E. Nolfi

" LIMITATIONS and BUGS

" variable (up to 2731 - 1).
user enters a negative value.

PURPOSE OF PROGRAM: Convert a time given in seconds to the format hours :

VERSION: Time Converter Version 1.0 Alpha

minutes : seconds (h:m:s).

This program will work only if the value entered is within the range of a "Long" integer
In addition, this program will produce erroneous results if the

Option Explicit — | What is the purpose of “Option Explicit?

Private Sub cmdClose_Click(Q)

Dim Response As VbMsgBoxResult

Response = MsgBox("'Are you sure you wish to close this program?",
vbYesNo + vbDefaultButton2, '‘Leaving so soon?')

IT Response = vbYes Then

™

End What is the purpose of this underscore?
End IFf

End Sub

"Convert a time specified in seconds to the format hours:minutes:seconds.

Private Sub cdeonvert_CIick()q________________‘_-_____—__—‘_—__—
“Memory

Dim SecondsRemaining As Long, Hours As Long, Minutes As Byte

"Input
SecondsRemaining = Val (txtSeconds.Text)

"Processing

Hours = SecondsRemaining \ 3600
SecondsRemaining = SecondsRemaining Mod 3600
Minutes = SecondsRemaining \ 60
SecondsRemaining = SecondsRemaining Mod 60

"Output
IblHoursMinutesSeconds.Caption = CStr(Hours) & ™ 1 ™ & _
CStr(Minutes) & "™ & " & _
CStr(SecondsRemdining)
End Sub

What isthe“&” operator called? What isits purpose?

What general term would you use to describe
“cmdConvert?’ What general term would you use
to describe “ Click?”

The name “cmdConvert_Click” is the name of the

Why isit sufficient to declare “Minutes’ asa
“Byte” variable? Why would it be foolish
to do the same for the variables“Hours’ and
“SecondsRemaining?’

Copyright ©, Nick E. Nolfi

ICS3MO Essential Problem Solving Strategies for Programming

EPSSP-28

Extensions of this Problem

1. Find at least two different ways of preventing the user from entering a negative number. Then choose the method that

you think is most user-friendly and write appropriate code.

2. Suggest at least two ways of dealing with the “ numeric overflow” crash caused by entering a value that exceeds the

upper limit of a“Long” variable. Write appropriate code.

Note: Once you have completed questions 1 and 2, you will have produced a new version of the “Time Converter”
program. For acompl ete soluti on, see . Time Converter Version 1.0 Alpha

[:\OUT\Nolfi\Ics3m0\Time Converter Examples\Time Converter 1.0beta. R [

The equivalent time in

3. Time Converter 1.0 Alpha produces messy output when the number of B e
minutes and/or the number of secondsislessthan 10. For example, if the
value 69 is entered, version 1.0 alphadisplays “0:1:9” Convert Close

instead of “0:01:09.”

The following uses “If” statements to solve this problem.

'"Convert a time specified in secolds to the format hours:minutes:seconds.
Private Sub cmdConvert Click()

'"MEMORY
Dim SecondsEemaining &A= Long, Hours A= Long, Hinutes 4= Byte
Dim Secs5tring As S5tring, MinsString &= String, HowrsString &s String

'INPUT
SecondsBemaining = Val (txtSeconds.Text) er%ﬁianmmmz CEX
' PROCESSIHG Please enter a time inseconds: |59
Hours = SecondsRemaining % 3600 s i s
SecondsRemaining = SecondsRemaining Mod 3600 """”"(’h"';"m"‘__";";"”""d’ 00:01:09
Minutes = SecondsRemaining % &0
SecondsRemaining = SecondsBemaining Mod &0
Convert Close
'Convert to string form
Secs5tring = C5tr(SecondsRemaining)
Mins5tring = C5tr (Minutes)
HoursString = CS5tr (Hours)
"Check if times are single digit numbers. If so, add a leading "0©
If SecondsBemaining < 10 Then
SecsString = "0" & SecsString Notice that three independent “If” statements are used
fnd If here. The reason for thisisthat it is necessary to make a

separate decision for each case. For instance, whether a
“0” needs to be concatenated to “ SecsString” depends

If Minutes < 10 Then

Fnd I;;nssulng of & HansString only on the value of “ SecondsRemaining.” It has nothing
to do with the value of “Minutes’ or “Hours.” Keepin
If Hours < 10 Then mind that the “If...Elself...Else” structure should only
HoursString = "0" & HoursString be used when a single group of statementsis selected and
End If al the others are rejected.
' OUTPUT
1blHoursMinutesSeconds.Caption = HoursString & ™ @ "™ & MinsString &8 ™ : "™ & SecsS5tring

End Sub

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-29

Case Study 2: Storage Space and Data Transfer Rate Unit Converter Problem

In thefirst unit of this course, you studied storage space units, data transfer rate units and how to convert from one unit to
another. Thefollowing table isasummary of all storage space and data transfer rate units. Note that the prefixes used are
the same as those used for the SI system of units. However, since computer circuits are based on the binary number
system, the prefix “kilo” usually stands for 1024 = 2 instead of 1000 = 10°. Unfortunately, the usage of the binary
meaning of “kilo” isinconsistent at best. Hardware manufacturers often use the decimal meaning, especially for data
transfer rates.

Factor Storage Space Units Data Transfer Rate Units
Units Based on Bytes (binary) Units Based on Bytes/s (binary) Units Based on bps (decimal)
8b=1B 8 bps=1B/s 1 bps
21 1KB=1024B=2"B 1 KB/s=1024 B/s=2"B/s 1 kbps = 1000 bps = 10° bps
2% 1MB =1024KB =2"B 1 MB/s= 1024 KB/s= 2 B/s 1 Mbps = 1000000 bps= 10° bps
2% 1GB =1024 MB =2*B 1 GB/s= 1024 MB/s= 2® B/s 1 Gbps = 1000000000 bps= 10° bps
2% 1TB=1024GB =2“B 1 TB/s= 1024 GB/s= 2" B/s 1 Thps = 1000000000000 bps= 10" bps
2% 1PB=1024TB=2"B 1 PB/s= 1024 TB/s= 2 B/s 1 Pbps = 10" bps
2% 1EB=1024PB=2"B 1 EB/s= 1024 PB/s= 2® B/s 1 Ebps = 10" bps
27 1ZB=1024EB=2"B 1ZB/s= 1024 EB/s= 2" B/s 1 Zbps = 10* bps
2% 1YB=1024ZB=2"B 1YB/s=1024 ZB/s=2* B/s 1 Ybps = 10** bps
Note

1. For Storage Space Units “Kilo” means 1024 = 2"
The prefix “kilo” usually means 1000 = 10, but since computers are based on “twos” (binary), a power of 2 is much more
convenient than a power of 10. The value 1024 was chosen because it is the power of 2 closest to 1000.

2. Ambiguous use of “Kilo” for Storage Capacity and Data Transfer Rate Units
Despite the point madein “1,” hardware manufacturers very often use the decimal (SI) meaning of “kilo,” especially for data
transfer rates. In addition, in the SI system of units, the prefix lowercase “k” isused for “kilo.” When dealing with storage
capacity and data transfer rate units, however, both uppercase “K” and lowercase “k” can be used. By convention, uppercase “K”
means 1024 while lowercase “k” means 1000. Thus1 KB = 1024 B while 1 kB = 1000 B. (Unfortunately, even this convention is
not used consistently.)

The following table summarizes the prefixes for the Sl system of units (decimal, not binary).

Y ou may have a greater
factor “yotta’ but |, the
“peta,” am still far tastier

Asyou can seg, the greatest
factor to the “yotta’ the force
has given.

than you!
Prefixes for SI System of Units
Factor Name Symbol Factor Name Symbol
10* yotta Y 10* deci d
10* zetta Z 10 centi c
10*® exa E 10° milli m
10" peta P 10° micro U
10% tera T 10° nano n
10° giga G 10 pico P
10° mega M 10" femto i
10° kilo k 1078 atto a
10° hecto h 0% zepto z
10 deka da 10% yocto y

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-30

To Multiply or to Divide?
That is the Question

Smaller unit — Larger unit

Smaller unit «—— Larger unit
X

Bits to Bytes

=8
b——>» B

BEe————F;

x8

Conversion Table (for Kilo=1024)

+1024 +1024 +1024 +1024 +1024 +1024 +1024 +1024
B———KB—>»MB——>»GB———>»TB——>»PB——>»EB——>»/7B——» YB

B « KB < MB « GB « TB <« PB « EB « /B « YB
x1024 x1024 x1024 x1024 x1024 x1024 x1024 x1024

Conversion Table (for kilo=1000)

+1000 +1000 +1000 +1000 +1000 +1000 +1000 +1000
B——kB———>MB———>»GB——>TB————>»PB——>»EB———>»7ZB———> YB

Be—kBe+—MBe+—CB4+—TB<+—PB4+—EB<+«—7B<«—YB
x1000 %1000 %1000 x1000 x1000 x1000 %1000 %1000

Exercises

1. The Rogers Yahoo! Hi-Speed Internet Extreme service has a maximum downstream data transfer rate (download speed)
of 7 Mbps and a maximum upstream data transfer rate of (upload speed) 512 kbps. (Note that for these two rates,
kilo=1000=10° and mega=1000000=10°)
(a) Convert the downstream data rate from Mbps (megabits per second, M=1000000) to KB/s (kilobytes per second,

K=1024).

