
Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-1

ESSENTIAL PROBLEM SOLVING STRATEGIES FOR PROGRAMMING– TABLE OF CONTENTS
ESSENTIAL PROBLEM SOLVING STRATEGIES FOR PROGRAMMING– TABLE OF CONTENTS 1

A DETAILED DESCRIPTION OF POLYA’S FOUR STEPS OF PROBLEM SOLVING ... 4

IMPORTANT BACKGROUND KNOWLEDGE ... 5

DATA (INFORMATION) – A PARTIAL LIST OF VB DATA TYPES .. 5
A Computer as a Data Processing Machine .. 5
Some Useful Intrinsic (Built-In) Functions .. 5
Important Points about Data Types ... 6
Questions .. 6
A Complete List of Visual Basic Data Types .. 7

A VB PROGRAM THAT PROCESSES NUMERIC INFORMATION ... 8
Introduction .. 8
Simple Addition Calculator Version 1.0 ... 8
A Pictorial Description of the Addition Calculator Program .. 8
Questions .. 9

A CLOSER LOOK AT “VAL” AND “CSTR” ... 10
The “Val” Function.. 10
The “CStr” Function .. 10

A PROGRAM THAT PROCESSES STRING (TEXT) INFORMATION ... 11
Introduction .. 11
The String (Text) Processing Example ... 11
Extremely Important Questions .. 12

HOW COMPUTERS MAKE DECISIONS (SELECTIONS) ... 14
Introduction to “If” Statements .. 14
If Statement Details .. 14
Picturing “If” Statements ... 15
Exercises .. 15
General Structure of an If Statement .. 15

ANOTHER PROGRAM THAT REQUIRES “IF” STATEMENTS .. 17
Questions .. 17

OVERVIEW: SEQUENCE, SELECTION AND REPETITION: THE UNDERPINNINGS OF PROGRAMMING ... 18
Sequence ... 18
Selection ... 18
Repetition ... 18
Questions and Programming Exercises ... 18

USING VB TO GENERATE PSEUDO-RANDOM NUMBERS .. 20
Introduction .. 20
Why Pseudo? .. 20
How to Generate Pseudo-Random Numbers in VB .. 20
A General Expression for Generating Pseudo-Random Integers in VB ... 21
Questions .. 21

APPLYING PSEUDO-RANDOM INTEGERS – AN ENHANCED VERSION OF THE GAME OF GREED .. 22
Instructions ... 22
Questions .. 22

ICS3M0 - REVIEW OF FIRST HALF OF UNIT 2 ... 23

DATA TYPES .. 23
USING VB TO GENERATE PSEUDO-RANDOM NUMBERS .. 25
“IF” STATEMENTS .. 25

PROBLEM SOLVING STRATEGY 1: SOLVE A COMPLEX PROBLEM BY INVESTIGATING SPECIFIC EXAMPLES
OF THE PROBLEM ... 26

CASE STUDY 1: TIME CONVERTER PROBLEM... 26
General Problem Statement ... 26
Where Should I Begin? ... 26
Questions .. 26
Writing an Algorithm .. 26
Exercises .. 26

TIME CONVERTER VB SOLUTION – VERSION 1 .. 27

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-2

A Review of the Basic Principles of Problem Solving .. 27
George Polya’s Four Steps of Problem Solving ... 27
Corresponding Steps in Software Development (Systems Analysis) ... 27
A Review of how we applied the above Steps to the Time Converter Problem ... 27
Time Converter Version One .. 27
Code for Time Converter Version 1.0 Alpha .. 28
Extensions of this Problem ... 29

CASE STUDY 2: STORAGE SPACE AND DATA TRANSFER RATE UNIT CONVERTER PROBLEM ... 30
Conversion Table (for Kilo=1024) ... 31
Conversion Table (for kilo=1000) .. 31
Exercises .. 31

A PROPOSAL TO AVOID THE CONFUSION CAUSED BY TWO POSSIBLE MEANINGS OF “KILO” ... 32
Introduction .. 32
A Description of “Kibibyte” from Wikipedia ... 32
A Description of “Kibibyte” from FOLDOC ... 32
A Description of “Kibibyte” from http://www.robinlionheart.com/stds/html4/glossary .. 32
Questions .. 32

PROBLEMS THAT CAN BE SOLVED BY INVESTIGATING SPECIFIC EXAMPLES .. 33
ASSIGNMENT ... 33

Evaluation Guide for Question 1 .. 33
Evaluation Guide for Question 2 (Unit Conversion Program) .. 34

PROBLEM SOLVING STRATEGY 2: PLAN YOUR SOLUTION IN A LOGICAL, ORGANIZED FASHION 35

THE PROBLEM THAT YOU NEED TO SOLVE ... 35
LOCAL VARIABLES VERSUS GLOBAL VARIABLES .. 35
THE PLAN .. 36
PIZZA PROGRAM SOLUTIONS AND QUESTIONS ... 37

The Problem ... 37
The Plan ... 37
The Code .. 38
Questions .. 38

PROBLEM SOLVING STRATEGY 3: BREAK UP LARGE, COMPLEX PROBLEMS INTO A SERIES OF SMALLER,
SIMPLER PROBLEMS .. 39

THE INFINITE LOOP OF SOFTWARE DEVELOPMENT .. 39
SOME GENERAL GUIDELINES FOR PRODUCING GREAT CODE .. 39
THE FRACTION CALCULATOR PROGRAM ... 40

Instructions ... 40
Overall Plan ... 40
Pseudo-Code .. 40
Above Example done using Memory Map .. 40

USING THE FRACTION CALCULATOR ASSIGNMENT TO LEARN HOW TO IMPROVE EXISTING CODE (PART 1) 41
Instructions ... 41

USING THE FRACTION CALCULATOR ASSIGNMENT TO LEARN HOW TO IMPROVE EXISTING CODE (PART 2) 43
Instructions ... 43

USING THE FRACTION CALCULATOR ASSIGNMENT TO LEARN HOW TO IMPROVE EXISTING CODE (PART 3) 45
Instructions ... 45

FUNCTION PROCEDURES AND SUB PROCEDURES – TECHNICAL INFORMATION ... 47

SUB PROCEDURES .. 47
General Procedures ... 47
Event Procedures ... 47

FUNCTION PROCEDURES .. 48
Examples Including Terminology ... 48

A FUNCTION IS LIKE A MACHINE ... 49
Exercises .. 49

EXAMPLES SHOWING THE DIFFERENCES BETWEEN FUNCTION AND SUB PROCEDURES ... 50
An Example of a Sub Procedure ... 50
An Example of a Function Procedure .. 50

REVIEW OF UNIT 2 .. 51

CRITICALLY IMPORTANT PROBLEM SOLVING STRATEGIES FOR PROGRAMMING ... 51
ADDITIONAL GENERAL PROBLEM SOLVING STRATEGIES .. 51
IMPORTANT PROGRAMMING CONCEPTS ... 51
GENERATING PSEUDO-RANDOM INTEGERS.. 53
INTEGER DIVISION AND REMAINDER ... 53
SEQUENCE, SELECTION AND REPETITION ... 53
“IF” STATEMENTS .. 53
DATA TYPES AND ENCODING SCHEMES ... 53
SOME USEFUL INTRINSIC (BUILT-IN) FUNCTIONS .. 54
IMPORTANT TERMINOLOGY ... 54

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-3

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-4

A DETAILED DESCRIPTION OF POLYA’S FOUR STEPS OF PROBLEM SOLVING

1. UNDERSTAND THE PROBLEM (DEFINE THE PROBLEM)

□ Carefully read the problem several times.
□ Identify what you are being asked to find.
□ Ensure that you understand all terminology.
□ Highlight all given information.
□ Identify all the information that is required to solve the problem.
□ Identify the given information that is required to solve the problem.
□ Identify any extraneous information (information that is not needed).
□ Identify any missing information.
□ Do research to find or estimate any missing information.
□ Keep an open mind.
□ Do not make any unnecessary or incorrect assumptions.
□ Think logically and creatively!
□ Consult colleagues, peers, experts, etc.
□ Do not worry about possible strategies yet.
□ Predict what a reasonable answer or range of answers would be.

2. CHOOSE A STRATEGY

□ Unleash your creative powers! Be imaginative!
□ Do not be afraid to take risks!
□ Do not dismiss any ideas at this stage. Feel free to be whacky!
□ Avoid feelings of frustration or inadequacy.
□ Do not give up quickly!
□ If you have the desire to quit, take a break and try solving the problem later.
□ Do not be afraid to be unconventional. Perhaps you are correct and everyone else is wrong!
□ Draw a diagram or visualize.
□ Compare the problem to an equivalent or similar problem that you have already solved.
□ Compare the problem to a simpler but related problem.
□ Solve a specific example of the problem.
□ Look for patterns.
□ Write a list of as many possible strategies as you can.
□ Do research to discover if anyone else has solved the problem.

3. CARRY OUT THE STRATEGY

□ Check your list of strategies and select one that you think is likely to work.
□ Carry out your strategy logically and carefully, paying close attention to detail.
□ If your strategy fails, return to steps 1 and 2.

4. CHECK THE SOLUTION

□ Is your answer reasonable?
□ Does your answer agree with the prediction you made in step 1?
□ Does your answer agree with the answers obtained by others?
□ Is there a better way to solve the problem?
□ Ask peers, colleagues, etc to check your solution.

IMPORTANT BACKGROUND KNOWLEDGE

Data (Information) – A Partial List of VB Data Types
A computer can be viewed as a data processing machine. Since data can be categorized into various forms that require
differing amounts of memory and different types of operations, programming languages offer diverse data types. A
summary of the most commonly used types of data studied in this course is given in the following diagram.

Data

Numeric Text Logical

Integers Floating Point Numbers

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-5

Fixed Point
Numbers

Byte
(1 byte
storage)

Integer
(2 bytes storage)

Long
(4 bytes storage)

Single
(4 bytes storage)

Double
(8 bytes storage)

Currency
(8 bytes storage)

String
(10 bytes +

string length
storage)

Boolean
(2 bytes storage)

0 … 28 – 1

(0 … 255)

–215 … 215 – 1

(−32768…
32767)

–231 … 231 – 1

(−2147483648
…2147483647)

–3.402823E38 …
–1.401298E–45

for negative values
1.401298E–45 …
3.402823E38 for
positive values
(7 significant

digits)

–1.79769313486232E308 …
–4.94065645841247E–324

for negative values

4.94065645841247E–324 …
1.79769313486232E308 for

positive values
(15 significant digits)

–922,337,203,685,477.5808
…

922,337,203,685,477.5807

Used to store money
values.

Used to
store text

information.

True False

A Computer as a Data Processing Machine

Some Useful Intrinsic (Built-In) Functions
• Val Converts a string value to a numeric value e.g. Val ("23.47") → 23.47

• CStr Converts any value to a string value e.g. CStr (23.47) → "23.47"

• Sqr Returns the square root of any non-negative numeric value e.g. Sqr (100) → 10

• Chr Converts an ASCII (ANSI) value to its corresponding character e.g. Chr (122) → "z"

• Asc Returns the ASCII (ANSI) value of a character e.g. Asc ("z") → 122

• Trim Remove all leading and trailing blank spaces from a string e.g. Trim(" Ashley Walsh ") → "Ashley Walsh"

Input
e.g. text box,

InputBox

Processing
e.g. +, −, *, /,
CStr, Val, Sqr

Output
e.g. text box,

MsgBox, label

+, −, *, /, ^, S &,
Left,

Right,
Mid,
…

And,
Or,
Not.
…

qr, …

Memory
e.g. variables,

files

Important Points about Data Types
• Although computer circuits can process only the binary values 0 and 1, programs need to process a wide variety of

types of data including numbers, text and logical values (i.e. values that are either true or false).
• Encoding schemes are used to give a meaning to raw binary data. That is, encoding schemes use binary numbers to

represent information. See the table below for a few common examples of encoding schemes.
• Variables need to be declared so that both of the following are known:

 Amount of Memory Required
 Encoding Scheme that should be used to interpret the Raw Binary Data

The following table gives several examples of commonly used encoding schemes.

Type of
Data

Name of Encoding
Scheme

Memory
Required

Examples
Raw Binary Data Stored in RAM What the Raw Binary Data Represent

Bits and Bytes
1 bit = 1 binary digit

1 Byte = 8 bits (1 B = 8 b)

Integer
(Integer
in VB)

16-bit Twos
Complement 2 bytes 0111111111111111 32767

String
(Text) Unicode 2 bytes 0111111111111111

Integer

(Long in
VB)

32-bit Twos
Complement 4 bytes 11000011100110001101000000000000 −1013395456

Floating
Point

(Single
in VB)

32-bit IEEE754 4 bytes 11000011100110001101000000000000 −305.625

Questions
1. Why do programming languages offer so many different data types?

2. Visit www.unicode.org and find the Unicode hexadecimal (base 16) code for each of the following characters. Then
use a Web-based converter or the Windows calculator to convert to binary. (Windows calculator must be in
“Scientific” view.)
(a) (Hiragana, Japanese) Hex code: Binary code:

(b) (Gujarati, Indic) Hex code: Binary code:

3. Now interpret the codes that you found in question 2 as 16-bit integers. Convert each code from binary form to
decimal form. Again, you may use a Web-based converter or the Windows calculator.

4. Without an encoding scheme, does raw binary data have any meaning?

5. Complete the following table:
Standard Form Scientific Notation Scientific Notation (Programming Format)

23400000 2.34×107 2.34E7

 9.10938188×10−31 kg
(mass of an electron)

 1.99×1030 kg
(mass of sun)

 1.79769313486232E308
(largest Double value in VB)

0.000000475 m
(wavelength of blue light)

0.000000045 m
(distance between conductors in a CPU,
known as the fabrication process size)

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-6

http://www.unicode.org/

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-7

A Complete List of Visual Basic Data Types
A computer can be viewed as a data processing machine. Since data can be categorized into various forms that require differing amounts of memory, designers of programming languages separate data into
diverse types. A complete list of all the types of data available in VB is given in the following diagram.

