UNIT 2 — USING VB TO EXPAND OUR KNOWLEDGE OF PROGRAMMING

UNIT 2 — USING VB TO EXPAND OUR KNOWLEDGE OF PROGRAMMING L..uuuuuiiiiiiiiiiiiieiiiitssiieeeeeesseeeeesseesiieeiiiieeseseesaees 1
IMPORTANT PROGRAMMING TERMINOLOGY AND CON CE P TS oottt i i ies st siiiitteeiirriissssiiasiiitettirrrrireaeseieaiaes 2
[(010 | =11 | P PP PP PP RPTTI 2

Pr OO MmN LA GUAGE. ..ttt e e ettt e e e e e s et ettt e e e e e e e e e e e s et ettt ettt e e e e e e e e eeee ettt ettt e e s e s e e e et et e eeeasaeeesaastannbbbeeeneeeaaaans 2
00 ittt sttt et e e e e et ettt ettt e e e e e oo etttetetee e e e e eannnteeeettteeee oo annntte et e eeeee e e oo e ettt bttt s ee oo e e e et e eetetesseeeeseteannnnrnerees 2

A LG O T Lttt s ettt ettt e ettt e ettt e e s ettt e e e ettt e e e e ehtt e e e ettt e e e eant et ee ettt e e e eant bt e e nbeeseeeehnte s e et ebbeessesannteseatibrereesanreaeaan 2

A COMPUTER AS A DATA PROCESSING IMIACHINE ...ttt ttttttttttttttsisiesstttssssssssststssssssssssbesssessessessssesasessesssstsssssssssssssnsssstieestaasssesssaasss 2

A QUICK INTRODUCTION TO THE VISUAL BASIC DEVELOPMENT ENVIRONMENTiiiiiiiiiiiieiiiiiiiiiieeiiieeiiiieeiinns 3
STARTING A NEW PROJECT AND MAKING SURE IT IS SAVED PROPERLY .. tuttttttttutttttiisiiiiiiiiiisssistststssssssssssssssssssiessiissssseseesssesssssesieeies 3
THE MAIN FEATURES OF THE VISUAL STUDIO DEVELOPMENT ENVIRONMEN T ...t tttetttttttttetteeesssssssssssnsseessssssssesssssttesseeessesssnssnnnsnnnis 4
INTRODUCTION TO VISUAL BASIC: ASTRONOMICAL CALCULATOR L.ttt iiisesssissiiiiiiiiririreeesaiesians 5
U E S TIONS . iiiiittttetttteetee et e s tseeeseeseee e e e ettt ettt e e e e e s e e e e e e e e e e e e e ettt e e eeeeeeeesee e e s s e e te et b bee bbb eeaeeeeeessteesessessnetes 5
PICTORIAL DESCRIPTION OF THE EXECUTION OF THE “ASTRONOMICAL CALCULATOR” PROGRAMcciiiiiiiiiiiiiiiisiiniiiiiiiiiniiiiiieeeieanis 7
AN ACCELERATED INTRODUCTION TO VISUAL BASIC ittt s i i i s s s ittt et ssssssssseiassseeeetrrsstessesiiiiserteeeeieezaeas 8
VISUAL BASIC (VB FOR SHORT) .ttttiittttuiittiittittestistesstssastsssssissesssssastsssssssesssasanssssssstossessssasssssssssossesssssanssssestonsessessenseseessosesssesansens 8
COMPARING THE MAIN STRUCTURES OF APP INVENTOR TO THE MAIN STRUCTURES OF VBiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiissseeeeeesiiiiiiviiiiaiens 8
LOOPING STRUCTURES IN VB NOT AVAILABLE IN APP INVENTOR L.uuttttttttiiietiiiiiiesssssssssessssessssieissssssesessseeessasmmmsssssssereeeeessaammsssssees 11
UNDERSTANDING THE LEARNVBBYCOMPARINGTOAPPINVENTOR PROGRAMooiiiiiiiiiiiiiiiiii i 13
DA T A T P S ittt iiii ittt i ettt ettt eeeeeestteesssee ettt e eeeeeeeeee e sttt et e e e e e oo e oot e e s et e e e e e e oo oottt et e £ e £ £ £ £ oo e ettt b et e e e e e e ettt esssbrebbeeeeaas 16
DATA (INFORMATION) — A PARTIAL LIST OF VB DATA TYPES & 1utttiiiiittiiesiiiuutiesiiitttssssiisestssssissssssiissssssssessssssssisssssssossessessissesseasans 16
IMPOITANT POINTS ADOUE AT Ty DS .. vttiiiiiiitii ittt et eeeessssseettt et eeeeseeesesseasssseeeeeeesseeeee s ettt ee e e s e s eeseesaasssstteteeeseeasasssaaassnnsnns 17
QQUESTIONS ...ttt sttt ittt e e sttt e e ettt e e s ettt e e ettt e e e e eamt et e ettt e e e e met et e ettt e e e e met et e et e s e e ehnb e e e oo hbe e e e e enbee e et bbeeseeabrbeeeesanneeseaaines 17