(b) Convert the upstream data rate from kbps (k=1000) to KB/s (K=1024).
(c) How long would it take to download (receive) the administrative version of Windows XP Service Pack 2

(272391 KB)? Assume that the data can be transferred at the maximum rate of 6 Mbps. State your answer in
hours, minutes and seconds.

(d) Whenyou use abit-torrent client such as Azureus, your computer becomes connected to what is known as a
peer-to-peer (P2P) file sharing network. Asyou download (receive) files from other users, your computer also
uploads (sends) files. How long would it take to upload (send) the administrative version of Windows XP
Service Pack 3 (324030 KB) to another user? Assume that the data can be transferred at the maximum rate of
512 kbps. State your answer in hours, minutes and seconds.

2. Suppose that you had a 500 GB hard drive that you wanted to back up. How many of each of the following storage
media would you need to use, assuming that there is no free space on the hard drive.
(a) 1.44 MB floppy diskettes
(b) 700 MB CD-R disks

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-31

A Proposal to Avoid the Confusion caused by two Possible Meanings of “Kilo”
Introduction

Knowing whether “kilo” refersto 1000 or 1024 can cause agreat deal of confusion. To prevent this confusion, a new set
of prefixes has been introduced. Information about these prefixes from three different \Web sites is given below. Read all
the information and then answer the questions at the bottom of the page.

A Description of “Kibibyte” from Wikipedia
Kibibyte

From Wikipedia, the free encyclopedia

A kibibyte (a contraction of kilo binary byte) is a unit of information or

computer storage, abbreviated KiB (never "kiB"). STl d L

o 10 S| prefixes Binary prefixes
1 kibibyte = 2" bytes = 1,024 bytes (IEC 60027-2)

The kibibyte is closely related to the kilobyte, which can be used either as a Name Popular Standard Name Value
synonym for kibibyte or to refer to 10* bytes = 1,000 bytes (see binary prefix). (Symbol) Usage | (Symbol)
Usage of these terms is intended to help prevent the confusion common among kilobyte (kB) 2 10 kibibyte (KiB) 2'°
storage media, due to the ambigunu_s meaning of "kilobyte”. Thus the term megabyte (MB) 220 10° mebibyte (MiB) 220
kibibyte has evolved to refer exclusively to 1,024 bytes.

gigabyte (GB) 2% 10® gibibyte (GiB) 230

This problem of confusion of the term kilobyte simultaneously being used to
refer to both 1,000 and 1.024 became more prevalent when computer hard drives
grew to the gigabyte and larger size, because if one expects power of two values | petabyte (PB) %0 107% pebibyte (PiB) 270
to refer to capacity, and manufacturers were using power of ten values, the exabyte (EB) 980 10'® exbibyte (EiB) 250
difference could be substantial, e.g. 1 megabyte, if expressed as power of two,
is 10242 or 10241024, or 1,048 576, while 1000=1000 is 1,000,000. In the case
of a "gigabyte”, if one uses 1024, the size of a drive would be expected to be yottabyte (YB) ~ 2%° 10%* yobibyte (YiB) 2%°
1,073.741,824 bytes per gigabyte versus 1000°, or a mere 1,000,000,000. Cn a

100 gigabyte drive, the difference is more than 7 billion characters additional storage, depending on whether 100 gigabytes refers to 100=1000%
or 100=1024%.

A Description of “Kibibyte” from FOLDOC

The official 1SO[?] name for 1024 bytes, to distinguish it from 1000 bytes which they call akilobyte. “Mebibyte,”
“Gibibyte,” etc, are prefixes for other powers of 1024. Although this new naming standard has been widely reported in
2003, it seems unlikely to catch on.

terabyte (TB) 2 10"2 tebibyte (TiB) 240

zettabyte (ZB) 277 102" zebibyte (ZiIB) 27°

A Description of “Kibibyte” from http://www.robinlionheart.com/stds/html4/glossary

kibibyte (KiB)

A kibibyte isaunit of storage equal to exactly 1,024 bytes. Because kilobyte is used to mean either 1000 bytes or 1024
bytes, in 1999 the International Electrotechnical Commission defined a “kibi-" prefix unambiguously signifying 1024.
Rarely used except by pedantic nerds, like me.

Questions
1. Explain why “kilo=1000" is called the decimal meaning and “kilo=1024" is called the binary meaning.

2. Definethe words pedantic, nerd, ambiguous, standard and convention.

3. Since 1000 is very close to 1024, why should anyone bother distinguishing between the two meanings of “kilo?’
4. When using the Internet to do research, do you think that it would be wise to consult only one Web site? Explain.
5. Arethere any inconsistencies in the three sources of information?

6. The manufacturers of two different hard drives both claim that the storage capacity of the drivesis1 TB. One
manufacturer uses the “kilo=1024" definition and the other uses the “kilo=1000" definition. Calculate the difference
in storage capacities between the two drives.

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-32

Problems that can be Solved by Investigating Specific Examples

1.

2.
3.
4

6.
7.
8.

Convert atime specified in seconds to the form hours:minutes:seconds. (e.g. 3642s=1h:0min:42s)

Convert atime specified in minutes to the form hours:minutes:seconds. (e.g. 125.6 min=2h:5min: 369)
Convert atime specified in hours to the form hours:minutes:seconds. (e.g. 25.66h=25h:39min: 3659)

Convert any time specified in days:hours:minutes:seconds to the best possible form in days:hours:minutes:seconds.
(e.g. 2days: 63 h:189min:322s=4days: 18 h: 14 min: 225)

Convert a certain amount of money to the form “# $1000 bills, # $100 hills, # $50 bills, # $20 hills,

$10 bills, # $5 bills, # $2 coins, # $1 coins, # $0.25 coins, # $0.10 coins, # $0.05 coins, # $0.01 coins”

(e.g. $7987.32 = seven $1000 bills, nine $100 bills, one $50 bill, one $20 bill, one $10 bill, one $5 hill,

one $2 cain, zero $1 coins, one $0.25 coin, zero $0.10 coins, one $0.05 coins, two $0.01 coins)

Given any two fractions, add them, subtract them, multiply them or divide them.
Convert any storage capacity unit into any other.
Convert any data transfer rate unit into any other.

Assignment

1.

Solve a specific example and write an algorithm for each of the eight problems listed above. Arrange your work in
table format as shown below. An exampleis given to help you understand what is required.

Specific Example Algorithm

Convert 35356 sto theformat h : min : s. The user enters atime in seconds; seconds

hours

minutes

seconds

Step 1
Step 2
Step 3

0
9
9

0
0
49

35356
2956
16

35356 + 3600 =

9 R 2956, 2956+ 60=49R 16

AN S

Set hours to the quatient of seconds divided by 3600

Set seconds to the remainder of seconds divided by 3600
Set minutes to the quotient of seconds divided by 60

Set seconds to the remainder of seconds divided by 60
Theresult ishours : minutes : seconds

2. CreateaVB program that
(a) can convert any data storage capacity unit into any other
(b) can convert any data transfer rate unit into any other
(c) alowsthe user to use either the binary or decima meaning of “kilo”
binary: base 2, Kilo = K = 1024 = 2
Evaluation Guide for Question 1

decimal: base 10, kilo = k = 1000 = 10°

. o Descriptors
Categories Criteria Level | Average
Level 4 Level 3 Level 2 Level 1 Level O
Kn0W|Edge and Understanding of the Problems Extensive Good Moderate Minimal Insufficient
Understanding (KU)
Correctness of Chosen Examples
Application (APP) To what degree are the chosen examples Very High | High Moderate | Minima | Insufficient
solved correctly?
Appropriateness of Chosen Examples
T.O \.Nhat degree has the studentt chasen non- Very High High Moderate Minima | Insufficient
Thinking, Inquiry and trivial examp]esthat can be extended to
Problem Solving general algorithms?
(TIPS) Generality of Algorithms
To what degree are the algorithms Very High | High Moderate | Minimal | Insufficient
applicable to the given problems?
Clarity of Solutions of Chosen Examples | Extremely Easy to Moderately
. Easy to Easy to Somewhat | Extremely
How clearly arethe solutions of thechosen | jnger. | Under- Under- Abstruse | Abstruse
ST examples communicated? stand stand stand
(Com)
. . . Extremely Moderately
e Il T
. Under- Under- Abstruse Abstruse
communicated? stand stand tand
Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-33

Evaluation Guide for Question 2 (Unit Conversion Program)

Categories

Criteria

Descriptors

Level 4

Level 3

Level 2

Level 1

Level 0

Level

Average

Knowledge and
Understanding
(KU)

Understanding of Programming Concepts

Extensive

Good

Moderate

Minimal

Insufficient

Understanding of the Problem

Extensive

Good

Moderate

Minimal

Insufficient

Application
(APP)

Correctness
To what degree is the output correct?