Data

Variant

 Numeric

A Variant variable can be used to store data of any type. However, as always,
there is a price to be paid! Variant variables use up a great deal of memory, so
they should be used sparingly. Whenever the data type of a variable is known
beforehand, a specific type such as Integer should be used. This reduces memory
requirements, which in turn improves the overall efficiency of a program.

Any Object
reference

Object
(4 bytes of

storage)

Integers Floating Point Numbers Fixed Point Numbers Text Logical

Byte
(1 byte of
storage)

Integer
(2 bytes of

storage)

Long
(4 bytes of

storage)

Single
(4 bytes of storage)

Double
(8 bytes of storage)

Decimal
(14 bytes of storage)

Currency
(8 bytes of storage)

String
(10 bytes + string length

of storage)

Boolean
(2 bytes of

storage)

Date

January 1, 100 to
December 31, 9999

(8 bytes of storage)

True False Used to store text
information.

Used to store money values.

-922,337,203,685,477.5808
to

922,337,203,685,477.5807

Note: In VB6, variables cannot be declared as type
“Decimal.” However, the CDec intrinsic function
can be used to convert a given numeric type to type
“Decimal.”

+/-7.9228162514264337593543950335 with
28 places to the right of the decimal;

+/-79,228,162,514,264,337,593,543,950,335
with no decimal point;

smallest non-zero number is
+/-0.0000000000000000000000000001

4.94065645841247E –324
to 1.79769313486232E308

for positive values

–1.79769313486232E308
to

–4.94065645841247E–324
for negative values

(15 significant digits)
(7 significant digits)

–3.402823E38 to
–1.401298E –45 for

negative values

1.401298E –45 to
3.402823E38 for
positive values

–231 … 231 – 1 –215 … 215 – 1 0 … 255

A VB Program that Processes Numeric Information
Introduction
In the first unit of this course we focused entirely on programs that generate artistic designs using lines, circles and other
shapes. Although these programs produced a dazzling output, they did not process a wide variety of data. Now we shall
begin examining how we can use VB to create programs that process all sorts of different kinds of data. The first example
deals with the processing of numeric data.
Simple Addition Calculator Version 1.0
The following is a portion of the code for the “Simple Addition Calculator Version 1.0” program. You can find the
complete program in the folder I:\Out\Nolfi\Ics3mo\Simple VB Examples\Addition Calculator. Study the program
and the following notes. Then complete the questions at the end of this section.

A Pictorial Description of the Addition Calculator Program
1. The first statement in the “cmdAdd_click” sub is called a variable declaration. It is used to state the name and type of

variables. The diagram below shows the effect of this statement on RAM (main memory).

Force Variable Declarations

The numeric variables are declared
as type “Double” to allow both

whole and “non-whole” numbers to
be processed.

These are assignment statements
that give values to the numeric

variables “Number1” and
“Number2.” The values are read
from text boxes in “String” form,

converted to numeric form by using
the “Val” function and then stored

in “Double” form using the variable
names “Number1” and “Number2.”

The values of the variables
“Number1” and “Number2” are

recalled from RAM (main memory)
and added. The result is stored in

RAM using the variable name
“Sum.”

The value of the variable “Sum” is recalled
from RAM (main memory). It is converted
from numeric form (Double) to text form
(String) and then assigned to the “Text”

property of the “txtSum” text box. The “Text”
property is itself a variable, which means that

its value is stored in RAM.

RAM
Number1 Number2 Sum

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-8

 … …

8 bytes reserved in RAM for “Number1” 8 bytes reserved in RAM for “Number2” 8 bytes reserved in RAM for “Sum”

2. The next two statements are used to get input from the user.

3. The next statement actually calculates the sum of the two numbers entered by the user.

4. Finally, the output is displayed by setting the value of the “Text” property of “txtSum” equal to the value of “Sum.”

(The value of “Sum” must first be converted to String (text) form before it can be assigned to the “Text” property of
“txtSum.”)

Questions
1. Load the addition calculator program from I:\Out\Nolfi\Ics3mo\Simple VB Examples\Addition Calculator. Edit the

code by deleting the “Val” function. For example, use the statement “Number1 = txtNumber1.Text” instead of
“Number1 = Val(txtNumber1.Text).” Then run the program and experiment by entering both numeric and
non-numeric values. What happens when you enter non-numeric values? Does this problem still occur if you use the
“Val” function?

2. Modify the addition calculator program in such a way that it is also able to perform subtraction, multiplication and
division. Note: It is important that you use terminology correctly. “Sum” refers to the quantity obtained by adding a
group of numbers. You should use the terms difference, product and quotient for subtraction, multiplication and
division respectively.

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-9

RAM
Sum

57
.
.
.

txtSum.Text
"57"
.
.
.

CStr
Converts from

numeric form to
String form.

RAM
Number1 Number2 Sum

12 … 45 … 57
.
.
.

.
.
.

12 + 45 = 57

CPU

RAM
Number1 Number2

12 … 45

Val
Converts from
String form to
numeric form.

.

.

.

.

.

.
txtNumber1.Text txtNumber2.Text

"12" … "45"
.
.
.

.
.

Val
Converts from
String form to
numeric form.

.

A Closer Look at “Val” and “CStr”
The “Val” Function
As we have learned, the “Val” function is used to convert a string value to a numeric value. As the examples below
show, the “Val” function scans the given string character-by-character from left to right. As soon as a non-digit is found
or the end of the string is reached, Val halts its search and returns its result. The result is the numeric value of the string,
represented using an appropriate numeric encoding scheme.

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-10

The “CStr” Function
The “CStr” function is used to convert any value to a string value. The “CStr” function always returns a string consisting
of Unicode characters. Some examples are shown below.

CStr

Boolean Passed to “CStr”
False

VB Boolean Representation
0000000000000000

String Returned by “CStr”
"False"

Binary Unicode Representation
00000000010001100000000001100001000000000110110000000000011100110000000001100101

CStr

Number Passed to “CStr”
52

Binary 32-Bit Integer Representation
00000000000000000000000000110100

String Returned by “CStr”
"52"

Binary Unicode Representation
00000000001101010000000000110010

CStr

Number Passed to “CStr”
12

Binary 16-Bit Integer Representation
0000000000001100

String Returned by “CStr”
"12"

Binary Unicode Representation
00000000001100010000000000110010

Val

String Passed to “Val”
"BUS"

Binary Unicode Representation
000000000100001000000000010101010000000001010011

Number Returned by “Val”
0

Binary 16-Bit Integer Representation
0000000000000000

Val

String Passed to “Val”
"52×"

Binary Unicode Representation
000000000011010100000000001100100000000011010111

String Passed to “Val” Number Returned by “Val”
"12" 12 Val Binary Unicode Representation Binary 16-Bit Integer Representation

Number Returned by “Val”
52

Binary 16-Bit Integer Representation
0000000000110100

00000000001100010000000000110010 0000000000001100

A Program that Processes String (Text) Information
Introduction
The main purpose of the previous programming example was to show how a computer can process numeric information
using mathematical operations. The following example shows how computers can process text (e.g. words, addresses,
phone numbers, etc).

In the first unit of this course, we encountered the idea of a numeric constant. If, for example, we needed to draw several
circles with a constant radius of 10 units, we could use a statement such as

Me.Circle (X, X), 10

The example given below will introduce the ideas of string variables and string constants. String variables work in much
the same way as any other variables. The only difference is that they are declared as type “String” instead of some
numeric type. String constants, on the other hand, look very different from numeric constants. As you will see in the
following example, string constants are always enclosed in quotation marks.

Numeric Constant Numeric Variable

The String (Text) Processing Example
You will find the following program in the folder

I:\Out\Nolfi\Ics3mo\Example Programs\Simple VB Examples\Friendly Message
Load the program, experiment with it and study its code. Then answer the questions on the next page.

This operator is called the string concatenation operator. Its
purpose is to create a new string by joining one string to

another. Although the symbol “&” is called the “ampersand”
and it is often used as an abbreviation of the word “and,” its

meaning in VB is entirely unrelated to the word “and.”

This combination of a space followed by an underscore is
used in VB to spread out very long statements over two or

more lines of code.

String Variable String Constant

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-11

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-12

Extremely Important Questions
1. The first statement in every VB program should be “Option Explicit.” What is its purpose? How does it help

you to debug your programs? What can go wrong if you forget to include it?

2. An apostrophe (single quotation mark) is used to begin certain statements in VB. (The word “Rem” can also be used to
begin this type of statement.) What are such statements called? What is their purpose? How does the computer
process such statements? How can these statements be used to remove a statement from a program without deleting it?

3. A “Sub” is a program subroutine, that is, a portion of a program that is named so that it can be accessed whenever
needed. The “Sub” shown above is automatically named “cmdMessage_Click” when you double click the
“cmdMessage” command button. Explain how VB determines this name.

4. The statement “Dim UserName As String” is used to declare the variable “UserName.” The name of the

variable being declared is ________________ . Its type is _________________, which means that it is used to store

______________________ information. Declaring variables helps programmers to ___________________ their

programs, allows an operating system to determine how much ___________________ is needed to store the values of

the variables and which ______________________ scheme to use, and it helps to determine which ________________

can be used to process information of a given __________.

5. The statement “UserName = Trim(txtName.Text)” is called an assignment statement because it is used to

assign (give) a value to a variable. Complete the following:

Name of the variable being assigned a value: ___

Name of the object from which a property is being used in the assignment statement __________________________

Name of the property whose value is being assigned to the variable: _______________________________________

Purpose of the “Trim” intrinsic (built-in) function: ___

__

6. Explain the difference between the name of a variable and the value of a variable. Give an example to illustrate your
answer.

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-13

7. Explain the difference between the name of an object and the name of a variable. Give an example to illustrate your
answer.

8. What is the purpose of the “&” operator? What is it called? To what type of data does it apply? Why is it
inappropriate to call it an “and” or an “ampersand” in the context of VB?

9. What is the purpose of quotation marks in VB programs? What will happen if you forget to use quotation marks
when they are needed? What will happen if you use quotation marks when they are not needed?

10. What is the purpose of using a space followed by an underscore? Why is this useful?

How Computers make Decisions (Selections)
Introduction to “If” Statements
So far we have only considered programs in which the next statement to be executed immediately follows the previously
executed statement. However, there are many circumstances under which the next statement to be executed will depend
on a user action, a system event or some other unpredictable occurrence. In such cases, programs must select a statement
or a group of statements and reject others. In VB this is accomplished through “If” statements. Study the following
program carefully. It can be found in the folder

 I:\Out\Nolfi\Ics3m0\Simple VB Examples\Friendly Message - Sneaky Version

“LCase” is an intrinsic function that
converts a string to lower case. “UCase”
converts a string to upper case.

Indentation Margin Lines

If Statement Details

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-14

If statements are used in programs to make decisions or selections. The rules for If statements are as follows:

• If statements begin with the word If and end with the words End If
• There must be exactly one If and one End If
• There may be zero or more ElseIf clauses. ElseIf clauses must follow If and precede Else.
• Both If and ElseIf clauses must have a condition and must have the keyword Then.
• There may be zero Else clauses or one Else clause. Else must follow If and ElseIf, and Else must not have a condition

or the keyword Then. Else means “if all else fails.”

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-15

Picturing “If” Statements
The following diagram can be useful in understanding the flow of information during the execution of an “If” statement is
executed. “If” statements are a lot like travelling along a path and suddenly reaching a “fork.” When this happens, a
decision needs to be made.

Exercises
1. Write a program that allows a user to enter a mark in an input box. The program then displays “Congratulations you

have PASSED,” or “Sorry, you have FAILED” in a label depending on whether the mark is greater than or equal to 50
or less than 50.

2. Most universities in North America use a grading system known as the GPA (grade point average) system. It is
summarized in the table given below.

Percentage Grade Grade Point Score
85% − 100% 4.0
80% − 84% 3.7
77% − 79% 3.3
74% − 76% 3.0
70% − 73% 2.7
67% − 69% 2.3
64% − 66% 2.0
60% − 63% 1.7
57% − 59% 1.3
54% − 56% 1.0
50% − 53% 0.7
0% − 49% 0.0

Write a VB program that displays the grade point score given the percentage grade. In addition, your program should
display an error message for invalid percentage grades (i.e. grades lower than 0% or higher than 100%).

After I finish high school, should I go to
university, college or find a job?

University is Chosen College is Chosen Job is Chosen

Apply to Universities Apply to Colleges Apply for Jobs

{
• There must be exactly one If.

• There may be zero or more
ElseIf clauses.

• There may be zero or one Else
clauses.

• There must be exactly one
End If (to mark the end of the
selection structure).

• A condition is formed by using
conditional operators such as
=, <, >, <=, >=, < >, Is and Like.

e.g. If Age >= 19 Then

• Conditions can be combined by
using logical operators such as
And, Or and Not.

• The term statements refers to any
group of valid VB statements.
Notice that the statements are
further indented one TAB within
If statements. The statements
that begin with If, ElseIf and
Else are NOT indented further.

General Structure of an
If Statement

If condition Then
 statements
ElseIf condition Then
 statements

.

.

.
ElseIf condition Then
 statements
Else
 statements
End If

For a solution to this problem, see

I:\Out\Nolfi\Ics3m0\GPA Solution

3. Copy the contents of the folder I:\Out\Nolfi\Ics3m0\If Statement Example – Date to your “g:” drive. Within this
folder you will find a VB project file called “Date.vbp.” Load the “Date.vbp”
project and experiment with it for a few minutes. You will discover that three
combo boxes are used to allow the user to select the month, day and year. (A
combo box combines the functionality of a text box with that of a list box.)

When you examine the VB code for this project, it may look very complicated
to you. Please do not be discouraged by the appearance of the code! All you
need to do is write the code for the command button. That is, you must write
code that takes the date given by the values stored in the combo boxes and
converts it to the format DD/MM/YY (2 digits for the day, 2 digits for the
month and four digits for the year).