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming UVBEKP-1

IMPORTANT PROGRAMMING TERMINOLOGY AND CONCEPTS

Program

e A program is a sequence of instructions that a computer can interpret and execute.

Programming Language

e A programming language is a very precise and unambiguous language that is designed to allow
instructions to be given to a computer.

Code

e Programming instructions are often called “code.” Programmers say that they are “writing code” when they
write programs.

Algorithm

e An algorithm is a systematic procedure (finite series of steps) by which a problem is solved. Long division is
an example of an algorithm that you learned in elementary school.

e In cooking, algorithms are called recipes.
e For many problems, there exist many different algorithms.

e For some problems, there are no known efficient algorithms (too slow and/or require too much memory).
e.g. What are the prime factors of a number?

e Some problems cannot be solved by a computer (i.e. no algorithm exists that can be implemented on a
computer).

A Computer as a Data Processing Machine
A simple but very useful model of a computer is shown below. A computer can be viewed, at a very simple

level, as a machine that processes data (information). As the diagram suggests, information is given to a
computer, the information is then processed by the computer and finally, the results are displayed.

Input == Processing =={ Output

i

Memory

This process is similar to industrial processes such as plastic injection moulding. The diagram below shows the
basic idea of how a plastic injection moulding machine produces its output.

The plastic injection
moulding machine
The finished product is the PROCESSES the INPUT

OUTPUT of a plastic (i.e. the plastic pellets).
injection moulding machine.

Plastic pellets are the
INPUT of a plastic
injection moulding

machine.

The MEMORY of this machine is the MOULD that is used to make the
plastic bins. The shape of the bin is “memorized” by the mould.

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming UVBEKP-2

A QUICK INTRODUCTION TO THE VISUAL BASIC DEVELOPMENT ENVIRONMENT

Starting a New Project and Making Sure it is Saved Properly

1. Double-click
the “VB 2010
Express” icon.

Microsoft
Visual Basic
2010 Express

Start Page X

Mi . -
wVI ual Basic 2010 Express

@ Open Project...

Recent Projects

\‘_:'B VisualBasicDemoApplication
& VBDemonstrationApplication
&8 PizzaProblem

Close page after project load
Show page on startup

Get Started

Welcome

2. After the Visual Basic 2010 Express is loaded into memory, the “Start Page” is displayed. Click
on “New Project” to begin a new project.

Latest News

Learn Upgrade

- Welcome to Visual Basic 2010 Express

The tradition continues! Visual Basic 2010 Express helps developers quickly create exciting
interactive applications for Windows. With the new Visual Basic 2010 Express development
environment, improved performance, and lots of new features, moving from great idea to
great application has never been easier. Kick off your learning at the Beginner Developer
Learning Center, or find the latest and coolest projects on Coding4Fun.

Beginner Developer Learning Center
Ceding4Fun
More on Visual Basic 2010 Express

] Quickly Create Your First Application

3. Choose “Windows Forms Application” and click “OK.” A form is simply a standard Windows window.

Mew Project

Recent Templates Sort

Installed Templates

Visual Basic

Online Templates { vﬂ WPF Application

MNarme:

Copyright ©, Nick E. Nolfi

Ny Default

Conscle Application

Windows Forms Application

'WPF Browser Application

WindowsApplication1

ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming

&
e
;S Ve| Class Library
@

| Search Installed Templates 2

Type: Visual Basic

Visual Basic
A project for creating an application with a
Windows user interface

Visual Basic

Visual Basic

Visual Basic

Visual Basic

UVBEKP-3

4. A blank project with one form (window) is created after “OK” is clicked in the previous step. The project should be
saved properly right away to prevent the possibility of data loss. To do this, follow the steps given below.