Very High

High

Moderate

Minimal

Insufficient

Declaration of Variables
To what degree are the variables declared with
appropriate data types?

Very High

High

Moderate

Minimal

Insufficient

Debugging
To what degree has the student employed alogical,
thorough and organized debugging method?

Very High

High

Moderate

Minimal

Insufficient

Thinking,
Inquiry and
Problem
Solving
(TIPS)

Algorithm Design and Selection

To what degree has the student used approaches
such as solving a specific example of the problem to
gain insight into the problem that needs to be
solved?

Very High

High

Moderate

Minimal

Insufficient

Ability to Design and Select Algorithms Independently
To what degree has the student been able to design
and select algorithms without assistance?

Very High

High

Moderate

Minimal

Insufficient

Ability to Implement Algorithms Independently
To what degree is the student able to implement
chosen a gorithms without assistance?

Very High

High

Moderate

Minimal

Insufficient

Efficiency of Algorithms and Implementation
To what degree does the algorithm use resources
(memory, processor time, etc) efficiently?

Very High

High

Moderate

Minimal

Insufficient

Communication
(COM)

Indentation of Code

Insertion of Blank Lines in Strategic Places
(to make code easier to read)

Very Few
or no
Errors

A Few
Minor
Errors

Moderate
Number of
Errors

Large
Number of
Errors

Very Large
Number of
Errors

Comments

o Effectiveness of explaining abstruse (difficult-to-
understand) code

o Effectiveness of introducing major blocks of code

» Avoidance of comments for self-explanatory code

Very High

High

Moderate

Minimal

Insufficient

Descriptiveness of Identifier Names
Variables, Constants, Objects, Functions, Subs, etc

Inclusion of Property Names with Object Names
(e.g. ‘txtName.Text’ instead of ‘txtName' alone)
Clarity of Code

How easy isit to understand, modify and debug the
code?

Adherence to Naming Conventions
(e.g. use “txt” for text boxes, “Ibl” for labels, etc.)

Masterful

Good

Adequate

Passable

Insufficient

User Interface
To what degree is the user interface well designed,
logical, attractive and user-friendly?

Very High

High

Moderate

Minimal

Insufficient

Copyright ©, Nick E. Nolfi

ICS3MO Essential Problem Solving Strategies for Programming

EPSSP-34

PROBLEM SOLVING STRATEGY 2: PLAN YOUR SOLUTION IN A LOGICAL,

ORGANIZED

The Problem that you need to Solve

FASHION

Since Tyler is so busy kneading the dough for his Newfie Screech Style Pizza, he does not have much time to process
customer orders. Therefore, heis seeking your help! Hisrestaurant, Newfie Screech Style Pizzeria, needs a computer

program that can process customer orders.

As shown in the table, there is a base price for each pizza, plus an additional charge for each topping.

@ Newfie Screech Style Pizzeria Order Calculator

SIZE BASE PRICE EACH TOPPING
Small $9.95 $1.00
Pizza Size Order Summary Medium $12.95 $1.25
& ERE O Medim Process || sub Total:
la fargi) :ariS\ze Order > ‘F'].;;:'l]']: Large $1595 $150
Quantities Calculate PST: Par ty Size $18.95 $2.00
Number of Toppings: l_ Change Total: Drinks $1.25
Mumber of Pizzas: [~ Clear P, "— —
et el Bk ,_ Quit Total Spent: Average Spent,

Write a Visual Basic program that uses the form shown below to

Oy
2
(&)
(C))
©)
(6)

Input the amount of money paid by the customer

Local Variables versus Global Variables

Input the size of the pizza, the number of toppings, the number of pizzas and the number of drinks
Calculate and display the sub-total (cost before tax), the PST (8%), the GST (6%) and the total

Calculate and display the change that the customer should receive
Calculate and display the total amount spent by all customers
Calculate and display the average amount spent by each customer.

Local Variables

Global Variables

As shown below, local variables are declared inside Subs.

Private Sub cmndCalculateChange Click(})

Dim Change As Currency, Cashlendered Az Currency

Loca variables are

1. VISIBLE only within the sub in which they are declared.
2. CREATED when the sub isinvoked (i.e. called or executed).

3. DESTROY ED when the sub returns (has finished
executing).

Local variables should be used whenever possible. They help
to reduce the time needed to debug a program because they
keep information PRIVATE. If information is needed only by
aparticular sub, it is best to HIDE it from other subs. Local
variables also help to conserve memory because they are
discarded as soon as the sub returns.

As shown below, local variables are declared at the top
of the code, just after Option Explicit.

Cption Explicit

Dim TotalCostCfCrder As Currency

1. The values of global variables remain stored in
RAM aslong asthe formisloaded in RAM (i.e. the
computer will "remember"” the values of these
variables for as long as the form remains loaded

2. Global variables are VISIBLE to al the subs. Each
sub can access each global variable, allowing two or
more subs to SHARE their values.

A variable should be declared GLOBALLY whenever
two or more subs need to accessiit (i.e. use or change its
value) and/or whenever its value needs to be
“remembered” after a sub has finished executing.

Copyright ©, Nick E. Nalfi

ICS3MO Essential Problem Solving Strategies for Programming

EPSSP-35

The Plan

INPUT PROCESSING OuTPUT

What information does the user enter? | What must be done with the information? | What should be displayed after
processing is complete?

Code for Input Code for Processing Code for Output

VARIABLES (MEMORY)

LOCAL VARIABLES GLOBAL VARIABLES

Copyright ©, Nick E. Nolfi

ICS3MO Essential Problem Solving Strategies for Programming

EPSSP-36

Pizza Program Solutions and Questions

SIZE BASE PRICE EACH TOPPING
Small $9.95 $1.00
Medium $12.95 $1.25
Large $15.95 $1.50
Party Size $18.95 $2.00

Drinks $1.25
The Problem
“Newfoundland Style Pizzeria Problem”
The Plan
INPUT PROCESSING OuTPUT
What information What must be done with the information? What should be displayed
must the user enter? | process Order Button after processing is
Process Order Button | 1. Determine base price for pizza size chosen complete?
Pizza Size, Number of | 2. Determine price per topping for chosen size Process Order Button
Pizzas, Number of 3. Calculate cost before taxes (subtotal): 1. Display subtotal
Toppings, Number of #pizzas*[(base price) + #toppings* (topping price)] + #drinks* (drink price) | 2. Display GST
Drinks 4. Calculate GST and PST 3. Display PST
Calculate Change gaIST ISUthtZII*]?'OG' 4 Pssljrt:)wgrmacl‘:soi'()8 BST 4. Display totd

: + +

Button . Calculate total for order: Subtot 5. Display total spent by all

Amount of money
customer pays.

5

6. Add (order total) to (total for all customers)

7. Increase the number of ordersby 1

8. Calculate the average cost of each order: (total spent by al) / (#orders)
Calculate Change Button

Calculate change.

customers

6. Display average amount
spent by each customer

Calculate Change Button
Display change.

variable.