Note: Although it is not required at this point, students who are confident enough may wish to study the code given in
this project. Since this program contains a plethora of new ideas to explore, it is possible to learn a great deal from it!

4. Here is the game of GREED v1.0. The player clicks New
Game and then the dice are allowed to roll. The idea of the
game is to make as much money as possible.

Your FIRST roll is recorded and if at any time during the
game you roll that number again, you lose everything. Each
time you click ROLL, and the roll is not the same as the
FIRST roll, you double your money. You can click STOP at
any time and you keep the money you have earned.

Use the following code to generate two random integers
between 1 and 6 and store the results using the variable names
“Die1” and “Die2.” How this code works will be explained
later in the unit.

Die1 = Int(Rnd*6+1)
Die2 = Int(Rnd*6+1)

You can find a very sophisticated solution to this problem in
the folder
I:\OUT\Nolfi\Ics3m0\Game of Greed - Enhanced Version

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-16

Another Program that Requires “If” Statements

The “Area Calculator” program can be found in I:\Out\Nolfi\Ics3m0\Area Calculator. Load this program and study the
code carefully. Notice that an “If” statement is used to determine the shape that has been selected by the user.
Private Sub cmdGo_Click()

If optRectangle.Value = True Then
 frmChosenShape.imgShape.Picture=imgRectangle.Picture
 frmChosenShape.Caption = "Area of Rectangle"
 frmChosenShape.lblDimension1.Visible = True
 frmChosenShape.lblDimension2.Visible = True
 frmChosenShape.lblDimension3.Visible = False
 frmChosenShape.lblDimension1.Caption = "l="
 frmChosenShape.lblDimension2.Caption = "w="

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-17

 frmChosenShape.lblDimension3.Caption = ""
 frmChosenShape.txtDimension1.Visible = True
 frmChosenShape.txtDimension2.Visible = True
 frmChosenShape.txtDimension3.Visible = False
 frmChosenShape.Show
ElseIf optParallelogram.Value = True Then
 frmChosenShape.imgShape.Picture = imgParallelogram.Picture
 frmChosenShape.Caption = "Area of Parallelogram"
 frmChosenShape.lblDimension1.Visible = True
 frmChosenShape.lblDimension2.Visible = True
 frmChosenShape.lblDimension3.Visible = False
 frmChosenShape.lblDimension1.Caption = "b="
 frmChosenShape.lblDimension2.Caption = "h="
 frmChosenShape.lblDimension3.Caption = ""
 frmChosenShape.txtDimension1.Visible = True
 frmChosenShape.txtDimension2.Visible = True
 frmChosenShape.txtDimension3.Visible = False
 frmChosenShape.Show
ElseIf optTriangle.Value = True Then
 frmChosenShape.imgShape.Picture=imgTriangle.Picture
 frmChosenShape.Caption = "Area of Triangle"
 frmChosenShape.lblDimension1.Visible = True
 frmChosenShape.lblDimension2.Visible = True
 frmChosenShape.lblDimension3.Visible = False
 frmChosenShape.lblDimension1.Caption = "b="
 frmChosenShape.lblDimension2.Caption = "h="
 frmChosenShape.lblDimension3.Caption = ""
 frmChosenShape.txtDimension1.Visible = True
 frmChosenShape.txtDimension2.Visible = True
 frmChosenShape.txtDimension3.Visible = False
 frmChosenShape.Show

ElseIf optCircle.Value = True Then
 frmChosenShape.imgShape.Picture=imgCircle.Picture
 frmChosenShape.Caption = "Area of Circle"
 frmChosenShape.lblDimension1.Visible = False
 frmChosenShape.lblDimension2.Visible = True
 frmChosenShape.lblDimension3.Visible = False
 frmChosenShape.lblDimension1.Caption = ""
 frmChosenShape.lblDimension2.Caption = "r="
 frmChosenShape.lblDimension3.Caption = ""
 frmChosenShape.txtDimension1.Visible = False
 frmChosenShape.txtDimension2.Visible = True
 frmChosenShape.txtDimension3.Visible = False
 frmChosenShape.Show
ElseIf optTrapezoid.Value = True Then
 frmChosenShape.imgShape.Picture=imgTrapezoid.Picture
 frmChosenShape.Caption = "Area of Trapezoid"
 frmChosenShape.lblDimension1.Visible = True
 frmChosenShape.lblDimension2.Visible = True
 frmChosenShape.lblDimension3.Visible = True
 frmChosenShape.lblDimension1.Caption = "a="
 frmChosenShape.lblDimension2.Caption = "b="
 frmChosenShape.lblDimension3.Caption = "h="
 frmChosenShape.txtDimension1.Visible = True
 frmChosenShape.txtDimension2.Visible = True
 frmChosenShape.txtDimension3.Visible = True
 frmChosenShape.Show
Else
 MsgBox "Please select one of the shapes before clicking 'Go!'", vbExclamation
End If

End Sub

Questions
1. The area calculator program uses two forms, one that is used to select the shape and another that is used to allow the

user to enter the dimensions of the shape. How is this accomplished?
2. Once the user chooses a shape and clicks “Go,” another form is displayed to allow the user to enter the dimensions of

the shape. How would you prevent the user from returning to the original form (the parent form) unless the new form
(the child form) is first closed?

Overview: Sequence, Selection and Repetition: The Underpinnings of Programming

Sequence Selection Repetition

Instructions are executed (carried out) in
sequence (in order, one after the other). All
statements are executed exactly once; none
of the statements is omitted.

Example

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-18

' Friendly greeting program
Option Explicit

Private Sub cmdPressMe_Click()
 'Memory
 Dim FirstName As String

 'Input
 FirstName = Trim(txtName.Text)

 'Processing and Output
 lblGreeting.Visible = True
 lblGreeting.Caption = "Have a " & _

 "nice day " & FirstName & "."
End Sub

Based on a condition or a set of conditions,
certain statements are selected while others
are rejected. The idea of selection should
be used whenever your program needs to
make a decision.

Example
' Whic number
Option Explicit

h is larger?

Private Sub cmdLarger_Click()
 mory 'Me
 Dim Num1 As Double, Num2 _
 As Double, _
 Larger As Double

 'Input
 Num1 = Val(txtNum1.Text)
 Num2 = Val(txtNum2.Text)

 'Processing
 If Num1 > Num2 Then
 Larger = Num1
 Else
 ger = Num2 Lar
 End If

 'Output

End Sub

lblLarger.Caption = CStr(Larger)

Whenever your program needs to
repeat certain instructions two or more
times, the concept of repetition
(looping) is used. Many different types
of loops can be constructed, depending
on the particular situation.

Example
' Program to add the cubes of
' the numbers from 1 to 5

Option Explicit

Private Sub cmdSumOfCubes_Click()
 mor'Me y
 Dim I As Byte
 Dim Total As Double

 'Processing
 Total = 0

 'I is called a loop counter
 'variable

 For I = 1 To 5
 Total = Total + I ^ 3
 Next I

 'Output
 lblSum.Caption = CStr(Sum)

End Sub

Questions and Programming Exercises
1. What is the purpose of the statement continuation character?

2. Why is it important to indent programs properly?

3. Explain the terms sequence, selection and repetition.

4. Define the term underpinning.

5. To understand the example of repetition given above, it is very helpful to trace the execution of the program by using
something called a memory map. A memory map is simply a table that displays the changing values of variables.
Complete the memory map shown below.

I I^3 Total
0 0 0
1 1 1
2 8 9
3
4
5
6

Notice the indentation used in these programs. Although your programs will
work without proper indentation, they will be extremely difficult to read,
understand and debug. The rules of indentation are simple and must be
observed by all students. Failing to indent properly will result in a significant
loss of marks. RULES OF INDENTATION: Indent one tab space within subs, if
statements and loops (more details will be given in subsequent examples).

Very long VB statements are easier to
read if they are broken up into two or
more physical lines. To do this, use

the statement continuation
character “ _” (a space followed by

an underscore).

{
Each of these
Rows Shows

Values of
Variables
after each
Repetition

Before
Loop

After
Loop

6. In the example shown above for repetition, you will find the assignment statement Total = Total + I^3. Since you
are accustomed to mathematical equations, you may misinterpret this Visual Basic statement. In Visual Basic, the
statement above should be interpreted as follows:
 Total = Total + I ^ 3

(The new value of the variable ‘Total’) is assigned the value of (The current value of the variable ‘Total’) plus (I to the exponent 3)

Now consider the mathematical equation x = x + 3. How does the meaning of this equation differ from that of the
assignment statement shown above? Does this mathematical equation have a solution? Explain.

7. Consider the “sum of the cubes” program given on the previous page (in the “Repetition” column of the table).

1. so that it can calculate the sum of the cubes from Lowest to Highest, where Lowest and Highest are
integer values. To prevent numeric overflow errors, think carefully about the type of the Total variable.

8. Write Visual Basic programs that use “For” loops to
(a) print the following on your form

***** ***** ********
***** ***** ********
***** ***** ********
***** ***** ********
***** ***** ********
*************** ********
*************** ********
*************** ********
***** ***** ********
***** ***** ********
***** ***** ********
***** ***** ********
***** ***** ********

(b) fill your form with asterisks (i.e. *)

(c) find the sum of the numbers from 1 to 1000

(d) find the sum of the even numbers from 2 to 1000

(e) find the sum of the squares of the numbers from 1 to 1000
(Note: The Integer data type does not have a large enough
range for this program. Try Long instead.)

9. Modify further the program in question 8 so that it can calculate the sums of consecutive numbers to any exponent.
Do not expect your program to work for all values that you enter. Remember that like your calculators, computers
can only represent numbers that are so large or so small. Try different values to find out the limitations of your
program.

10. Write a Visual Basic program for a number guessing game. Your

program should generate a random integer between 1 and 100. Then
the user keeps guessing until the number is found or until the “I give
up” button is clicked. Each time the user enters an incorrect guess, your
program should indicate whether the secret number is higher or lower.
If the guess is correct, your program should output a congratulatory
message.

NOTE: Use the VB code SecretNumber = Int (Rnd * 100 + 1) to generate
the secret numbers. If you are observant, you will notice that your game
will be very predictable. We shall soon discuss a solution to this problem.

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-19

Using VB to Generate Pseudo-Random Numbers
Introduction
Without an element of randomness, many computer applications would be extremely dull. Can you imagine playing your
favourite video game if there were no surprises whatsoever? The evil enemy would always appear at exactly the same
place and time and the outcome of every battle would be tiresomely predictable. Under such conditions, would it still be
your favourite game? Luckily, pseudo-random numbers come to the rescue! The unpredictability of our favourite
games is due entirely to a computer’s ability to generate sequences of seemingly random numbers.

Why Pseudo?
It is not possible for a computer to generate random numbers, at least not in the strictest sense of the word “random.”
Since computers can only function by following the steps in algorithms, it follows that computers can only produce
numbers that result from the execution of algorithms. Clearly, there is nothing random about this process because the
steps of any algorithm can be carried out by anyone who knows the algorithm. Therefore, it appears that we are trapped
in a vicious circle. Computers cannot function without algorithms but the output of any algorithm is, at least in theory,
completely predictable. How then, can randomness spring from predictability?

Fortunately, there is a way to resolve this conundrum. Computers can simulate randomness by executing algorithms that
produce sequences of numbers that cannot be distinguished from true sequences of random numbers. Such algorithms
are known as pseudo-random number generators.

pseudo-: false, counterfeit, fake, sham, deceptive

Other words beginning with the prefix “pseudo-”
pseudonym, pseudoscience, pseudopod, pseudocode

How to Generate Pseudo-Random Numbers in VB
“Rnd” is an intrinsic function in VB that generates pseudo-random numbers greater than or equal to zero and less than
one. In other words, “Rnd” produces a pseudo-random Single value as low as 0.0000000 and as high as 0.9999999.

0.0000000

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-20

By applying appropriate transformations, we can use “Rnd” to generate pseudo-random NUMBERS in any range.

Complete the following. The first one is done for you.

1. Rnd*2 generates a pseudo-random number that is greater than or equal to 0 and less than to 2 .

2. Rnd*100 generates a pseudo-random number that is greater than or equal to ___________ and less than ___________.

3. Rnd*9+7 generates a pseudo-random number that is greater than or equal to ___________ and less than ___________.

4. Rnd*6−5 generates a pseudo-random number that is greater than or equal to ___________ and less than ___________.

5. Rnd*3+1.5 generates a pseudo-random number that is greater than or equal to __________ and less than __________.

6. Rnd*6−0.5 generates a pseudo-random number that is greater than or equal to __________ and less than __________.

By applying the “Int” intrinsic function along with “Rnd” and appropriate transformations, we can generate
pseudo-random INTEGERS in any range. The “Int” intrinsic function ROUNDS DOWN to the nearest integer.

Examples − Expressions Involving “Int”

Int(3.9) = 3 Int(3.1) = 3 Int(4) = 4 Int(−3.9) = −4 Int(−3.01) = −4

Rnd
0.9999999

.

.

0.0000001
.
.
. .

Complete the following. The first two are done for you.

1. Int(Rnd*2) generates a pseudo-random integer in the range 0, 1 .

2. Int(Rnd*100) generates a pseudo-random integer in the range 0, 1, 2, 3, … , 97, 98, 99 .

3. Int(Rnd*100+1) generates a pseudo-random integer in the range ___.

4. Int(Rnd*6−5) generates a pseudo-random integer in the range ___.

5. Int(Rnd*6) generates a pseudo-random integer in the range ___.

6. Int(Rnd*6+1) generates a pseudo-random integer in the range ___.

7. Int(Rnd*100−50) generates a pseudo-random integer in the range __.

8. Int(Rnd*1000+1) generates a pseudo-random integer in the range __.

9. Int(Rnd*1001+1) generates a pseudo-random integer in the range __.

10. Int(Rnd* +) generates a pseudo-random integer in the range 1, 2, 3, 4, … , 9998, 9999, 10000.

A General Expression for Generating Pseudo-Random Integers in VB
Based on your answers to questions 1 to 10 above, complete the following.