WindowsApplication - Microsoft Visual Basic 2010 Express - x
File Edit View Psgject Build Debug Data Tools Window Help
FEER: O R - L IR =Ty =
/; FormW.vb[Des\g x LAl Solution Explorer * 1 x
3 ; : « » . : | (3 (2] |
- o = (i) Click the Save All icon. Once you do this, a window that T WindowsAppiicaiont
5 looks like the following will appear: s
g Save Project ? X = ’
E" —————
E Name: | WindowsApplicationz D e —
- Location: ‘C:\User&\Nl(kE Nolfi\onedrive\docurments\visual studio 2010\Projects v| Browse... Form1.vb File Properties .
Name: ‘WmduwsAppli(atng | [Create directory for solution 4l \J
o ancel Build Action Compile
— Copy to Output [Do not copy
aa - - - - Custom Tool
(ii) Change the name of the project to something meaningful. Avoid Custom Tool Nar
the use spaces in project names. FleNome | Formivh
= (iii) Make sure that “Create directory for solution” is checked. This
creates a single folder (directory) that contains all project files
and folders.
Error List ~ 1 X
@ 0Errors | 1\ 0 Warnings | (i) 0 Messages
Description File Line Column Project
Build Action
How the file relates to the build and
deployment processes.

The Main Features of the Visual Studio Development Environment

1. Select a control (component) from

2. Place the selected control on the

the toolbox. form.
P Toolbox v =X q
& All Windows Forms ~ = Form EIIEI
% w Common Controls
a &k Pointer
- (CEEE>
& CheckBox
"g" CheckedListBox
a ComboBox
ﬁ DateTimePicker \
A Label \
A LinkLabel [e o
ListBox
220 ListView
MazkedTextBox
g MonthCalendar
= Motifylcon
I8 MumericUpDown
@l PictureBox Additional Notes
T ProgressBar i
® RadioButton (i) Event handlers are created by
&5 RichTextBox double-clicking the desired event
Jetger in the event list. Click the
e, lightning-bolt icon to see the
E] WebBrowser complete list of events.
v itpt (i) Change the control name to
FlowLayoutPanel something meaningful. Generic
[GroupBox names like “Buttonl” should not
i Pane be used.
[Tl [9

Copyright ©, Nick E. Nolfi

ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming

3. Use the “Properties” window to
modify properties of the control.

-0 x

Button1 System.Windows.Forms.Button -

.Properties.

~
AccessibleRgle Default
False
Top, Left
False
False
AutoSizeMode GrowOnly
BackColor I:l Control
Backgmundlmag[l {none)
Backgroundimac Tile
CausesValidation True
ContextPenuStri (none)
Cursor Default
DialogResult Mone
Nock Mone M
(Name)
Indicates the name used in code to identify
the object.
UVBEKP-4

INTRODUCTION TO VISUAL BASIC: ASTRONOMICAL CALCULATOR

sl Nolfinator Astronomical Calculator — X

Label — Convert From =
{ O km
Group Box @ light years |

® parsecs

Radio Button

Button

Questions

Copy S:\OUT\Nolfinator\ICS3U0\01-Visual Basic 2010\Astronomical Calculator to your “G” drive. Open the Visual
Basic solution as demonstrated in class. Study the code as well as the form designer. Then answer the following

guestions:

1. Unlike App Inventor, Visual Basic requires that variables be declared to have a specific data type. Explain the
meaning of the data types found in the “Astronomical Calculator” application. (i.e. Long, Double and String)

2. How can you tell the difference between local variables and global variables in Visual Basic?

3. What is a Sub in Visual Basic?

4. What is the purpose of the “if” statement at the end of the event hander called “ConvertButton_Click?”

5. What is the purpose of the “Val” function? What can go wrong if it’s not used?

6. What is a named constant? What are the advantages of using named constants?

7. What is the purpose of comments in computer programs? How are comments created in Visual Basic?

8. What are strings? Why are quotation marks used to enclose the values of strings?

9. Radio buttons have a property called “Checked.” What is the purpose of this property?

10. The “&” operator is called the string concatenation operator. What is its purpose? Which block in App Inventor
serves the same purpose?