2. Explain the purpose of the “NumOrders’

1. Explain why most of the variables are declared as local
variables while afew are declared as global variables.

VARIABLES (MEMORY)

LOCAL VARIABLES «—

D}
GLOBAL VARIABLES

Integer Variables

NumPizzas
NumToppings
NumbDrinks

These vawiables
store values that
owolve v
nuwmber of ey

Currency Variables

PizzaBasePrice
These vawiables
PricePerTopping, SubTotal, GST, PST store values that
Change irwolve v
amount of money
CashTendered
AverageA mountSpent

Currency Variables
Total CostOfOrder

Total SpentByAllCustomers

NumOrders

Copyright ©, Nick E. Nolfi

ICS3MO Essential Problem Solving Strategies for Programming

EPSSP-37

The Code

A complete VB solution for this problem can be found in the folder
I\OUT\Nolfi\Ics3m0\Simple VB Examples\Newfie Pizza Example

Only the global variables and the “cmdProcessOrder_Click()” sub are shown here.

Cption Explicit 'Used to force wvariable declarations.

'GLOBAL VARIABLES
Dim TotalCostOfOrder As Currency, TotalSpentByAllCustomers As Currency
Dim NumOrders A= Integer

Private Sub cmdProcessOrder Clicki)

'MEMORY: LOCAL VARIAELES

Dim PizzaBasePrice As Currency, PricePerTopping As Currency, SubTotal As Currency
Dim GS5T &= Currency, P3T A= Currency, AveragehmountSpent A= Currency

Dim HumPizzas A= Integer, NumDrinks As Integer, NumToppings As Integer

'"THNEUT: Cbtain information from user.
HumPizzas = Val (cxtPizzas.Text)
NumToppings = Val (txtToppings.Text)
HumDrinks = Val (txtDrinks.Text)

'PROCESSING
'Decide what the base price and price per topping should be.
If optSmall.Value = True Then

PizzaBasePrice = 9.895
PricePerTopping = 1

ElseIf optMedium.Value = True Then
PizzaBasePrice = 12.85

2
PricePerTopping = 1.25
ElseIf optlLarge.Value = True Then

PizzaBasePrice = 15.85
PricePerTopping = 1.5
Else
PizzaBasePrice = 18.95
PricePerTopping = 2
End If
'Now perform all calculations
SubTotal = (PizzaBasePrice + PricePerTopping * HumToppings)

* NumPizzas + NumDrinks *= 1.25

G5T Round (SubTotal * 0.07, 2)

E5T = BRound (SubTotal * 0.08, 2)

TotalCostOfCrder = SubIotal + G5T + P5T

TotalSpentByAllCustomers = TotalSpentByAllCustomers + TotalCostOfOrder
HumOrders = Humbrders + 1

LwveragelhmountSpent = Round (TotalSpentByhllCustomers /S NumOrders, 2)
'"OUTPUT: Display resulcs.

1bl5ubTotal.Caption = Format (SubTotal, "Currency™)

1b1G5T.Caption = Format (GST, "Currency"™)

1b1PST.Caption = Format (P5T, "Currency™)

1blTotal.Caption = Format (TotalCostDiOrder, "Currency™)
1blTotalSpent.Caption = Format (TotalSpentBvAllCustomers, "Currency™)
lbhlaverageSpent.Caption = Format (AverageAmountSpent, "Currency™)

End Sub

Questions
1. If dl variablesin this program were declared locally, would this program still work correctly? Explain.

2. If al variablesin this program were declared globally, would this program still work correctly? If so, isit agood idea

to declare al variables globally? Explain.

3. Explain the purpose of theintrinsic functions “Round” and “Format.” Use MSDN help to find technical information on

these two functions.

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming

PROBLEM SOLVING STRATEGY 3: BREAK UP LARGE, COMPLEX PROBLEMS
INTO A SERIES OF SMALLER, SIMPLER PROBLEMS

(Dot'T 8= A Purprin HeAD! FolLow THESE GuinsLines!)

The Infinite Loop of Software Development

The flowchart shown at the left isa simplified visual representation

Fo MBSO of the software development process. Notice that programmers use
for asimple version as a foundation upon which future versions can be

next version. built. Also, notethat oncetheinitial simple version has been

implemented, an essentialy infinite loop is entered. Since software

development involves open-ended tasks, thereis virtually no limit

to the improvements that can be made!

Decide which When engaged in this process, try to keep in mind the following

Implement and ideas will be points:
test fully. implemented.

Begin with a
simple version,

e Break up large, complex problems into several smaller problems.
-ds.,a i Oﬂ;cr | ° Solveonesmal problemat atime. Ensure that each solution is
il perfect before integrating it into the overall system.
€rsions. L.) .
e Beredidtic! Itisfar better to produce simple software that
i workswell than it isto produce sophisticated software that does
yze
limitations. not work at all.
e Do not limit yourself during the idea generation phase. Write
down all your ideas (including those that seem over-ambitious or
downright crazy).

Some General Guidelines for Producing Great Code
o Usenameslike InsertionPoint instead of insertionpoint, INSERTIONPOINT, insertion_point or INSERTION_POINT

e Use namesthat clearly describe the purpose of a variable, constant, sub procedure or function procedure.

e Using meaningful, descriptive names will allow you to write programs that are for the most part self-explanatory. This
means that you do not need to include too many comments. However, comments should still be considered an
integral part of the software development process. Comments should be included as you write your code, not after it
iswritten!

e Generally, include comments for major blocks of code and for any code that is not self-explanatory.

e Useglobal variables only when necessary! All other variables should be declared either within procedures or as
parameters of procedures.

e Avoid repetitive code by writing sub procedures or function procedures and calling them whenever they are needed.

e Consider several different algorithms and implement the one that best suits your needs.

e Indent your code properly asyou writeit! Do not consider indentation an afterthought.

e Test your code thoroughly under extreme conditions. Allow other people to conduct some of the testing and note all

bugs.

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-39

The Fraction Calculator Program

nstructions

Read the memo given below. Before diving right into the VB code, take some time to PLAN your solution!

INTERNAL MEMO

From: |. M. De Boss

To: U. R. Not De Boss

Re: The “Fraction Calculator” software.
The “Fraction Calculator” must be able to add, subtract, multiply and divide any two fractions expressed in improper form. All
answers must be displayed in lowest terms. The following is an example of the type of question that your calculator should be able

to handle. Note that your calculator will only display the question and the final answer. The intermediate steps do not need to be
displayed but we may tackle thisin afuture version.

Detailed Solution Explanation
g + g These two fractions must be added.

_6x3 N 5x4 The LCD (lowest common denominator) is 24. Express each fraction with a denominator of 24. The
8x3 6x4 LCD isthe least common multiple of 8 and 6.

= % + g Now that both fractions have the same denominator, the numerators can be added.

— 38+2 Thisfraction is not reduced to lowest terms, so one more step is necessary. Bo the numerator and
24+ 2 denominator are divided by the greatest common divisor of 38 and 24.

=E Thisisthefina answer reduced to lowest terms.

Overall Plan

Express each fraction with
a common denominator.

Pseudo-Code

® NS DR W=

g

Theresultis

Add the numerators of the
fractions.

denomAnswer
Above Example done using Memory Map

> Reduce the obtained

fraction to lowest terms.

. The user enters the numerators and denominators of each fraction: numer1, denoml, numer2, denom2
. Set denomAnswer to the least common multiple of denom1 and denom?2
Set numerl to denomAnswer divided by denom1 multiplied by numerl
Set numer2 to denomAnswer divided by denom2 multiplied by numer2
Set numerAnswer to numerl plus numer?2
Set gcd to the greatest common divisor of numerAnswer and denomAnswer
Set numerAnswer to numerAnswer divided by gcd
Set denomAnswer to denomAnswer divided by gcd
numAnswer

numerl denoml numer2 denom?2 denomAnswer | numerAnswer gcd
1. 6 8 5 6 - - -
2. 6 8 5 6 24 - -
3. 18 8 5 6 24 - -
4. 18 8 20 6 24 - -
5. 18 8 20 6 24 38 -
6. 18 8 20 6 24 38 2
7. 18 8 20 6 24 19 2
8. 18 8 20 6 12 19 2
9. 18 8 20 6 12 19 2
Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-40

Using the Fraction Calculator Assignment to Learn How to Improve Existing Code (Part 1)
Instructions

Carefully study the code shown on the next page (Fraction Calculator Version 1.00). After you do so, run the
“Fraction Calculator 1.00” VB program, which you will find stored in

I:\Out\Nolfi\Ics3mO\Fraction Calculator\Fraction 1.00\Fraction 1.00.vbp
Then complete the following table.

How doesthe “cmdAdd_Click” sub differ
from the “cmdSubtract_Click” sub?

How does the “cmdMultiply_Click” sub
differ from the “cmdDivide Click” sub?

Isthere any code that is repeated in
severa different places?

State several ways in which the code and
the user interface could be improved.