To generate a random integer greater than or equal to “Lowest” and less than or equal to “Highest,” use the expression

Int(Rnd * +)

Questions
Write VB expressions to generate pseudo-random integers in each of the following ranges.

1. From 1 to 6: ___

2. From 0 to 5: ___

3. From −5 to 5: ___

4. From 1 to 999: ___

5. From 1 to 1000: ___

6. From −5000 to 10000: ___

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-21

Applying Pseudo-Random Integers – An Enhanced Version of the Game of Greed
Instructions
Load the enhanced version of the “Game of Greed” found in I:\Out\Nolfi\Ics3m0\Game of Greed - Enhanced Version.
Study the program carefully and then answer the following questions. Note that this program contains a few advanced
programming concepts that we have not yet learned. Do not be deterred by this. The main point of this exercise is to
understand how pseudo-random numbers can make programs more versatile and more interesting.

Questions
1. Explain the difference between random numbers and pseudo-random numbers.

2. The following statements are used to generate the pseudo-random integers for the dice roll:

Why would it be incorrect to replace these two statements with the following single statement?

Roll = Int(Rnd*11 + 2) 'This statement generates a pseudo-random integer from 2 to 12 inclusive

3. The purpose of this question is to understand the importance of using the “Randomize” statement in VB programs that
use the “Rnd” intrinsic function.
(a) You will notice that the “Game of Greed” code includes a sub called “Form_Load.” Explain how such subs

behave and when it is appropriate to use them.
(b) You will also notice that the “Form_Load” sub contains the “Randomize” statement. To understand the

importance of this statement, remove it temporarily by turning it into a comment as shown below.

Now play the game several times and take careful note of the rolls that are generated. What do you notice? Use
your observations to explain the purpose of the “Randomize” statement.

(c) Now use “MSDN” help to look up the “Randomize” statement. Explain the meaning of the term “seed.”

4. You will notice that certain local variables in the “Game of Greed” are declared using the keyword “Static” instead of
the keyword “Dim.” Explain the difference between the two types of declarations.

5. What is the purpose of the “DoEvents” statement? What happens if you delete the “DoEvents” statement from the loop
found within the “cmdRoll_Click” sub?

6. “DoEvents” should be used with caution because it can cause problems. In the “cmdRoll_Click” sub, temporarily
remove the statement “cmdRoll.Enabled = False” by turning it into a comment (shown below).

Then play the game and click the “Roll” button repeatedly while the dice animation is running. What happens?
Explain what causes this strange behaviour.

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-22

ICS3M0 - REVIEW OF FIRST HALF OF UNIT 2
Data Types
1. Complete the following diagrams.

Data

Numeric Text Logical

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-23

+, −, *, /, ^, S &,
Left,

Right,
Mid,
…

And,
Or,
Not.
…

qr, …

(8 bytes storage)

(10 bytes +

string length
storage)

(2 bytes storage) (4 bytes storage) (4 bytes storage) (8 bytes storage) (1 byte

storage)

The “Val” function is used to convert a ____________________ to a ____________________. As the examples below

show, the “Val” function scans the given string ____________________________ from left to right. As soon as a

_____________________ is found or the __, Val halts its search and

returns its result. The result is the numeric value of the string, represented __________________________________.

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-24

2. The “CStr” function is used to convert __________________ to a __________________. The “CStr” function always

returns a string consisting of _______________________ characters.

CStr

Boolean Passed to “CStr”
True

VB Boolean Representation
1111111111111111

String Returned by “CStr”

Binary Unicode Representation

CStr

Number Passed to “CStr”
−1

Binary 32-Bit Integer Representation

String Returned by “CStr”

Binary Unicode Representation

CStr

Number Passed to “CStr”
69

Binary 16-Bit Integer Representation

String Returned by “CStr”

Binary Unicode Representation

Val

String Passed to “Val”
"GO"

Binary Unicode Representation

Number Returned by “Val”

Binary 16-Bit Integer Representation

Val

String Passed to “Val”
"52×"

Binary Unicode Representation
000000000011010100000000001100100000000011010111

Number Returned by “Val”

Binary 16-Bit Integer Representation

Val

String Passed to “Val” Number Returned by “Val”
"69"

Binary Unicode Representation

Binary 16-Bit Integer Representation

Using VB to Generate Pseudo-Random Numbers
1. Why are random numbers produced by a computer called “pseudo-random numbers?”

2. Why is it important in software development to be able to generate random integers?

3. Int(Rnd*50+20) generates a pseudo-random integer in the range ___.

4. Int(Rnd*10−8) generates a pseudo-random integer in the range ___.

5. Int(Rnd*20) generates a pseudo-random integer in the range __.

6. Int(Rnd*6+1) generates a pseudo-random integer in the range ___.

7. Int(Rnd*100−50) generates a pseudo-random integer in the range __.

8. Int(Rnd* +) generates a pseudo-random integer in the range −10, −9, −8, … , 13, 14, 15.

9. Int(Rnd* +) generates a pseudo-random integer in the range Lowest, …, Highest.

10. Write VB expressions to generate pseudo-random integers in each of the following ranges.

(a) From 1 to 6: ___

(b) From 0 to 50: ___

(c) From −15 to 25: ___

(d) From 1 to 9999: ___

(e) From 1 to 10000: __

(f) From −5000 to 10000: __

“If” Statements
Write a VB program that displays a friendly message based on the temperature, in degrees Celsius, entered by the user.
Here is a list of suggested temperature ranges and one suggested message. Feel free to modify them as you see fit.

Temperature Entered Message
Get inside before some important body parts freeze off! Below −40º C

 −40º C to −20º C
 −20º C to 0º C

0º C to 10º C
10º C to 20º C
20º C to 30º C
30º C to 40º C
Above 40º C

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-25

PROBLEM SOLVING STRATEGY 1:
SOLVE A COMPLEX PROBLEM BY INVESTIGATING SPECIFIC EXAMPLES OF THE PROBLEM
Case Study 1: Time Converter Problem
General Problem Statement
Input a value specified in seconds and convert to hours, minutes and seconds.

Where Should I Begin?
If you do not know how to select a strategy for solving this (or any other) problem, examining a specific example often
helps to shed some light on the situation.

e.g. Convert 35356 s to the format h : min : s.

 hours minutes seconds

Quotient

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-26

Step 1 0 0 35356
Step 2 9 0 2956
Step 3 9 49 16

Questions
1. Why was 35356 divided by 3600? Why was 2956 divided by 60?

2. Explain how Visual Basic can be used to compute a quotient and a remainder. (Use Google to find an answer to this
question if you don’t know the VB operators used to find quotient and remainder. Also, near the bottom of this page,
you will find an “upside-down answer” to this question.)

Writing an Algorithm
1. The user enters a time in seconds: seconds
2. Set hours to the quotient of seconds divided by 3600
3. Set seconds to the remainder of seconds divided by 3600
4. Set minutes to the quotient of seconds divided by 60
5. Set seconds to the remainder of seconds divided by 60
6. The result is hours : minutes : seconds

Exercises
1. Convert 234567 seconds to the format h : min : s.

2. Convert 8999.78 minutes to the format h : min : s.

3. Convert 84.69 hours to the format h : min : s.

4. Convert 723.2952 hours to the format days : h : min : s.

5. Write a VB program that can convert a time specified in seconds to the format h : min : s. Use the “Addition
Calculator” program as a model of how to write code for inputting the number of seconds.

3600 35356
_____32400
2956

9
 60 2956

____240
556

_5_4_0_
16

49

35356 ÷ 3600 = 9 R 2956

2956 ÷ 60 = 49 R 16

Remainder

Time Converter VB Solution – Version 1
A Review of the Basic Principles of Problem Solving

George Polya’s Four Steps of Problem Solving Corresponding Steps in Software Development (Systems Analysis)

1. Understand the problem.

2. Choose a strategy.

3. Execute the strategy.

4. Check the solution.

1. Analysis: Analyze the problem and understand exactly what is
required.

2. Design: Select algorithms and data structures. Several alternatives
should be investigated.

3. Implementation: Write code!
4. Validation: Test and debug your code.
5. Maintenance: Release patches, updates. Plan new versions.

A Review of how we applied the above Steps to the Time Converter Problem

Analysis We gained an understanding of the problem by reading carefully and asking questions.

Design

We worked out a specific example of the problem to gain some clues about a general strategy. We
quickly learned that the quotient of integer division by 3600 (the number of seconds in one hour) is equal
to the number of hours. The remainder of integer division by 3600 is equal to the remaining number of
seconds. Repeating this process with integer division by 60 leads to the number of minutes and the
number of seconds.

We learned about the “Mod” and “\” VB operators. (Note that the “\” is sometimes called “div.”)

Implementation We wrote the code for version 1 (see code below).

Validation
We carefully tested the program to expose any bugs or limitations. We discovered that the program
worked well as long as the value entered for the total number of seconds was within the range of a “Long”
integer variable. In addition, we learned that the program behaved strangely if a negative integer was
entered.

Maintenance This part is yet to be done. We shall soon attempt to resolve the limitations mentioned above and to add
functionality to the program.

Time Converter Version One

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-27

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-28

Code for Time Converter Version 1.0 Alpha
'''
' PROGRAMMER'S NAME: Nick E. Nolfi VERSION: Time Converter Version 1.0 Alpha
'
' PURPOSE OF PROGRAM: Convert a time given in seconds to the format hours : minutes : seconds (h:m:s).
'
' LIMITATIONS and BUGS
' This program will work only if the value entered is within the range of a "Long" integer
' variable (up to 2^31 - 1). In addition, this program will produce erroneous results if the
' user enters a negative value.

'''

Option Explicit

Private Sub cmdClose_Click()
 Dim Response As VbMsgBoxResult

 Response = MsgBox("Are you sure you wish to close this program?", _
 vbYesNo + vbDefaultButton2, "Leaving so soon?")
 If Response = vbYes Then
 End
 End If
End Sub

'Convert a time specified in seconds to the format hours:minutes:seconds.
Private Sub cmdConvert_Click()

 'Memory
 Dim SecondsRemaining As Long, Hours As Long, Minutes As Byte

 'Input
 SecondsRemaining = Val(txtSeconds.Text)

 'Processing
 Hours = SecondsRemaining \ 3600
 SecondsRemaining = SecondsRemaining Mod 3600
 Minutes = SecondsRemaining \ 60
 SecondsRemaining = SecondsRemaining Mod 60

 'Output
 lblHoursMinutesSeconds.Caption = CStr(Hours) & " : " & _
 CStr(Minutes) & " : " & _
 CStr(SecondsRemaining)

End Sub

What is the purpose of “Option Explicit?”

What is the purpose of this underscore?

What general term would you use to describe
“cmdConvert?” What general term would you use
to describe “Click?”

The name “cmdConvert_Click” is the name of the

__

Why is it sufficient to declare “Minutes” as a
“Byte” variable? Why would it be foolish
to do the same for the variables “Hours” and
“SecondsRemaining?”

What is the “&” operator called? What is its purpose?

Extensions of this Problem
1. Find at least two different ways of preventing the user from entering a negative number. Then choose the method that

you think is most user-friendly and write appropriate code.

2. Suggest at least two ways of dealing with the “numeric overflow” crash caused by entering a value that exceeds the
upper limit of a “Long” variable. Write appropriate code.

Note: Once you have completed questions 1 and 2, you will have produced a new version of the “Time Converter”
program. For a complete solution, see
I:\OUT\Nolfi\Ics3m0\Time Converter Examples\Time Converter 1.0beta.

3. Time Converter 1.0 Alpha produces messy output when the number of
minutes and/or the number of seconds is less than 10. For example, if the
value 69 is entered, version 1.0 alpha displays “0:1:9”
instead of “0:01:09.”

The following uses “If” statements to solve this problem.

Notice that three independent “If” statements are used
here. The reason for this is that it is necessary to make a
separate decision for each case. For instance, whether a
“0” needs to be concatenated to “SecsString” depends
only on the value of “SecondsRemaining.” It has nothing
to do with the value of “Minutes” or “Hours.” Keep in
mind that the “If…ElseIf…Else” structure should only
be used when a single group of statements is selected and
all the others are rejected.

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-29

Case Study 2: Storage Space and Data Transfer Rate Unit Converter Problem
In the first unit of this course, you studied storage space units, data transfer rate units and how to convert from one unit to
another. The following table is a summary of all storage space and data transfer rate units. Note that the prefixes used are
the same as those used for the SI system of units. However, since computer circuits are based on the binary number
system, the prefix “kilo” usually stands for 1024 = 210 instead of 1000 = 103. Unfortunately, the usage of the binary
meaning of “kilo” is inconsistent at best. Hardware manufacturers often use the decimal meaning, especially for data
transfer rates.

Factor
Storage Space Units Data Transfer Rate Units

Units Based on Bytes (binary) Units Based on Bytes/s (binary) Units Based on bps (decimal)

 8 b = 1 B 8 bps =1 B/s 1 bps
210 1 KB = 1024 B = 210 B 1 KB/s = 1024 B/s = 210 B/s 1 kbps = 1000 bps = 103 bps
220 1 MB = 1024 KB = 220 B 1 MB/s = 1024 KB/s = 220 B/s 1 Mbps = 1000000 bps= 106 bps
230 1 GB = 1024 MB = 230 B 1 GB/s = 1024 MB/s = 230 B/s 1 Gbps = 1000000000 bps= 109 bps
240 1 TB = 1024 GB = 240 B 1 TB/s = 1024 GB/s = 240 B/s 1 Tbps = 1000000000000 bps= 1012 bps
250 1 PB = 1024 TB = 250 B 1 PB/s = 1024 TB/s = 250 B/s 1 Pbps = 1015 bps
260 1 EB = 1024 PB = 260 B 1 EB/s = 1024 PB/s = 260 B/s 1 Ebps = 1018 bps
270 1 ZB = 1024 EB = 270 B 1 ZB/s = 1024 EB/s = 270 B/s 1 Zbps = 1021 bps
280 1 YB = 1024 ZB = 280 B 1 YB/s = 1024 ZB/s = 280 B/s 1 Ybps = 1024 bps

Note
1. For Storage Space Units “Kilo” means 1024 = 210

The prefix “kilo” usually means 1000 = 103, but since computers are based on “twos” (binary), a power of 2 is much more
convenient than a power of 10. The value 1024 was chosen because it is the power of 2 closest to 1000.

2. Ambiguous use of “Kilo” for Storage Capacity and Data Transfer Rate Units
Despite the point made in “1,” hardware manufacturers very often use the decimal (SI) meaning of “kilo,” especially for data
transfer rates. In addition, in the SI system of units, the prefix lowercase “k” is used for “kilo.” When dealing with storage
capacity and data transfer rate units, however, both uppercase “K” and lowercase “k” can be used. By convention, uppercase “K”
means 1024 while lowercase “k” means 1000. Thus 1 KB = 1024 B while 1 kB = 1000 B. (Unfortunately, even this convention is
not used consistently.)

The following table summarizes the prefixes for the SI system of units (decimal, not binary).

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-30

Prefixes for SI System of Units

Factor Name Symbol Factor Name Symbol
1024 yotta Y 10-1 deci d
1021 zetta Z 10-2 centi c
1018 exa E 10-3 milli m
1015 peta P 10-6 micro µ
1012 tera T 10-9 nano n
109 giga G 10-12 pico p
106 mega M 10-15 femto f
103 kilo k 10-18 atto a
102 hecto h 10-21 zepto z
101 deka da 10-24 yocto y

You may have a greater
factor “yotta” but I, the

“peta,” am still far tastier
than you!

As you can see, the greatest
factor to the “yotta” the force

has given.

×

 Larger unit Smaller unit

 Larger unit
÷

Smaller unit

To Multiply or to Divide?
That is the Question

Conversion Table (for Kilo=1024)
÷1024 ÷1024 ÷1024 ÷1024 ÷1024÷1024 ÷1024 ÷1024

B KB MB GB TB PB EB ZB YB

B KB MB GB TB PB EB ZB YB
×1024 ×1024 ×1024 ×1024 ×1024 ×1024 ×1024 ×1024

Conversion Table (for kilo=1000)

÷1000 ÷1000 ÷1000 ÷1000 ÷1000 ÷1000 ÷1000 ÷1000
B kB MB GB TB PB EB ZB YB

B kB MB GB TB PB EB ZB YB
×1000 ×1000 ×1000 ×1000 ×1000 ×1000 ×1000 ×1000

Exercises
1. The Rogers Yahoo! Hi-Speed Internet Extreme service has a maximum downstream data transfer rate (download speed)

of 7 Mbps and a maximum upstream data transfer rate of (upload speed) 512 kbps. (Note that for these two rates,
kilo and mega .) 31000 10= = 61000000 10= =
(a) Convert the downstream data rate from Mbps (megabits per second, M=1000000) to KB/s (kilobytes per second,

K=1024).
(b) Convert the upstream data rate from kbps (k=1000) to KB/s (K=1024).
(c) How long would it take to download (receive) the administrative version of Windows XP Service Pack 2

(272391 KB)? Assume that the data can be transferred at the maximum rate of 6 Mbps. State your answer in
hours, minutes and seconds.

(d) When you use a bit-torrent client such as Azureus, your computer becomes connected to what is known as a
peer-to-peer (P2P) file sharing network. As you download (receive) files from other users, your computer also
uploads (sends) files. How long would it take to upload (send) the administrative version of Windows XP
Service Pack 3 (324030 KB) to another user? Assume that the data can be transferred at the maximum rate of
512 kbps. State your answer in hours, minutes and seconds.

2. Suppose that you had a 500 GB hard drive that you wanted to back up. How many of each of the following storage
media would you need to use, assuming that there is no free space on the hard drive.
(a) 1.44 MB floppy diskettes
(b) 700 MB CD-R disks

×8
 B b

 B
÷8

b

Bits to Bytes

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-31

A Proposal to Avoid the Confusion caused by two Possible Meanings of “Kilo”
Introduction
Knowing whether “kilo” refers to 1000 or 1024 can cause a great deal of confusion. To prevent this confusion, a new set
of prefixes has been introduced. Information about these prefixes from three different Web sites is given below. Read all
the information and then answer the questions at the bottom of the page.

A Description of “Kibibyte” from Wikipedia

A Description of “Kibibyte” from FOLDOC
The official ISO[?] name for 1024 bytes, to distinguish it from 1000 bytes which they call a kilobyte. “Mebibyte,”
“Gibibyte,” etc, are prefixes for other powers of 1024. Although this new naming standard has been widely reported in
2003, it seems unlikely to catch on.

A Description of “Kibibyte” from http://www.robinlionheart.com/stds/html4/glossary
kibibyte (KiB)
A kibibyte is a unit of storage equal to exactly 1,024 bytes. Because kilobyte is used to mean either 1000 bytes or 1024
bytes, in 1999 the International Electrotechnical Commission defined a “kibi-” prefix unambiguously signifying 1024.
Rarely used except by pedantic nerds, like me.

Questions
1. Explain why “kilo=1000” is called the decimal meaning and “kilo=1024” is called the binary meaning.

2. Define the words pedantic, nerd, ambiguous, standard and convention.

3. Since 1000 is very close to 1024, why should anyone bother distinguishing between the two meanings of “kilo?”

4. When using the Internet to do research, do you think that it would be wise to consult only one Web site? Explain.

5. Are there any inconsistencies in the three sources of information?

6. The manufacturers of two different hard drives both claim that the storage capacity of the drives is 1 TB. One
manufacturer uses the “kilo=1024” definition and the other uses the “kilo=1000” definition. Calculate the difference
in storage capacities between the two drives.

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-32

Problems that can be Solved by Investigating Specific Examples
1. Convert a time specified in seconds to the form hours:minutes:seconds. (e.g. 3642 s = 1 h : 0 min : 42 s)
2. Convert a time specified in minutes to the form hours:minutes:seconds. (e.g. 125.6 min = 2 h : 5 min : 36 s)
3. Convert a time specified in hours to the form hours:minutes:seconds. (e.g. 25.66 h = 25 h : 39 min : 36 s)
4. Convert any time specified in days:hours:minutes:seconds to the best possible form in days:hours:minutes:seconds.

(e.g. 2 days : 63 h : 189 min : 322 s = 4 days : 18 h : 14 min : 22 s)
5. Convert a certain amount of money to the form “# $1000 bills, # $100 bills, # $50 bills, # $20 bills,

$10 bills, # $5 bills, # $2 coins, # $1 coins, # $0.25 coins, # $0.10 coins, # $0.05 coins, # $0.01 coins”
(e.g. $7987.32 = seven $1000 bills, nine $100 bills, one $50 bill, one $20 bill, one $10 bill, one $5 bill,
one $2 coin, zero $1 coins, one $0.25 coin, zero $0.10 coins, one $0.05 coins, two $0.01 coins)

6. Given any two fractions, add them, subtract them, multiply them or divide them.
7. Convert any storage capacity unit into any other.
8. Convert any data transfer rate unit into any other.
Assignment
1. Solve a specific example and write an algorithm for each of the eight problems listed above. Arrange your work in

table format as shown below. An example is given to help you understand what is required.
Specific Example Algorithm
Convert 35356 s to the format h : min : s.

 hours minutes seconds
Step 1 0 0 35356
Step 2 9 0 2956
Step 3 9 49 16

1. The user enters a time in seconds: seconds
2. Set hours to the quotient of seconds divided by 3600
3. Set seconds to the remainder of seconds divided by 3600
4. Set minutes to the quotient of seconds divided by 60
5. Set seconds to the remainder of seconds divided by 60
6. The result is hours : minutes : seconds

2. Create a VB program that
(a) can convert any data storage capacity unit into any other
(b) can convert any data transfer rate unit into any other
(c) allows the user to use either the binary or decimal meaning of “kilo”

binary: base 2, Kilo = K = 1024 = 210 decimal: base 10, kilo = k = 1000 = 103
Evaluation Guide for Question 1

Categories Criteria Descriptors
Level Average

35356 ÷ 3600 = 9 R 2956, 2956 ÷ 60 = 49 R 16

Level 4 Level 3 Level 2 Level 1 Level 0

Knowledge and
Understanding (KU)

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-33

Understanding of the Problems Extensive Good Moderate Minimal Insufficient

Correctness of Chosen Examples
Application (APP) To what degree are the chosen examples

solved correctly?
Very High High Moderate Minimal Insufficient

Thinking, Inquiry and
Problem Solving

(TIPS)

Appropriateness of Chosen Examples
To what degree has the student chosen non-
trivial examples that can be extended to
general algorithms?

Very High High Moderate Minimal Insufficient

Generality of Algorithms
To what degree are the algorithms
applicable to the given problems?

Very High High Moderate Minimal Insufficient

Communication
(COM)

Clarity of Solutions of Chosen Examples
How clearly are the solutions of the chosen
examples communicated?

Extremely
Easy to
Under-
stand

Easy to
Under-
stand

Moderately
Easy to
Under-
stand

Somewhat
Abstruse

Extremely
Abstruse

Clarity of Algorithm Descriptions
How clearly are the algorithms
communicated?

Extremely
Easy to
Under-
stand

Easy to
Under-
stand

Moderately
Easy to
Under-
stand

Somewhat
Abstruse

Extremely
Abstruse

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-34

Evaluation Guide for Question 2 (Unit Conversion Program)

Categories Criteria Descriptors
Level Average

Level 4 Level 3 Level 2 Level 1 Level 0

Knowledge and
Understanding

(KU)

Understanding of Programming Concepts Extensive Good Moderate Minimal Insufficient

Understanding of the Problem Extensive Good Moderate Minimal Insufficient

Application
(APP)

Correctness
To what degree is the output correct? Very High High Moderate Minimal Insufficient

Declaration of Variables
To what degree are the variables declared with
appropriate data types?

Very High High Moderate Minimal Insufficient

Debugging
To what degree has the student employed a logical,
thorough and organized debugging method?

Very High High Moderate Minimal Insufficient

Thinking,
Inquiry and

Problem
Solving
(TIPS)

Algorithm Design and Selection
To what degree has the student used approaches
such as solving a specific example of the problem to
gain insight into the problem that needs to be
solved?

Very High High Moderate Minimal Insufficient

Ability to Design and Select Algorithms Independently
To what degree has the student been able to design
and select algorithms without assistance?

Very High High Moderate Minimal Insufficient

Ability to Implement Algorithms Independently
To what degree is the student able to implement
chosen algorithms without assistance?

Very High High Moderate Minimal Insufficient

Efficiency of Algorithms and Implementation
To what degree does the algorithm use resources
(memory, processor time, etc) efficiently?

Very High High Moderate Minimal Insufficient

Communication
(COM)

Indentation of Code
Insertion of Blank Lines in Strategic Places
(to make code easier to read)

Very Few
or no
Errors

A Few
Minor
Errors

Moderate
Number of

Errors

Large
Number of

Errors

Very Large
Number of

Errors

Comments
• Effectiveness of explaining abstruse (difficult-to-

understand) code
• Effectiveness of introducing major blocks of code
• Avoidance of comments for self-explanatory code

Very High High Moderate Minimal Insufficient

Descriptiveness of Identifier Names
Variables, Constants, Objects, Functions, Subs, etc
Inclusion of Property Names with Object Names
(e.g. ‘txtName.Text’ instead of ‘txtName’ alone)
Clarity of Code
How easy is it to understand, modify and debug the
code?
Adherence to Naming Conventions
(e.g. use “txt” for text boxes, “lbl” for labels, etc.)

Masterful Good Adequate Passable Insufficient

User Interface
To what degree is the user interface well designed,
logical, attractive and user-friendly?

Very High High Moderate Minimal Insufficient

PROBLEM SOLVING STRATEGY 2: PLAN YOUR SOLUTION IN A LOGICAL,
ORGANIZED FASHION

The Problem that you need to Solve
Since Tyler is so busy kneading the dough for his Newfie Screech Style Pizza, he does not have much time to process
customer orders. Therefore, he is seeking your help! His restaurant, Newfie Screech Style Pizzeria, needs a computer
program that can process customer orders.

As shown in the table, there is a base price for each pizza, plus an additional charge for each topping.

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-35

Write a Visual Basic program that uses the form shown below to
(1) Input the size of the pizza, the number of toppings, the number of pizzas and the number of drinks
(2) Calculate and display the sub-total (cost before tax), the PST (8%), the GST (6%) and the total
(3) Input the amount of money paid by the customer
(4) Calculate and display the change that the customer should receive
(5) Calculate and display the total amount spent by all customers
(6) Calculate and display the average amount spent by each customer.

Local Variables versus Global Variables
Local Variables Global Variables

As shown below, local variables are declared inside Subs.

Local variables are

1. VISIBLE only within the sub in which they are declared.
2. CREATED when the sub is invoked (i.e. called or executed).
3. DESTROYED when the sub returns (has finished

executing).

Local variables should be used whenever possible. They help
to reduce the time needed to debug a program because they
keep information PRIVATE. If information is needed only by
a particular sub, it is best to HIDE it from other subs. Local
variables also help to conserve memory because they are
discarded as soon as the sub returns.

As shown below, local variables are declared at the top
of the code, just after Option Explicit.

1. The values of global variables remain stored in

RAM as long as the form is loaded in RAM (i.e. the
computer will "remember" the values of these
variables for as long as the form remains loaded

2. Global variables are VISIBLE to all the subs. Each
sub can access each global variable, allowing two or
more subs to SHARE their values.

A variable should be declared GLOBALLY whenever
two or more subs need to access it (i.e. use or change its
value) and/or whenever its value needs to be
“remembered” after a sub has finished executing.