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-41

"Fraction Calculator Version 1.00
Private Sub cmdAdd_Click()
Dim PossibleMulti As Long, LCM As Long
Dim Smaller As Long, Larger As Long
Dim Denoml As Long, Denom2 As Long
Dim Numeratorl As Long, Numerator2 As Long
Dim AnsNumerator As Long, AnsDenom As Long
Dim PossibleDivisor As Long, GCD As Long
*Input
Denoml = Val(txtDenoml.Text)
Denom2 = Val (txtDenom2.Text)
Numeratorl = Val(txtNumerl.Text)
Numerator2 = Val (txtNumer2.Text)
IT Denoml < Denom2 Then
Larger = Denoml
Else
Larger = Denom2
End If
“"Find LCM of "Denoml" and ‘‘Denom2"
For PossibleMulti = Larger To Denoml * Denom2
IT PossibleMulti Mod Denoml = O And _
PossibleMulti Mod Denom2 = 0O
LCM = PossibleMulti
Exit For
End If
Next PossibleMulti

AnsNumerator = LCM / Denoml * Numeratorl + LCM

Denom2 * Numerator2

AnsDenom = LCM
IT AnsDenom < AnsNumerator Then
Smaller = AnsDenom

Else
Smaller = AnsNumerator
End If
"Find the GCD of "AnsNumerator™ and "AnsDenom™
GCD =1

For PossibleDivisor = Smaller To 2 Step -1

IT AnsNumerator Mod PossibleDivisor = 0 An
AnsDenom Mod PossibleDivisor = 0
GCD = PossibleDivisor
Exit For
End IFf
Next PossibleDivisor
"OutPut
txtAnsNumer.Text = AnsNumerator / GCD
txtAnsDenom.Text = AnsDenom / GCD

End Sub

Private Sub cmdMultiply_Click()
Dim Denoml As Long, Denom2 As Long
Dim Numeratorl As Long, Numerator2 As Long
Dim PossibleDivisor As Long, GCD As Long
Dim Smaller As Long
"Input
Denoml = Val(txtDenoml.Text)
Denom2 = Val (txtDenom2.Text)
Numeratorl = Val(txtNumerl.Text)
Numerator2 = Val (txtNumer2.Text)
"Processing
AnsNumerator = Numeratorl * Numerator2
AnsDenom = Denoml * Denom2
"Find the GCD of "AnsNumerator' and ‘"AnsDenom"
IT AnsDenom < AnsNumerator Then
Smaller = AnsDenom

Else

Smaller = AnsNumerator
End If
GCD =1

For PossibleDivisor = Smaller To 2 Step -1
IT AnsNumerator Mod PossibleDivisor = 0 An
AnsDenom Mod PossibleDivisor = 0
GCD = PossibleDivisor
Exit For
End IFf
Next PossibleDivisor
"OutPut
txtAnsNumer.Text
txtAnsDenom. Text

End Sub

AnsNumerator / GCD
AnsDenom / GCD

Copyright ©, Nick E. Nalfi

Then

/

d _
Then

d _
Then

ICS3MO Essential Problem Solving Strategies for Programming

Private Sub cmdSubtract_Click()

Dim PossibleMulti As Long, LCM As Long
Dim Smaller As Long, Larger As Long
Dim Denoml As Long, Denom2 As Long
Dim Numeratorl As Long, Numerator2 As Long
Dim AnsNumerator As Long, AnsDenom As Long
Dim PossibleDivisor As Long, GCD As Long
"Input
Denoml = Val(txtDenoml.Text)
Denom2 = Val(txtDenom2.Text)
Numeratorl = Val (txtNumerl.Text)
Numerator2 = Val (txtNumer2.Text)
IT Denoml < Denom2 Then
Larger = Denoml
Else
Larger = Denom2
End If
"Find LCM of "Denoml" and *‘Denom2"
For PossibleMulti = Smaller To Denoml * Denom2
IT PossibleMulti Mod Denoml = O And _
PossibleMulti Mod Denom2 = O Then
LCM = PossibleMulti
Exit For
End If
Next PossibleMulti
AnsNumerator = LCM / Denoml * Numeratorl - LCM / _
Denom2 * Numerator2
AnsDenom = LCM
IT AnsDenom < AnsNumerator Then
Smaller = AnsDenom

Else
Smaller = AnsNumerator
End If
“Find the GCD of "AnsNumerator' and *‘AnsDenom"
GCD =1

For PossibleDivisor = Smaller To 2 Step -1
IT AnsNumerator Mod PossibleDivisor = 0 And _
AnsDenom Mod PossibleDivisor = 0 Then
GCD = PossibleDivisor
Exit For
End IFf
Next PossibleDivisor
"OutPut
txtAnsNumer.Text = AnsNumerator / GCD
txtAnsDenom.Text = AnsDenom / GCD

End Sub
Private Sub cmdDivide_Click(Q)

Dim Denoml As Long, Denom2 As Long
Dim Numeratorl As Long, Numerator2 As Long
Dim PossibleDivisor As Long, GCD As Long
Dim Smaller As Long
"Input
Denoml = Val(txtDenoml.Text)
Denom2 = Val(txtDenom2.Text)
Numeratorl = Val (txtNumerl.Text)
Numerator2 = Val (txtNumer2.Text)
"Processing
AnsNumerator = Numeratorl * Denom2
AnsDenom = Denoml * Numerator2
"Find the GCD of "AnsNumerator™ and *‘AnsDenom™
I AnsDenom < AnsNumerator Then

Smaller = AnsDenom
Else

Smaller = AnsNumerator
End IFf

GCD =1
For PossibleDivisor = Smaller To 2 Step -1
1T AnsNumerator Mod PossibleDivisor = 0 And _
AnsDenom Mod PossibleDivisor = 0 Then
GCD = PossibleDivisor
Exit For
End If
Next PossibleDivisor
"Output
txtAnsNumer.Text = AnsNumerator / GCD
txtAnsDenom.Text = AnsDenom / GCD

End Sub

EPSSP-42

Using the Fraction Calculator Assignment to Learn How to Improve Existing Code (Part 2)
Instructions

Carefully study the code shown on the next page (Fraction Calculator Version 1.01). After you do so, run the “Fraction
Calculator 1.01” VB program, which you will find stored in

I:\Out\Nolfi\Ics3mO0\Fraction Calculator\ Fraction 1.01\Fraction 1.01.vbp
Then complete the following table.

How does version 1.01 differ from version 1.00?

Dim Denoml As Long, Denom2 As Long
Dim Numeratorl As Long, _

Numerator2 As Long
In version 1.00, the above declarations appeared
within the subs (i.e. the variables were declared
as local variables). Why isit necessary to
declare these variables globally in version 1.01?

Use MSDN help or any other resources to do
research on the following topics:

e Function Procedures

e Sub Procedures

e General Sub Procedures versus Event Sub
Procedures

o Passing Parameters (Arguments) “By Value’

e Passing Parameters (Arguments) “By
Reference’

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-43

"Fraction Calculator Version 1.01

"The code for this version is considerably shorter
"than the code for version 1.00. This is due to the
"use of "Sub Procedures"™ and "Function Procedures."

Option Explicit

Dim Denoml As Long, Denom2 As Long
Dim Numeratorl As Long, Numerator2 As Long

Private Sub cmdAdd_Click()
"Memory
Dim AnsNumerator As Long, AnsDenom As Long
Dim GCD As Long, PossibleMulti As Long, LCM As Long
"Input
Call Getlnput
"Processing
LCM = LeastCommonMultiple(Denoml, Denom2)
AnsNumerator = LCM / Denoml * Numeratorl + LCM / _

Denom2 * Numerator2

AnsDenom = LCM
GCD = GreatestCommonDivisor(AnsNumerator, AnsDenom)
"Output - Display answer as a reduced fraction
txtAnsNumer.Text = AnsNumerator / GCD
txtAnsDenom.Text = AnsDenom / GCD
IblOperation.Caption = "+"

End Sub

Private Sub cmdSubtract_Click()
“"Memory
Dim AnsNumerator As Long, AnsDenom As Long
Dim GCD As Long, LCM As Long
"Input
Call Getlnput
"Processing
LCM = LeastCommonMultiple(Denoml, Denom2)
AnsNumerator = LCM / Denoml * Numeratorl - LCM / _

Denom2 * Numerator2

AnsDenom = LCM
GCD = GreatestCommonDivisor(AnsNumerator, AnsDenom)
"Output - Display answer as a reduced fraction
txtAnsNumer.Text = (AnsNumerator / GCD)
txtAnsDenom.Text = (AnsDenom / GCD)
IblOperation.Caption = "-"