SIZE BASE PRICE EACH TOPPING
Small $9.95 $1.00

Medium $12.95 $1.25
Large $15.95 $1.50

Party Size $18.95 $2.00
Drinks $1.25

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-36

The Plan

INPUT
What information does the user enter?

PROCESSING
What must be done with the information?

OUTPUT
What should be displayed after
processing is complete?

Code for Input Code for Processing Code for Output

VARIABLES (MEMORY)
LOCAL VARIABLES GLOBAL VARIABLES

Pizza Program Solutions and Questions

The Problem
“Newfoundland Style Pizzeria Problem”
The Plan

INPUT
What information
must the user enter?
Process Order Button
Pizza Size, Number of
Pizzas, Number of
Toppings, Number of
Drinks

SIZE BASE PRICE EACH TOPPING
Small $9.95 $1.00

Medium $12.95 $1.25
Large $15.95 $1.50

Party Size $18.95 $2.00
Drinks $1.25

PROCESSING
What must be done with the information?
Process Order Button
1. Determine base price for pizza size chosen
2. Determine price per topping for chosen size
3. Calculate cost before taxes (subtotal):

#pizzas*[(base price) + #toppings*(topping price)] + #drinks*(drink price)
4. Calculate GST and PST

GST: subtotal*0.06, PST: subtotal*0.08
5. Calculate total for order: Subtotal + GST + PST
6. Add (order total) to (total for all customers)
7. Increase the number of orders by 1
8. Calculate the average cost of each order: (total spent by all) / (#orders)

Calculate Change Button
Calculate change.

OUTPUT
What should be displayed
after processing is
complete?
Process Order Button
1. Display subtotal
2. Display GST

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-37

Calculate Change
Button
Amount of money
customer pays.

3. Display PST
4. Display total
5. Display total spent by all

customers
6. Display average amount

spent by each customer
Calculate Change Button
Display change.

VARIABLES (MEMORY)

LOCAL VARIABLES GLOBAL VARIABLES

Integer Variables
NumPizzas
NumToppings

1. Explain why most of the variables are declared as local
variables while a few are declared as global variables.

2. Explain the purpose of the “NumOrders”
variable.

Currency Variables
TotalCostOfOrder

TotalSpentByAllCustomers

NumOrders

Currency Variables
PizzaBasePrice

NumDrinks PricePerTopping, SubTotal, GST, PST

Change

CashTendered

AverageAmountSpent

These variables
store values that

involve an
amount of money These variables

store values that
involve a

number of items

The Code
A complete VB solution for this problem can be found in the folder

I:\OUT\Nolfi\Ics3m0\Simple VB Examples\Newfie Pizza Example
Only the global variables and the “cmdProcessOrder_Click()” sub are shown here.

Questions
1. If all variables in this program were declared locally, would this program still work correctly? Explain.
2. If all variables in this program were declared globally, would this program still work correctly? If so, is it a good idea

to declare all variables globally? Explain.
3. Explain the purpose of the intrinsic functions “Round” and “Format.” Use MSDN help to find technical information on

these two functions.

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-38

PROBLEM SOLVING STRATEGY 3: BREAK UP LARGE, COMPLEX PROBLEMS
INTO A SERIES OF SMALLER, SIMPLER PROBLEMS

 (DON’T BE A PUMPKIN HEAD! FOLLOW THESE GUIDELINES!)
The Infinite Loop of Software Development

The flowchart shown at the left is a simplified visual representation
of the software development process. Notice that programmers use
a simple version as a foundation upon which future versions can be
built. Also, note that once the initial simple version has been
implemented, an essentially infinite loop is entered. Since software
development involves open-ended tasks, there is virtually no limit
to the improvements that can be made!

When engaged in this process, try to keep in mind the following
points:

• Break up large, complex problems into several smaller problems.
• Solve one small problem at a time. Ensure that each solution is

perfect before integrating it into the overall system.
• Be realistic! It is far better to produce simple software that

works well than it is to produce sophisticated software that does
not work at all.

• Do not limit yourself during the idea generation phase. Write
down all your ideas (including those that seem over-ambitious or
downright crazy).

Some General Guidelines for Producing Great Code
• Use names like InsertionPoint instead of insertionpoint, INSERTIONPOINT, insertion_point or INSERTION_POINT

• Use names that clearly describe the purpose of a variable, constant, sub procedure or function procedure.

• Using meaningful, descriptive names will allow you to write programs that are for the most part self-explanatory. This
means that you do not need to include too many comments. However, comments should still be considered an
integral part of the software development process. Comments should be included as you write your code, not after it
is written!

• Generally, include comments for major blocks of code and for any code that is not self-explanatory.

• Use global variables only when necessary! All other variables should be declared either within procedures or as
parameters of procedures.

• Avoid repetitive code by writing sub procedures or function procedures and calling them whenever they are needed.

• Consider several different algorithms and implement the one that best suits your needs.

• Indent your code properly as you write it! Do not consider indentation an afterthought.

• Test your code thoroughly under extreme conditions. Allow other people to conduct some of the testing and note all
bugs.

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-39

The Fraction Calculator Program
Instructions
Read the memo given below. Before diving right into the VB code, take some time to PLAN your solution!

INTERNAL MEMO
From: I. M. De Boss
To: U. R. Not De Boss
Re: The “Fraction Calculator” software.
The “Fraction Calculator” must be able to add, subtract, multiply and divide any two fractions expressed in improper form. All
answers must be displayed in lowest terms. The following is an example of the type of question that your calculator should be able
to handle. Note that your calculator will only display the question and the final answer. The intermediate steps do not need to be
displayed but we may tackle this in a future version.

Detailed Solution Explanation
6 5
8 6
+ These two fractions must be added.

= 3 4
463

5
+

× ×

× ×8
6 The LCD (lowest common denominator) is 24. Express each fraction with a denominator of 24. The

LCD is the least common multiple of 8 and 6.

= 18 20
24 24

+ Now that both fractions have the same denominator, the numerators can be added.

= 38 2
2

÷

÷24
 This fraction is not reduced to lowest terms, so one more step is necessary. Bo the numerator and

denominator are divided by the greatest common divisor of 38 and 24.

= 19
12

 This is the final answer reduced to lowest terms.

Overall Plan

Pseudo-Code
1. The user enters the numerators and denominators of each fraction: numer1, denom1, numer2, denom2
2. Set denomAnswer to the least common multiple of denom1 and denom2
3. Set numer1 to denomAnswer divided by denom1 multiplied by numer1
4. Set numer2 to denomAnswer divided by denom2 multiplied by numer2
5. Set numerAnswer to numer1 plus numer2
6. Set gcd to the greatest common divisor of numerAnswer and denomAnswer
7. Set numerAnswer to numerAnswer divided by gcd
8. Set denomAnswer to denomAnswer divided by gcd

9. The result is numAnswer
denomAnswer

Above Example done using Memory Map

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-40

 numer1 denom1 numer2 denom2 denomAnswer numerAnswer gcd
1. 6 8 5 6 - - -
2. 24 6 8 5 6 - -
3. 18 8 5 6 24 - -
4. 20 18 8 6 24 - -
5. 38 18 8 20 6 24 -
6. 2 18 8 20 6 24 38
7. 19 18 8 20 6 24 2
8. 19 12 18 8 20 6 2
9. 12 19 18 8 20 6 2

Express each fraction with
a common denominator.

Add the numerators of the
fractions.

Reduce the obtained
fraction to lowest terms.

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-41

Using the Fraction Calculator Assignment to Learn How to Improve Existing Code (Part 1)
Instructions
Carefully study the code shown on the next page (Fraction Calculator Version 1.00). After you do so, run the
“Fraction Calculator 1.00” VB program, which you will find stored in

I:\Out\Nolfi\Ics3m0\Fraction Calculator\Fraction 1.00\Fraction 1.00.vbp
Then complete the following table.

How does the “cmdAdd_Click” sub differ
from the “cmdSubtract_Click” sub?

How does the “cmdMultiply_Click” sub
differ from the “cmdDivide_Click” sub?

Is there any code that is repeated in
several different places?

State several ways in which the code and
the user interface could be improved.

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-42

'Fraction alcu

Private Sub cmdAdd_Click()
C lator Version 1.00

 Dim Smaller As Long, Larger As Long

Dim PossibleMulti As Long, LCM As Long

 Dim Denom1 As Long, Denom2 As Long
 Dim Numerator1 As Long, Numerator2 As Long
 Dim AnsNumerator As Long As Long , AnsDenom
 Dim PossibleDivisor As Long, GCD As Long
 'Input
 Denom1 = Val(txtDenom1.Text)
 Denom2 = Val(txtDenom2.Text)
 Numerator1 = Val(txtNumer1.Text)
 Numerator2 = Val(txtNumer2.Text)
 If Denom1 < Denom2 Then
 Larger = Denom1
 Else
 Larger = Denom2
 End If
 'Find LCM of "Denom1" and "Denom2"
 For PossibleMulti = Larger To Denom1 * Denom2
 If PossibleMulti Mod Denom1 = 0 And _
 PossibleMulti Mod Denom2 = 0 Then
 LCM = PossibleMulti
 Exit For
 End If
 Next PossibleMulti
 AnsNumerator = LCM / Denom1 * Numerator1 + LCM / _
 Denom2 * Numerator2
 AnsDenom = LCM

 If AnsDenom < AnsNumerator Then
 Smaller = AnsDenom
 Else
 Smaller = AnsNumerator
 End If
 'Find the GCD of "AnsNumerator" and "AnsDenom"
 GCD = 1
 For PossibleDivisor = Smaller To 2 Step -1

 If AnsNumerator Mod PossibleDivisor = 0 And _
 AnsDenom Mod PossibleDivisor = 0 Then
 GCD = PossibleDivisor
 Exit For
 End If
 Next PossibleDivisor
 'OutPut
 txtAnsNumer.Text = AnsNumerator / GCD
 txtAnsDenom.Text = AnsDenom / GCD

End Sub
Private Sub cmdMultiply_Click()
 Dim Denom1 As Long, Denom2 As Long
 Dim Numerator1 As Long, Numerator2 As Long
 Dim PossibleDivisor As Long, GCD As Long
 Dim Smaller As Long
 'Input
 Denom1 = Val(txtDenom1.Text)
 Denom2 = Val(txtDenom2.Text)
 Numerator1 = Val(txtNumer1.Text)
 Numerator2 = Val(txtNumer2.Text)
 'Processing
 AnsNumerator = Numerator1 * Numerator2
 AnsDenom = Denom1 * Denom2
 'Find the GCD of "AnsNumerator" and "AnsDenom"
 If AnsDenom < AnsNumerator Then
 Smaller = AnsDenom
 Else
 Smaller = AnsNumerator
 End If
 GCD = 1
 For PossibleDivisor = Smaller To 2 Step -1
 If AnsNumerator Mod ossibleDivisor = 0 And P _
 AnsDenom Mod PossibleDivisor = 0 Then
 GCD = PossibleDivisor
 Exit For
 End If
 Next PossibleDivisor
 'OutPut
 txtAnsNumer.Text = AnsNumerator / GCD
 txtAnsDenom.Text = AnsDenom / GCD
End Sub

Private Sub cmdSubtract_Click()
 Dim PossibleMulti As Long, LCM As Long
 Dim Smaller As Long, Larger As Long
 Dim Denom1 As Long, Denom2 As Long
 Dim Numerator1 As Long, Numerator2 As Long
 Dim AnsNumerator As Long, AnsDenom As Long
 Dim PossibleDivisor As Long, GCD As Long
 'Input
 Denom1 = Val(txtDenom1.Text)
 Denom2 = Val(txtDenom2.Text)
 Numerator1 = Val(txtNumer1.Text)
 Numerator2 = Val(txtNumer2.Text)
 If Denom1 < Denom2 Then
 Larger = Denom1
 Else
 Larger = Denom2
 End If
 'Find LCM of "Denom1" and "Denom2"
 For PossibleMulti = Smaller To Denom1 * Denom2
 If PossibleMulti Mod Denom1 = 0 And _
 PossibleMulti Mod Denom2 = 0 Then
 LCM = PossibleMulti
 Exit For
 End If
 Next PossibleMulti
 AnsNumerator = LCM / Denom1 * Numerator1 - LCM / _
 Denom2 * Numerator2
 AnsDenom = LCM
 If AnsDenom < AnsNumerator Then
 Smaller = AnsDenom
 Else
 Smaller = AnsNumerator
 End If
 'Find the GCD of "AnsNumerator" and "AnsDenom"
 GCD = 1
 For PossibleDivisor = Smaller To 2 Step -1
 If AnsNumerator Mod ossibleDivisor = 0 And P _
 AnsDenom Mod PossibleDivisor = 0 Then
 GCD = PossibleDivisor
 Exit For
 End If
 Next PossibleDivisor
 'OutPut
 txtAnsNumer.Text = AnsNumerator / GCD
 txtA
End Sub

 nsDenom.Text = AnsDenom / GCD

Private Sub cmdDivide_Click()
 Dim Denom1 As Long, Denom2 As Long
 Dim Numerator1 As Long, Numerator2 As Long
 Dim PossibleDivisor As Long, GCD As Long
 Dim Smaller As Long
 'Input
 Denom1 = Val(txtDenom1.Text)
 Denom2 = Val(txtDenom2.Text)
 Numerator1 = Val(txtNumer1.Text)
 Numerator2 = Val(txtNumer2.Text)
 'Processing
 AnsNumerator = Numerator1 * Denom2
 AnsDenom = Denom1 * Numerator2
 'Find the GCD of "AnsNumerator" and "AnsDenom"
 If AnsDenom < AnsNumerator Then
 Smaller = AnsDenom
 Else
 Smaller = AnsNumerator
 End If

 GCD = 1
 For PossibleDivisor = Smaller To 2 Step -1
 If AnsNumerator Mod PossibleDivisor = 0 And _
 AnsDenom Mod PossibleDivisor = 0 Then
 GCD = PossibleDivisor
 Exit For
 End If
 Next PossibleDivisor
 'Output
 txtAnsNumer.Text = AnsNumerator / GCD
 txt
End Sub

 AnsDenom.Text = AnsDenom / GCD

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-43

Using the Fraction Calculator Assignment to Learn How to Improve Existing Code (Part 2)
Instructions
Carefully study the code shown on the next page (Fraction Calculator Version 1.01). After you do so, run the “Fraction
Calculator 1.01” VB program, which you will find stored in

I:\Out\Nolfi\Ics3m0\Fraction Calculator\ Fraction 1.01\Fraction 1.01.vbp
Then complete the following table.

How does version 1.01 differ from version 1.00?

Dim Denom1 As Long, Denom2 As Long
Dim Numerator1 As Long, _
 Numerator2 As Long

In version 1.00, the above declarations appeared
within the subs (i.e. the variables were declared
as local variables). Why is it necessary to
declare these variables globally in version 1.01?

Use MSDN help or any other resources to do
research on the following topics:

• Function Procedures
• Sub Procedures
• General Sub Procedures versus Event Sub

Procedures
• Passing Parameters (Arguments) “By Value”
• Passing Parameters (Arguments) “By

Reference”

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-44

'Fraction Calculator Version 1.01
'The code for this version is considerably shorter
'than the code for version 1.00. This is due to the
'use of "Sub Procedures" and "Function Procedures."

Option Explicit

Dim Denom1 As Long, Denom2 As Long
Dim Numerator1 As Long, Numerator2 As Long

Private Sub cmdAdd_Click()
 'Memory
 Dim AnsNumerator As Long, AnsDe m As Long no
 Dim GCD As Long, PossibleMulti As Long, LCM As Long
 'Input
 Call GetInput
 'Processing
 LCM = LeastCommonMultiple(Denom1, Denom2)
 AnsNumerator = LCM / Denom1 * Numerator1 + LCM / _
 Denom2 * Numerator2
 AnsDenom = LCM
 GCD = GreatestCommonDivisor(AnsNumerator, AnsDenom)
 'Output - Display answer as a reduced fraction
 txtAnsNumer.Text = AnsNumerator / GCD
 txtAnsDenom.Text = AnsDenom / GCD
 lbl
End Sub

 Operation.Caption = "+"

Private Sub cmdSubtract_Click()
 'Memory
 Dim AnsNumerator As Long sDenom As Long , An
 Dim GCD As Long, LCM As Long
 'Input
 Call GetInput
 'Processing
 LCM = LeastCommonMultiple(Denom1, Denom2)
 AnsNumerator = LCM / Denom1 * Numerator1 - LCM / _
 Denom2 * Numerator2
 AnsDenom = LCM
 GCD = GreatestCommonDivisor(AnsNumerator, AnsDenom)
 'Output - Display answer as a reduced fraction
 txtAnsNumer.Text = (AnsNumerator / GCD)
 txtAnsDenom.Text = (AnsDenom / GCD)
 lbl
End Sub

 Operation.Caption = "-"

Private Sub cmdDivide_Click()
 'Memory
 Dim AnsNumerator As Long, AnsDenom As Long
 Dim GCD As Long
 'Input
 Call GetInput
 'Processing
 AnsNumerator = Numerator1 * Denom2
 AnsDenom = Denom1 * Numerator2
 GCD = GreatestCommonDivisor(AnsNumerator, AnsDenom)
 'Output - Display answer as a reduced fraction
 txtAnsNumer.Text = AnsNumerator / GCD
 txtAnsDenom.Text = AnsDenom / GCD
 lbl
End Sub

 Operation.Caption = "/"

Private Sub cmdMultiply_Click()
 'Memory
 Dim AnsNumerator As Long, AnsDenom As Long
 Dim GCD As Long
 'Input
 Call GetInput
 'Processing
 AnsNumerator = Numerator1 * Numerator2
 AnsDenom = Denom1 * Denom2
 GCD = GreatestCommonDivisor(AnsNumerator, AnsDenom)
 'Output - Display answer as a reduced fraction
 txtAnsNumer.Text = AnsNumerator / GCD
 txtAnsDenom.Text = AnsDenom / GCD
 lbl
End Sub

 Operation.Caption = "*"

Private Sub GetInput()
 Denom1 = Val(txtDenom1.Text)
 Denom2 = Val(txtDenom2.Text)
 Numerator1 = Val(txtNumer1.Text)
 Num
End Sub

 erator2 = Val(txtNumer2.Text)

Private Function GreatestCommonDivisor(ByVal Num1 As _
 Long, ByVal Num2 As Long) As Long

 Dim GCD As Long, Smaller As Long, _
 PossibleDivisor As Long
 GCD = 1
 If Num1 < Num2 Then
 Smaller = Num1
 Else
 Smaller = Num2
 End If

 For PossibleDivisor = Smaller To 2 Step -1
 If Num1 Mod PossibleDivisor = 0 And _
 Num2 Mod PossibleDivisor = 0 Then
 GCD = PossibleDivisor
 Exit For
 End If
 Next PossibleDivisor

 GreatestCommonDivisor = GCD

End Function

Private Function LeastCommonMultiple(ByVal As Num1 _
 Long, ByVal Num2 As Long) As Long

 Dim PossibleMulti As Long, LCM As Long, _
 Smaller As Long
 If Num1 < Num2 Then
 Smaller = Num1
 Else
 Smaller = Num2
 End If

 'Find LCM

 For PossibleMulti = Smaller To Num1 * Num2
 If PossibleMulti Mod Num1 = 0 And _
 PossibleMulti Mod Num2 = 0 Then
 LCM = PossibleMulti
 Exit For
 End If
 Next PossibleMulti

 LeastCommonMultiple = LCM

End Function

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-45

Using the Fraction Calculator Assignment to Learn How to Improve Existing Code (Part 3)

Instructions
Carefully study the code shown on the next page (Fraction Calculator Version 1.02). After you do so, run the “Fraction
Calculator 1.02” VB program, which you will find stored in

I:\Out\Nolfi\Ics3m0\Fraction Calculator\ Fraction 1.02\Fraction 1.02.vbp
Then complete the following table.

How does version 1.02 differ from version 1.01?

Dim Denom1 As Long, Denom2 As Long
Dim Numerator1 As Long, _
 Numerator2 As Long

In version 1.01, the above declarations had to be
at the global (module) level. Why is it better to
declare these variables locally in version 1.02?

Use MSDN help or any other resources to do
research on the following topics:

• Arrays
• Control Arrays

1. What does “String * 1” mean? 'Fraction Calculator Version 1.02

'The code for this version is considerably shorter
'than the code for version 1.01. This is due to the
'elimination of a great deal of repetitive code in
'version 1.01. Much of this was made possible
'by the use of control arrays.

Option Explicit
Dim Operation(0 To 3) As String * 1

Private Sub Form_Load()
 Operation(3) = "+" 2. What is the purpose of this sub?
 Operation(1) = "-"
 Operation(0) = "*"
 Ope
End Sub

 ration(2) = "/"

Private Sub cmdOperation_Click(Index As Integer)

 'Memory
 Dim Denom1 As Long nom2 As Long , De
 Dim Numerator1 As Long, Numerator2 As Long
 Dim AnsNumerator As Long, AnsDenom As Long
 Dim GCD As Long 3. What is the purpose of multiplying by “Index – 2?”
 Const Add = 3, Subtract = 1, _
 Multiply = 0, Divide = 2

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-46

 'Input
 Denom1 = Val(txtDenom1.Text)
 Denom2 = Val(txtDenom2.Text)
 Numerator1 = Val(txtNumer1.Text)
 Numerator2 = Val(txtNumer2.Text)

 'Processing
 If Index = Add Or Index = Subtract Then
 AnsNumerator = Numerator1 * Denom2 + _
 (Index - 2) * Numerator2 * Denom1 4. What are these pieces of information called?
 AnsDenom = Denom1 * Denom2
 ElseIf Index = Multiply Then
 AnsNumerator = Numerator1 * Numerator2
 AnsDenom = Denom1 * Denom2
 Else
 AnsNumerator = Numerator1 * Denom2
 AnsDenom = Denom1 * Numerator2
 End If

 GCD = GreatestCommonDivisor(AnsNumerator, AnsDenom)

 'Output - Display answer as a reduced fraction
 txtAnsNumer.Text = AnsNumerator / GCD
 txtAnsDenom.Text = AnsDenom / GCD
 lblOperation.Caption = Operation(Index)

5. What are these variables called?
End Sub

Private Function Grea Co ivisor ByVal Num1 As test mmonD (_
 Long, ByVal Num2 As Long) As Long

 Dim GCD As Long, Smaller As Long, _
 PossibleDivisor As Long
 GCD = 1
 If Num1 < Num2 Then
 Smaller = Num1
 Else
 Smaller = Num2
 End If

 For PossibleDivisor = Smaller To 2 Step -1 6. What is the purpose of this statement? If Num1 Mod PossibleDivisor = 0 And _
 Num2 Mod PossibleDivisor = 0 Then
 GCD = PossibleDivisor
 Exit For
 End If
 Next PossibleDivisor

 GreatestCommonDivisor = GCD

End Function

FUNCTION PROCEDURES AND SUB PROCEDURES – TECHNICAL INFORMATION
Sub Procedures
Note: In the following formal descriptions of Sub procedures and Function procedures, the keywords enclosed in square brackets are

optional and the “pipe” symbol (“ | ”) means “OR.” For example, “[Private | Public]” means that either the keyword “Private”
or the keyword “Public” may be used (but not both).

A Sub procedure is a block of code that is executed when invoked (called into action). By breaking the code in a module into Sub
procedures, it becomes much easier to find, modify and debug the code in your application. The syntax for a Sub procedure is:

[Private|Public] [Static] Sub ProcedureName (FormalParameters)

statements

End Sub
Each time the procedure is called, the statements between “Sub” and “End Sub” are executed. Sub procedures can be placed in
standard modules, class modules and form modules. Sub procedures are by default Public in all modules, which means they can be
called from anywhere in the application. The FormalParameters for a procedure are like a variable declaration, declaring values that
are passed in from the calling procedure.

In Visual Basic, it is useful to distinguish between two types of Sub procedures, general procedures and event procedures.

General Procedures
A general procedure tells the application how to perform a specific task. Once a general procedure is defined, it must be specifically
invoked (called into action) by the application. By contrast, an event procedure remains idle until called upon to respond to events
caused by the user or triggered by the system.

Why create general procedures? One reason is that several different event procedures might need the same actions performed. A
good programming strategy is to put common statements in a separate procedure (a general procedure) and have your event
procedures call it. This eliminates the need to duplicate code and makes the application easier to maintain.

Event Procedures
When an object in Visual Basic recognizes that an event has occurred, it automatically invokes the event procedure using the name
corresponding to the event. Because the name establishes an association between the object and the code, event procedures are said to
be attached to forms and controls.

• An event procedure for a control combines the control’s actual name (specified in the Name property), an underscore (_), and
the event name. For instance, if you want a command button named “cmdPlay” to invoke an event procedure when it is clicked,
use the procedure “cmdPlay_Click.”

• An event procedure for a form combines the word “Form,” an underscore and the event name. If you want a form to invoke an
event procedure when it is clicked, use the procedure “Form_Click.” (Like controls, forms do have unique names, but they are not
used in the names of event procedures.)

All event procedures use the same general syntax.

Syntax for a Control Event Syntax for a Form Event

Private Sub ControlName_EventName (Parameters) Private Sub Form_EventName (Parameters)

 statements statements

End Sub End Sub

Although you can write event procedures from scratch, it is easier to use the code procedures provided by Visual Basic, which
automatically include the correct procedure names. You can select a template in the Code Editor window by selecting
an object from the Object box and then selecting a procedure from the Procedure box.

It is also a good idea to set the Name property of your controls before you start writing event procedures for them. If you change the
name of a control after attaching a procedure to it, you must also change the name of the procedure to match the new name of the
control. Otherwise, Visual Basic will not be able to match the control to the procedure. When a procedure name does not match a
control name, it becomes a general procedure.

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-47

Function Procedures
Visual Basic includes built-in, or intrinsic functions, like Sqr, Cos or Chr. In addition, you can use the Function
statement to write your own Function procedures.

The syntax for a Function procedure is:

[Private|Public] [Static] Function ProcedureName (FormalParameters) [As type]

statements

End Function

Like a Sub procedure, a Function procedure is a separate procedure that can take parameters, perform a series of
statements and change the value of its parameters. Unlike a Sub procedure, a Function procedure can return a value to
the calling procedure. There are several differences between Sub and Function procedures:

• Generally, you call a function by including the function procedure name and arguments on the right side of a larger
statement or expression (returnvalue = function()).

• Function procedures have data types, just as variables do. This determines the type of the return value. (In the absence
of an “As” clause, the type is the default Variant type.)

• You return a value by assigning it to the ProcedureName itself. When the Function procedure returns a value, this
value can then become part of a larger expression.

• Although a Function procedure is allowed to alter the values of the Arguments in the call to the function, to allow a
function to do so is generally considered poor programming style. In most cases, a Function procedure should simply
return a value without altering the values of any variables other than its own local variables. In addition, a Function
should not trigger any input or output operations. Function procedures that alter variables or that trigger I/O
(input/output) operations are said to have side effects. Do not write Function procedures that have side effects! Use
Sub procedures instead!

• Sub procedures are used when it is necessary for a procedure to complete several tasks. Function procedures are used
when the only task required is to compute a single value.

Examples Including Terminology
'The following function procedure returns the distance between two points
Private Function DistBetweenPoints (ByVal X1 As Double, ByVal Y1 As Double, ByVal X2 _
 As Double, ByVal Y2 As Double) As Double

 DistBetweenPoints = Sqr((X2 − X1)^2 + (Y2 − Y1)^2)

End Function

' The following is an example of a call to the above function. The distance between the
' points (1, 4) and (7.8, 9.9) is returned and assigned to the variable "Dist"
Dim Dist As Double

The keyword “ByVal” means
that the parameters are passed

“by value.” Parameters declared
using “ByVal” store copies of the

values passed in the call of the
function. This protects any

variables in the call from being
altered accidentally.