End Sub

Private Sub cmdDivide_Click()
"Memory
Dim AnsNumerator As Long, AnsDenom As Long
Dim GCD As Long
"Input
Call Getlnput
"Processing
AnsNumerator = Numeratorl * Denom2
AnsDenom = Denoml * Numerator2
GCD = GreatestCommonDivisor(AnsNumerator, AnsDenom)
"Output - Display answer as a reduced fraction
txtAnsNumer.Text = AnsNumerator / GCD
txtAnsDenom.Text = AnsDenom / GCD
IblOperation.Caption = "'/"

End Sub

Private Sub cmdMultiply_Click(Q)
“"Memory
Dim AnsNumerator As Long, AnsDenom As Long
Dim GCD As Long
"Input
Call Getlnput
"Processing
AnsNumerator = Numeratorl * Numerator2
AnsDenom = Denoml * Denom2
GCD = GreatestCommonDivisor(AnsNumerator, AnsDenom)
"Output - Display answer as a reduced fraction
txtAnsNumer.Text = AnsNumerator / GCD
txtAnsDenom.Text = AnsDenom / GCD
IblOperation.Caption = "*"

End Sub

Private Sub Getlnput()

End

Denoml = Val(txtDenoml.Text)
Denom2 = Val(txtDenom2.Text)
Numeratorl = Val (txtNumerl.Text)
Numerator2 = Val (txtNumer2.Text)
Sub

Private Function GreatestCommonDivisor(ByVal Numl As

End

Long, Byval Num2 As Long) As Lona

Dim GCD As Long, Smaller As Long, _
PossibleDivisor As Long
GCD =1
If Numl < Num2 Then
Smaller = Numl
Else
Smaller = Num2
End If
For PossibleDivisor = Smaller To 2 Step -1
IT Numl Mod PossibleDivisor = 0 And _
Num2 Mod PossibleDivisor = 0 Then
GCD = PossibleDivisor
Exit For
End If
Next PossibleDivisor

GreatestCommonDivisor = GCD
Function

Private Function LeastCommonMultiple(ByVval Numl As _

End

Long, ByVal Num2 As Long) As Long

Dim PossibleMulti As Long, LCM As Long, _
Smaller As Long
If Numl < Num2 Then
Smaller = Numl
Else
Smaller = Num2
End IFf
"Find LCM
For PossibleMulti = Smaller To Numl * Num2
IT PossibleMulti Mod Numl = O And _
PossibleMulti Mod Num2 = O Then
LCM = PossibleMulti
Exit For
End IFf
Next PossibleMulti

LeastCommonMultiple = LCM
Function

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-44

Using the Fraction Calculator Assignment to Learn How to Improve Existing Code (Part 3)

Instructions

Carefully study the code shown on the next page (Fraction Calculator Version 1.02). After you do so, run the “Fraction
Calculator 1.02" VB program, which you will find stored in

I:\Out\Nolfi\Ics3mO0\Fraction Calculator\ Fraction 1.02\Fraction 1.02.vbp
Then complete the following table.

How does version 1.02 differ from version 1.01?

Dim Denoml As Long, Denom2 As Long
Dim Numeratorl As Long, _
Numerator2 As Long

In version 1.01, the above declarations had to be
at the global (module) level. Why isit better to
declare these variables locally in version 1.027

Use MSDN help or any other resources to do
research on the following topics:

e Arrays
e Control Arrays

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-45

"Fraction Calculator Version 1.02

"The code for this version is considerably shorter
"than the code for version 1.01. This is due to the
"elimination of a great deal of repetitive code in
"version 1.01. Much of this was made possible
"by the use of control arrays.

Option Explicit
Dim Operation(0 To 3) As String * 1

Private Sub Form_Load()
Operation(3) B

Operation(l) = "-"

Operation(0)

Operation(2)
End Sub

T=T)

et

Private Sub cmdOperation_Click(Index As Integer)

“Memory
Dim Denoml As Long, Denom2 As Long
Dim Numeratorl As Long, Numerator2 As Long
Dim AnsNumerator As Long, AnsDenom As Long
Dim GCD As Long
Const Add = 3, Subtract =1, _

Multiply = 0, Divide = 2
"Input
Denoml = Val(txtDenoml.Text)
Denom2 = Val (txtDenom2.Text)
Numeratorl = Val(txtNumerl.Text)
Numerator2 Val (txtNumer2.Text)

"Processing
If Index = Add Or Index = S ract Then
AnsNumerator = Numer, rl * Denom2 + _
(Index - 2) * Numerator2 * Denoml
AnsDenom = Denoml * Denom2
Elself Index = Multiply Then
AnsNumerator = Numeratorl * Numerator2
AnsDenom = Denoml * Denom2
Else
AnsNumerator = Numeratorl * Denom2
AnsDenom = Denoml * Numerator2
End IFf

GCD = GreatestCommonDivisor(AnsNumerator, AnsDenom)

"Output - Display answer as a reduced fraction
txtAnsNumer.Text = AnsNumerator / GCD
txtAnsDenom.Text = AnsDenom / GCD
IblOperation.Caption = Operation(Index)

End Sub

Private Function GreatestCommonDiviso Numl As _
Long, ByVval Num2 As Long) As Long

Dim GCD As Long, Smaller As Long, _
PossibleDivisor As Long
GCD = 1
IT Numl < Num2 Then
Smaller = Numl
Else
Smaller = Num2
End If

For PossibleDivisor = Smaller To 2 Step -1
IT Numl Mod PossibleDivisor = 0 And _
Num2 Mod PossibleDivisor = 0 Then
GCD = PossibleDivisor
Exit For
End IFf
Next PossibleDivisor

GreatestCommonDivisor = GCD

End Function

1.

3.

4.

5.

6.

What does“String * 1" mean?

What is the purpose of this sub?

What is the purpose of multiplying by “Index — 27~

What are these pieces of information called?

What are these variables called?

What is the purpose of this statement?

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming

EPSSP-46

FUNCTION PROCEDURES AND SUB PROCEDURES — TECHNICAL INFORMATION

Sub Procedures

Note: In the following formal descriptions of Sub procedures and Function procedures, the keywords enclosed in square brackets are
optional and the “pipe” symbol (* | ”) means“OR.” For example, “[Private | Public]” meansthat either the keyword “ Private”
or the keyword “Public” may be used (but not both).

A Sub procedure is ablock of code that is executed when invoked (called into action). By breaking the code in amoduleinto Sub
procedures, it becomes much easier to find, modify and debug the code in your application. The syntax for a Sub procedureis:

[Private|Public] [Static] Sub ProcedureName (FormalParameters)
statements
End Sub

Each time the procedure is called, the statements between “Sub” and “End Sub” are executed. Sub procedures can be placed in
standard modules, class modules and form modules. Sub procedures are by default Public in all modules, which means they can be
called from anywhere in the application. The FormalParameters for a procedure are like a variable declaration, declaring values that
are passed in from the calling procedure.

In Visual Basic, it is useful to distinguish between two types of Sub procedures, general procedures and event procedures.

General Procedures

A general procedure tells the application how to perform a specific task. Once ageneral procedureis defined, it must be specifically
invoked (called into action) by the application. By contrast, an event procedure remainsidle until called upon to respond to events
caused by the user or triggered by the system.

Why create general procedures? Onereason isthat several different event procedures might need the same actions performed. A
good programming strategy is to put common statements in a separate procedure (a general procedure) and have your event
procedures call it. This eliminates the need to duplicate code and makes the application easier to maintain.

Event Procedures

When an object in Visual Basic recognizes that an event has occurred, it automatically invokes the event procedure using the name
corresponding to the event. Because the name establishes an association between the object and the code, event procedures are said to
be attached to forms and controls.

e An event procedure for a control combines the control’s actual name (specified in the Name property), an underscore (_), and
the event name. For instance, if you want a command button named “cmdPlay” to invoke an event procedure when it is clicked,
use the procedure “cmdPlay_Click.”

e An event procedure for aform combines the word “Form,” an underscore and the event name. |f you want aform to invoke an
event procedure when it is clicked, use the procedure “Form_Click.” (Like controls, forms do have unique names, but they are not
used in the names of event procedures.)

All event procedures use the same general syntax.

Syntax for a Control Event Syntax for a Form Event

Private Sub ControlName_EventName (Parameters) Private Sub Form_EventName (Parameters)
statements statements

End Sub End Sub

Although you can write event procedures from scratch, it is easier to use the code procedures provided by Visual Basic, which
automatically include the correct procedure names. Y ou can select atemplate in the Code Editor window by selecting
an object from the Object box and then selecting a procedure from the Procedure box.

(General) j |:DE{:Iarations] j

It isalso agood ideato set the Name property of your controls before you start writing event procedures for them. If you change the
name of a control after attaching a procedure to it, you must also change the name of the procedure to match the new name of the
control. Otherwise, Visua Basic will not be able to match the control to the procedure. When a procedure name does not match a
control name, it becomes a general procedure.

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-47

Function Procedures
Visual Basic includes built-in, or intrinsic functions, like Sgr, Cos or Chr. In addition, you can use the Function
statement to write your own Function procedures.
The syntax for a Function procedureis:
[Private|Public] [Static] Function ProcedureName (FormalParameters) [As type]
statements
End Function

Like a Sub procedure, a Function procedure is a separate procedure that can take parameters, perform a series of
statements and change the value of its parameters. Unlike a Sub procedure, a Function procedure can return avalue to
the calling procedure. There are several differences between Sub and Function procedures:

o Generally, you call afunction by including the function procedure name and arguments on the right side of alarger
statement or expression (returnvalue = function()).

» Function procedures have data types, just as variables do. This determines the type of the return value. (In the absence
of an “As” clause, the type isthe default Variant type.)

« You return avalue by assigning it to the ProcedureName itself. When the Function procedure returns avalue, this
value can then become part of alarger expression.

 Although a Function procedure is allowed to alter the values of the Arguments in the call to the function, to allow a
function to do so is generally considered poor programming style. In most cases, a Function procedure should simply
return avalue without altering the values of any variables other than its own local variables. In addition, a Function
should not trigger any input or output operations. Function procedures that alter variables or that trigger 1/0
(input/output) operations are said to have side effects. Do not write Function procedures that have side effects! Use
Sub procedures instead!

« Sub procedures are used when it is necessary for a procedure to complete several tasks. Function procedures are used
when the only task required is to compute asingle value.

Examples Including Terminology

"The following function procedure returns the distance between two points
Private Function DistBetweenPoints (ByVal X1 As Double, ByVval Y1 As Double, Byval X2 _
As Double, ByVal Y2 As Double) As Double

DistBetweenPoints = Sqr(- (X2 — X1)™2 +/ (Y2 - YID)™2)
End Function

The keyword “ByVal” means
that the parameters are passed

“by value” Parameters declared Thevariablgsinthislist arecalledtheformal_ Thisiscalledthedefinition of the
using “ByVal” store copies of the parameters or simply the parameters of the function. function procedure.
values passed in the call of the
function. This protects any
variables in the call from being Thevaluesin the call that are passed to the formal parameters in the function definition are
altered accidentally. called the actual parameters or arguments of the function.

" The following is an example of a cadl to the above function. The distance between the
" points (1, 4) and (7-8, 9.9) is péturned and assigned to the variable "Dist"

Dim Dist As Double

Dist = DistBetweenPoints (1, 4, 7.8, 9.9)

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-48

A Function is like a Machine

e

[nputs _ Output
(Raw Materials) Function (Finished Product)
(Arguments) (Returned Value)

-

NOTE: Functions in programming are based on the concept of a mathematical function. For instance, when we write

f (x) = x? we mean that the “input” to the function is x and the output is x2. Although you probably have not encountered
any thus far in your education, it is possible to define functions of more than one variable. For instance, the function

f :R? > R defined by f (x, y) = x* + y* hastwo inputs x and y (which are both real numbers) and one output (which is
also areal numbey).

Exercises

1. Write afunction that takes two integer parameters (“Lowest” and “Highest”) and returns a pseudo-random integer
greater than or equal to “Lowest” and less than or equal to “Highest.”

2. Write afunction that returns the length of the hypotenuse of aright triangle given the lengths of the other two sides.

3. Try towrite afunction that calculates and returns the midpoint of aline segment. What difficulties do you encounter
while trying to write this function? See I:\Out\Nolfi\lcs3m0\Midpoint and Length for a solution to this problem.

4. What are the differences between general sub procedures and event sub procedures? How does Visual Basic detect
whether you are creating a general sub procedure or an event sub procedure?

5. What are the main differences between sub procedures and function procedures? Under what circumstances should
you use a function procedure and under what circumstances should you use a sub procedure? Provide specific
examples.

6. What are side effects and why should we always avoid writing functions that have side effects? If you write a
function procedure that has side effects, why should you consider rewriting it as a sub procedure?

7. Explain the difference between defining a procedure and calling a procedure.

8. Explain the difference between an intrinsic function and a programmer-defined function. While developing a piece
of software, how would you decide whether you need to create a procedure (sub or function) to complete a certain
task?

9. Explain the difference between formal parameters (parameters) and actual parameters (arguments).

10. Explain the difference between declaring a procedure to be Private and declaring a procedure to be Public. If you
neglect to specify Private or Public, which will Visual Basic use by default?

11. What is the purpose of the ByVal keyword in the formal parameter list of aVB procedure? Why isit wiseto use the
ByVal keyword for function procedure formal parameters?

12. Explain the differences between a control event and aform event.

13. Define “syntax” and “ parameter.”

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-49

Examples Showing the Differences between Function and Sub Procedures

An Example of a Sub Procedure

"Enable or disable groups of buttons
Private Sub EnableOrDisableButtonGroups(ByVal Enable As Boolean,

ByVval Operations As Boolean,

Dim 1 As Byte
I Numbers = True Then

ByVal Numbers As Boolean,
ByVaI Others As Boolean)

% The NolfiMator. Calculat..

Thbe AwlliNaton { Tessioas f.é’)

1

H

For 1 =0 To 9
cmdNumber (1) .Enabled = Enable
Next 1
End If
1T Operations = True Then Miscellaneous Buttons
For 1 =0 To 4
cmdOperation(l).Enabled = Enable
Next 1
End If
If Others = True Then Number Buttons
cmdDecimalPt.Enabled = Enable
cmdPlusMinus.Enabled = Enable
cmdCE.Enabled = Enable
End (I:$dEXP.Enabled Enable Operation Buttons
End Sub

ml-1-4-
- 2171
1Aaan

=
g

"An example of a call to the above sub procedure

Call EnableOrDisableButtonGroups(True, False, False, True)

Take note of the following features of the sub procedure shown above:

o severa different tasks are being performed, including many that affect several global objects
o the procedureiswritten in ageneral manner (i.e. it can complete a variety of different tasks depending on the values of the parameters)
o the“ByVal” keyword used in the declarations of the formal parametersis used to prevent this sub procedure from changing the values of

variablesin callsto the procedure
e Subsdo not return avalue

An Example of a Function Procedure
Option Explicit
Private Sub cmdConvert_Click()
IbINewNumber .Caption = "Number in new base: " &
ChangeBase (txtNumber. Text,

Val (txtOldBase.Text), Val(txtNewBase Text))

IbINewNumber .Visible =
End Sub

Private Sub cmdClose_Click()
Unload frmBaseConverter
End

End Sub

Private Sub txtNumber_Change()
txtOldBase.Text = "
txtNewBase.Text = """
IbINewNumber _Visible = False

End Sub

"""Number"'

True

is converted from "OldBase" to "NewBase"

i, Base Converter

Mumber: I

Original Bage: I

=lol |

MHew Bage: I

Corpeert | Close |

Private Function ChangeBase(ByVal Number As String, ByVal OldBase As Byte, ByVal NewBase As Byte) As String

Dim Remainder As Byte, Quotient As Byte, Pos As Byte,
Dim BaseTen As Double, NewNumber As String
Const Digits = "0123456789ABCDEF"
"Convert "Number"™ expressed in "OldBase'" to base 10
BaseTen = 0O
LenNum = Len(Number)
For Pos = 1 To LenNum
BaseTen = BaseTen + (InStr(Digits, UCase(Mid(Number,

Next Pos
"Convert '"BaseTen"
NewNumber = ****
Quotient =
Do

Remainder = Quotient Mod NewBase

Quotient = Int(Quotient / NewBase)

NewNumber = Mid(Digits, Remainder + 1, 1) & NewNumber
Loop Until Quotient = 0
ChangeBase = NewNumber

End Function

to "NewBase™

BaseTen

Copyright ©, Nick E. Nolfi

ICS3MO Essential Problem Solving Strategies for Programming

LenNum As Byte

Pos, 1))) - 1) * OldBase ™ (LenNum - Pos)

Take note of the following features of “ChangeBase”
e it does not directly access or alter any global variables or objects
e itreceivesall required data through its parameters

« all the code within the function exists for the ultimate purpose of
returning asingle value

e asingle String value is returned according to the value of
‘ChangeBase’ when the function halts its execution

EPSSP-50

REVIEW OF UNIT 2

Critically Important Problem Solving Strategies for Programming
1. Solve a specific example of the problem

2. Plan your solution in alogical, organized fashion

3. Break up alarge complex problem into several smaller, simpler problems

Additional General Problem Solving Strategies
1. Solve asimpler but related problem

2. Make reasonable, simplifying assumptions
3. Look for patterns
4. Draw diagrams

5. Do research to find out if anyone else has solved the problem

Important Programming Concepts

Complete each of the following diagrams.
1. Explain each concept

2. Explain the uses of each concept

3. Explain the advantages of each concept

Procedures

Subs

Event General

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming

Functions

EPSSP-51

—
ol =n
-
San

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-52

Generating Pseudo-Random Integers

To generate pseudo-random integers greater than or equal to “Lowest” and lessthan or equal to “Highest” usethe VB
expression
Int(Rnd*(Highest—-Lowest+1)+Lowest)

For example, the expression Int(Rnd*6+1) isused to generate a pseudo-random integer from 1 to 6 inclusive.