The variables in this list are called the formal
parameters or simply the parameters of the function.

This is called the definition of the
function procedure.

The values in the call that are passed to the formal parameters in the function definition are
called the actual parameters or arguments of the function.

Dist = DistBetweenPoints (1, 4, 7.8, 9.9)

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-48

A Function is like a Machine

NOTE: Functions in programming are based on the concept of a mathematical function. For instance, when we write
() 2f x x=

2:f →

 we mean that the “input” to the function is x and the output is x2. Although you probably have not encountered
any thus far in your education, it is possible to define functions of more than one variable. For instance, the function

 defined by 2() 2,f x y x y= + has two inputs x and y (which are both real numbers) and one output (which is
also a real number).

Exercises
1. Write a function that takes two integer parameters (“Lowest” and “Highest”) and returns a pseudo-random integer

greater than or equal to “Lowest” and less than or equal to “Highest.”

2. Write a function that returns the length of the hypotenuse of a right triangle given the lengths of the other two sides.

3. Try to write a function that calculates and returns the midpoint of a line segment. What difficulties do you encounter
while trying to write this function? See I:\Out\Nolfi\Ics3m0\Midpoint and Length for a solution to this problem.

4. What are the differences between general sub procedures and event sub procedures? How does Visual Basic detect
whether you are creating a general sub procedure or an event sub procedure?

5. What are the main differences between sub procedures and function procedures? Under what circumstances should
you use a function procedure and under what circumstances should you use a sub procedure? Provide specific
examples.

6. What are side effects and why should we always avoid writing functions that have side effects? If you write a
function procedure that has side effects, why should you consider rewriting it as a sub procedure?

7. Explain the difference between defining a procedure and calling a procedure.

8. Explain the difference between an intrinsic function and a programmer-defined function. While developing a piece
of software, how would you decide whether you need to create a procedure (sub or function) to complete a certain
task?

9. Explain the difference between formal parameters (parameters) and actual parameters (arguments).

10. Explain the difference between declaring a procedure to be Private and declaring a procedure to be Public. If you
neglect to specify Private or Public, which will Visual Basic use by default?

11. What is the purpose of the ByVal keyword in the formal parameter list of a VB procedure? Why is it wise to use the
ByVal keyword for function procedure formal parameters?

12. Explain the differences between a control event and a form event.

13. Define “syntax” and “parameter.”

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-49

Examples Showing the Differences between Function and Sub Procedures
An Example of a Sub Procedure
'Enable or disable groups of buttons
Private Sub EnableOrDisableButtonGroups(ByVal Enable As Boolean, ByVal Numbers As Boolean, _

 ByVal Operations As Boolean, ByVal Others As Boolean)
 Dim I As Byte
 If Numbers = True Then
 For I = 0 To 9
 cmdNumber(I).Enabled = Enable
 Next I
 End If

Operation Buttons

Number Buttons

Miscellaneous Buttons If O ations True Then per =
 For I = 0 To 4
 cmdOperation(I).Enabled = Enable
 Next I
 End If
 If Others = True Then
 cmdDecimalPt.Enabled = Enable
 cmdPlusMinus.Enabled = Enable
 cmdCE.Enabled = Enable
 cmdEXP.Enabled = Enable
 End If
End Sub
'An example of a call to the above sub procedure

Call EnableOrDisableButtonGroups(True, False, False, True)

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-50

An Example of a Function Procedure

Take note of the following features of the sub procedure shown above:
• several different tasks are being performed, including many that affect several global objects
• the procedure is written in a general manner (i.e. it can complete a variety of different tasks depending on the values of the parameters)
• the “ByVal” keyword used in the declarations of the formal parameters is used to prevent this sub procedure from changing the values of

variables in calls to the procedure
• Subs do not return a value

Option Explicit
Private Sub cmdConvert_Click()
 lblNewNumber.Caption = "Number in new base: " & _
 ChangeBase(txtNumber.Text, _
 Val(txtOldBase.Text), Val(txtNewBase.Text))
 lbl
End Sub

 NewNumber.Visible = True

Private Sub cmdClose_Click()
 Unload frmBaseConverter

End Sub

 End

Private Sub txtNumber_Change()
 txtOldBase.Text = ""
 txtNewBase.Text = ""
 lblNewNumber.Visible = False
End Sub
'"Number" is converted from "OldBase" to "NewBase"
Private Function ChangeBase(ByVal Number As String, ByVal OldBase As Byte, ByVal NewBase As Byte) As String
 Dim Remainder As Byte, Quotient As Byte, Pos As Byte, LenNum As Byte
 Dim BaseTen As Double, NewNumber As String
 Const Digits = "0123456789ABCDEF"
 'Convert "Number" expressed in "OldBase" to base 10
 BaseTen = 0
 LenNum = Len(Number)
 For Pos = 1 To LenNum
 BaseTen = BaseTen + (InStr(Digits, UCase(Mid(Number, Pos, 1))) - 1) * OldBase ^ (LenNum - Pos)
 Next Pos
 'Convert "BaseTen" to "NewBase"
 NewNumber = ""
 Quotient = BaseTen
 Do
 Remainder = Quotient Mod NewBase
 Quotient = Int(Quotient / NewBase)
 NewNumber = Mid(Digits, Remainder + 1, 1) & NewNumber

Take note of the following features of “ChangeBase”
• it does not directly access or alter any global variables or objects
• it receives all required data through its parameters
• all the code within the function exists for the ultimate purpose of

returning a single value
• a single String value is returned according to the value of

‘ChangeBase’ when the function halts its execution

 Loop Until Quotient = 0

 ChangeBase = NewNumber

End Function

REVIEW OF UNIT 2
Critically Important Problem Solving Strategies for Programming
1. Solve a specific example of the problem

2. Plan your solution in a logical, organized fashion

3. Break up a large complex problem into several smaller, simpler problems

Additional General Problem Solving Strategies
1. Solve a simpler but related problem

2. Make reasonable, simplifying assumptions

3. Look for patterns

4. Draw diagrams

5. Do research to find out if anyone else has solved the problem

Important Programming Concepts
Complete each of the following diagrams.
1. Explain each concept
2. Explain the uses of each concept
3. Explain the advantages of each concept

General Event

Functions Subs

Procedures

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-51

General Control

Arrays

Repetition Selection Sequence

Programming
Structures

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-52

Generating Pseudo-Random Integers
To generate pseudo-random integers greater than or equal to “Lowest” and less than or equal to “Highest” use the VB
expression

Int(Rnd*(Highest–Lowest+1)+Lowest)

For example, the expression Int(Rnd*6+1) is used to generate a pseudo-random integer from 1 to 6 inclusive.

Integer Division and Remainder
\ → to obtain quotient of division of two integers Mod → to obtain remainder of division of two integers
These operators were very useful in the “Time Converter” and “Coins and Bills” problems. In the grade 12 computer
science course, you will discover that these operations (/ and % respectively in C, C++, Java) are very useful in the
“Roman Converter” problem (convert between Arabic and Roman forms).

Sequence, Selection and Repetition
These are the main structures in programming. Any program that can be written will use some combination of these
three structures.

“If” Statements

Structure to use when exactly ONE Group of Statements
is to be Selected and all others Rejected

Structure to use when the Conditions are
Independent of each other

If condition1 Then If condition1 Then
 groupOfStatements1 groupOfStatements1
ElseIf condition2 Then End If

If condition2 Then groupOfStatements2
ElseIf condition3 Then groupOfStatements2

End If groupOfStatements3
 . If condition3 Then
 . groupOfStatements3
 . End If
Else .
 groupOfStatementsN .

 . End If

Data Types and Encoding Schemes

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-53

Integers (Whole Numbers) Floating Point Numbers Text Logical Values
Encod. Encod. VB Encod. Encod. VB Type Operations VB Type Operations Operations VB Type Operations Scheme Scheme Type Scheme Scheme

8-bit
unsigned
integer
(binary)

IEEE754
32-bit

+, −, *, /, +, −, *, /, Byte Single \, ^, Mod ^

String & Unicode Boolean And,
Or, Not

16-bit
unsigned
integer

16-bit signed
integer (twos
complement

binary)

IEEE754
64-bit

+, −, *, /, +, −, *, /, Integer Double \, ^, Mod ^

32-bit signed
integer (twos
complement

binary)

+, −, *, /, Long \, ^, Mod

The structure shown in
this case should be used

whenever the
conditions are unrelated

to one another. For
instance, whether

condition1 is true has
nothing to do with

whether condition2 and
condition3 are true.

Only ONE of these groups
of statements is executed.
As evaluated from top to

bottom, if conditionM is the
first condition found to be

true, then
groupOfStatementsM is

executed and all others are
rejected. If conditionM is
false for all values of M,

then groupOfStatementsN
(in the “Else” clause) is

executed.

Copyright ©, Nick E. Nolfi ICS3MO Essential Problem Solving Strategies for Programming EPSSP-54

Some Useful Intrinsic (Built-In) Functions
State the purpose of each of the following intrinsic functions.

Val ___

CStr ___

Trim ___

Format ___

Sqr ___

Important Terminology
Explain each of the following terms. In addition, provide an example of each. (The first one is done for you.)

Term Explanation Example
Assignment Statement A statement in which a value is assigned (given) to a variable. RipoffGameConsole = "PS3"

Expression

Operator

Keyword

Data Type

Object

Event

Property

Method

Procedure

Sub Procedure

Function Procedure

Statement Continuation
Character

Compound Condition

Variable Declaration

DoEvents

Global Variables

Local Variables

Parameters

	Essential Problem Solving Strategies for Programming– Table of Contents
	A Detailed Description of Polya’s Four steps of Problem Solving
	Important Background Knowledge
	Data (Information) – A Partial List of VB Data Types
	A Computer as a Data Processing Machine
	Some Useful Intrinsic (Built-In) Functions
	Important Points about Data Types
	Questions
	A Complete List of Visual Basic Data Types

	A VB Program that Processes Numeric Information
	Introduction
	Simple Addition Calculator Version 1.0
	A Pictorial Description of the Addition Calculator Program
	Questions

	A Closer Look at “Val” and “CStr”
	The “Val” Function
	The “CStr” Function

	A Program that Processes String (Text) Information
	Introduction
	The String (Text) Processing Example
	Extremely Important Questions

	How Computers make Decisions (Selections)
	Introduction to “If” Statements
	If Statement Details
	Picturing “If” Statements
	Exercises

	Another Program that Requires “If” Statements
	Questions

	Overview: Sequence, Selection and Repetition: The Underpinnings of Programming
	Sequence
	Selection
	Repetition
	Questions and Programming Exercises

	Using VB to Generate Pseudo-Random Numbers
	Introduction
	Why Pseudo?
	How to Generate Pseudo-Random Numbers in VB
	A General Expression for Generating Pseudo-Random Integers in VB
	Questions

	Applying Pseudo-Random Integers – An Enhanced Version of the Game of Greed
	Instructions
	Questions

	ICS3M0 - Review of First Half of Unit 2
	Data Types
	Using VB to Generate Pseudo-Random Numbers
	“If” Statements

	Problem Solving Strategy 1: Solve a Complex Problem by Investigating Specific Examples of the Problem
	Case Study 1: Time Converter Problem
	General Problem Statement
	Where Should I Begin?
	Questions
	Writing an Algorithm
	Exercises

	Time Converter VB Solution – Version 1
	A Review of the Basic Principles of Problem Solving
	George Polya’s Four Steps of Problem Solving
	Corresponding Steps in Software Development (Systems Analysis)
	A Review of how we applied the above Steps to the Time Converter Problem
	Time Converter Version One
	Code for Time Converter Version 1.0 Alpha
	Extensions of this Problem

	Case Study 2: Storage Space and Data Transfer Rate Unit Converter Problem
	Conversion Table (for Kilo=1024)
	Conversion Table (for kilo=1000)
	Exercises

	A Proposal to Avoid the Confusion caused by two Possible Meanings of “Kilo”
	Introduction
	A Description of “Kibibyte” from Wikipedia
	A Description of “Kibibyte” from FOLDOC
	A Description of “Kibibyte” from http://www.robinlionheart.com/stds/html4/glossary
	Questions

	Problems that can be Solved by Investigating Specific Examples
	Assignment
	Evaluation Guide for Question 1
	Evaluation Guide for Question 2 (Unit Conversion Program)

	Problem Solving Strategy 2: Plan your Solution in a Logical, Organized Fashion
	The Problem that you need to Solve
	Local Variables versus Global Variables
	The Plan
	Pizza Program Solutions and Questions
	The Problem
	The Plan
	The Code
	Questions

	Problem Solving Strategy 3: Break up Large, Complex Problems into a Series of Smaller, Simpler Problems
	The Infinite Loop of Software Development
	Some General Guidelines for Producing Great Code
	The Fraction Calculator Program
	Instructions
	Overall Plan
	Pseudo-Code
	Above Example done using Memory Map

	Using the Fraction Calculator Assignment to Learn How to Improve Existing Code (Part 1)
	Instructions

	Using the Fraction Calculator Assignment to Learn How to Improve Existing Code (Part 2)
	Instructions

	Using the Fraction Calculator Assignment to Learn How to Improve Existing Code (Part 3)
	Instructions

	Function Procedures and Sub Procedures – Technical Information
	Sub Procedures
	General Procedures
	Event Procedures

	Function Procedures
	Examples Including Terminology

	A Function is like a Machine
	Exercises

	Examples Showing the Differences between Function and Sub Procedures
	An Example of a Sub Procedure
	An Example of a Function Procedure

	Review of Unit 2
	Critically Important Problem Solving Strategies for Programming
	Additional General Problem Solving Strategies
	Important Programming Concepts
	Generating Pseudo-Random Integers
	Integer Division and Remainder
	Sequence, Selection and Repetition
	“If” Statements
	Data Types and Encoding Schemes
	Some Useful Intrinsic (Built-In) Functions
	Important Terminology