Integer Division and Remainder
\ — to obtain quotient of division of two integers Mod — to obtain remainder of division of two integers

These operators were very useful in the “Time Converter” and “Coins and Bills’ problems. In the grade 12 computer
science course, you will discover that these operations (/ and % respectively in C, C++, Java) are very useful in the
“Roman Converter” problem (convert between Arabic and Roman forms).

Sequence, Selection and Repetition

These are the main structures in programming. Any program that can be written will use some combination of these
three structures.

“If”” Statements

Structure to use when exactly ONE Group of Statements Structure to use when the Conditions are
is to be Selected and all others Rejected Independent of each other
If condition1 Then If condition1 Then
groupOfStatements1 Opls)t/atONE ‘?[f these gr(zggs groupOfStatements1
Elself condition2 Then | xooa oots SXECUEL oy 1 The structure shown in
i /2 uated Trom LCEu " this case should be used
groupOfStatements2 bottom, if conditionM is the If condition2 Then -
Elself condition3 Then first condition found to be groupOfStatements2 e litions are unral e
groupOfStatements3 Otfré‘e’ then . End If to one another. For
[nOTStatements ey If condition3 Then instance, whether
ex_ecuted and dll c_)t_hers a5 conditionl istrue has
rejected. If conditionM is groupOfStatements3 RGihing to do wil
. falsefor al values of M, End If e h dition2e R
Else whether condition2 an
then groupOfStatementsN oo
. " ,, i condition3 are true.
groupOfStatementsN (inthe “Else” clause) is
End If executed.

Data Types and Encoding Schemes

Integers (Whole Numbers) Floating Point Numbers Text Logical Values
8-bit
+ - %/, unsigned . +,—, *,/, | IEEE754
Byte ' \'\'Mod = ineger | Single A 32-bit
(binary)
16-bit signed
+,—,*,/, | integer (twos +, -, *,/, | IEEE754 . _ And, 16-bit
Integer \ A Mod | complement Double n 64-bit String & Unicode | Boolean Or. Not uns;gned
blnary) ’ Integer
32-hit signed
_ % i
Long +,—,*,/, | integer (twos

\, ", Mod | complement
binary)

Copyright ©, Nick E. Nalfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-53

Some Useful Intrinsic (Built-In) Functions
State the purpose of each of the following intrinsic functions.

vd

CStr

Trim

Format

Sgr

Important Terminology

Explain each of the following terms. In addition, provide an example of each. (Thefirst oneisdone for you.)

Term
Assignment Statement

Expression
Operator
Keyword
Data Type
Object

Event
Property
Method
Procedure
Sub Procedure

Function Procedure

Statement Continuation
Character

Compound Condition
Variable Declaration
DoEvents

Globa Variables
Local Variables

Parameters

Copyright ©, Nick E. Nalfi

Explanation
A statement in which avalue is assigned (given) to avariable.

ICS3MO Essential Problem Solving Strategies for Programming

Example
Ripoff GameConsole = "PS3"

EPSSP-54

	Essential Problem Solving Strategies for Programming– Table of Contents
	A Detailed Description of Polya’s Four steps of Problem Solving
	Important Background Knowledge
	Data (Information) – A Partial List of VB Data Types
	A Computer as a Data Processing Machine
	Some Useful Intrinsic (Built-In) Functions
	Important Points about Data Types
	Questions
	A Complete List of Visual Basic Data Types

	A VB Program that Processes Numeric Information
	Introduction
	Simple Addition Calculator Version 1.0
	A Pictorial Description of the Addition Calculator Program
	Questions

	A Closer Look at “Val” and “CStr”
	The “Val” Function
	The “CStr” Function

	A Program that Processes String (Text) Information
	Introduction
	The String (Text) Processing Example
	Extremely Important Questions

	How Computers make Decisions (Selections)
	Introduction to “If” Statements
	If Statement Details
	Picturing “If” Statements
	Exercises

	Another Program that Requires “If” Statements
	Questions

	Overview: Sequence, Selection and Repetition: The Underpinnings of Programming
	Sequence
	Selection
	Repetition
	Questions and Programming Exercises

	Using VB to Generate Pseudo-Random Numbers
	Introduction
	Why Pseudo?
	How to Generate Pseudo-Random Numbers in VB
	A General Expression for Generating Pseudo-Random Integers in VB
	Questions

	Applying Pseudo-Random Integers – An Enhanced Version of the Game of Greed
	Instructions
	Questions

	ICS3M0 - Review of First Half of Unit 2
	Data Types
	Using VB to Generate Pseudo-Random Numbers
	“If” Statements

	Problem Solving Strategy 1: Solve a Complex Problem by Investigating Specific Examples of the Problem
	Case Study 1: Time Converter Problem
	General Problem Statement
	Where Should I Begin?
	Questions
	Writing an Algorithm
	Exercises

	Time Converter VB Solution – Version 1
	A Review of the Basic Principles of Problem Solving
	George Polya’s Four Steps of Problem Solving
	Corresponding Steps in Software Development (Systems Analysis)
	A Review of how we applied the above Steps to the Time Converter Problem
	Time Converter Version One
	Code for Time Converter Version 1.0 Alpha
	Extensions of this Problem

	Case Study 2: Storage Space and Data Transfer Rate Unit Converter Problem
	Conversion Table (for Kilo=1024)
	Conversion Table (for kilo=1000)
	Exercises

	A Proposal to Avoid the Confusion caused by two Possible Meanings of “Kilo”
	Introduction
	A Description of “Kibibyte” from Wikipedia
	A Description of “Kibibyte” from FOLDOC
	A Description of “Kibibyte” from http://www.robinlionheart.com/stds/html4/glossary
	Questions

	Problems that can be Solved by Investigating Specific Examples
	Assignment
	Evaluation Guide for Question 1
	Evaluation Guide for Question 2 (Unit Conversion Program)

	Problem Solving Strategy 2: Plan your Solution in a Logical, Organized Fashion
	The Problem that you need to Solve
	Local Variables versus Global Variables
	The Plan
	Pizza Program Solutions and Questions
	The Problem
	The Plan
	The Code
	Questions

	Problem Solving Strategy 3: Break up Large, Complex Problems into a Series of Smaller, Simpler Problems
	The Infinite Loop of Software Development
	Some General Guidelines for Producing Great Code
	The Fraction Calculator Program
	Instructions
	Overall Plan
	Pseudo-Code
	Above Example done using Memory Map

	Using the Fraction Calculator Assignment to Learn How to Improve Existing Code (Part 1)
	Instructions

	Using the Fraction Calculator Assignment to Learn How to Improve Existing Code (Part 2)
	Instructions

	Using the Fraction Calculator Assignment to Learn How to Improve Existing Code (Part 3)
	Instructions

	Function Procedures and Sub Procedures – Technical Information
	Sub Procedures
	General Procedures
	Event Procedures

	Function Procedures
	Examples Including Terminology

	A Function is like a Machine
	Exercises

	Examples Showing the Differences between Function and Sub Procedures
	An Example of a Sub Procedure
	An Example of a Function Procedure

	Review of Unit 2
	Critically Important Problem Solving Strategies for Programming
	Additional General Problem Solving Strategies
	Important Programming Concepts
	Generating Pseudo-Random Integers
	Integer Division and Remainder
	Sequence, Selection and Repetition
	“If” Statements
	Data Types and Encoding Schemes
	Some Useful Intrinsic (Built-In) Functions
	Important Terminology