11. The string " is called the null string or empty string. What does it mean?

12. What is the purpose of the “CStr” function?

13. What is the reason that certain lines in Visual Basic code end with a space followed by an underscore?

14. What is a “class?”

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming UVBEKP-5

Public Class AstronomicalCalculatorForm

'GLOBAL Named Constants. These make programs both easier to read AND easier to modify.
Const KM_IN_ONE_LIGHT_YEAR As Long = 9460528400000
Const KM_IN_ONE_PARSEC As Long = 308856775800000

'If any GLOBAL variables are required, they should be declared here, that is, outside of the procedures.

'Event handler: The procedure "ConvertButton_Click" handles the "Click" Event on "ConvertButton"
Private Sub ConvertButton_Click(sender As System.Object, e As System.EventArgs) Handles ConvertButton.Click

'"MEMORY: Declare LOCAL Variables
Dim distance As Double, convertedDistance As Double, timeToTraverseDistance As Double
Dim fromUnits As String, toUnits As String

"INPUT: Copy value in text box to the variable "distance."
'The function "Val" converts from string (text) form to numeric form.
distance = Val(distanceTextBox.Text)

"PROCESSING: Determine which radio buttons are selected and perform appropriate calculations.

If fromKmRadioButton.Checked And tolLightYearsRadioButton.Checked Then
convertedDistance = distance / KM_IN_ONE_LIGHT_YEAR
timeToTraverseDistance = distance / KM_IN_ONE_LIGHT_YEAR
fromUnits = "km"
toUnits = "light year(s)"

ElseIf fromKmRadioButton.Checked And toParsecsRadioButton.Checked Then
convertedDistance = distance / KM_IN_ONE_PARSEC
timeToTraverseDistance = distance / KM_IN_ONE_LIGHT_YEAR
fromUnits = "km"
toUnits = "parsec(s)"

ElseIf fromLightYearsRadioButton.Checked And toKmRadioButton.Checked Then
convertedDistance = distance * KM_IN_ONE_LIGHT_YEAR
timeToTraverseDistance = distance
fromUnits = "light year(s)"
toUnits = "km"

ElseIf fromLightYearsRadioButton.Checked And toParsecsRadioButton.Checked Then
convertedDistance = distance * KM_IN_ONE_LIGHT_YEAR / KM_IN_ONE_PARSEC
timeToTraverseDistance = distance
fromUnits = "light year(s)"
toUnits = "parsec(s)"

ElseIf fromParsecsRadioButton.Checked And tokKmRadioButton.Checked Then
convertedDistance = distance * KM_IN_ONE_PARSEC
timeToTraverseDistance = convertedDistance / KM_IN_ONE_LIGHT_YEAR
fromUnits = "parsec(s)"
toUnits = "km"

ElseIf fromParsecsRadioButton.Checked And tolLightYearsRadioButton.Checked Then
convertedDistance = distance * KM_IN_ONE_PARSEC / KM_IN_ONE_LIGHT_YEAR
timeToTraverseDistance = convertedDistance / KM_IN_ONE_LIGHT_YEAR

fromUnits = "parsec(s)"
toUnits = "light year(s)"
Else
convertedDistance = distance
fromUnits = ""
toUnits = ""
End If

'OUTPUT: Display the results (Note that "<>" means "not equal to")
If fromUnits <> toUnits Then

outputLabel.Text = CStr(distance) & " " & fromUnits & " = " & CStr(convertedDistance) & " " & toUnits
outputLabel2.Text = "Moving at the speed of light, it would take " & vbCrLf & _
CStr(timeToTraverseDistance) & " year(s) to travel " & distance & " " & fromUnits & "."
Else
outputLabel.Text = "WTF!!!! Why would you convert to the SAME unit?"
outputLabel2.Text = ""
End If
End Sub
End Class

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming UVBEKP-6

Pictorial Description of the Execution of the “Astronomical Calculator” Program

a5l Nolfinator Astronomical Calculator

Please Enter a Distance il Ny

Convert From =
® km

O light yeérs

® parsecs

Use “Val” to Store the result in the
convert “1000” variable “distance.”
from “String” >
form to numeric MEMORY
form. distance: | 1000

convertedDistance:

timeToTraverseDistance:

fromUnits:

toUnits:

Check which radio buttons are selected.

Since “From light years” and “To km” are
selected, the following happens:

MEMORY

9.4605284E+15

Generate the output.

Since the values of “fromUnits” and “toUnits” are different, the
program uses string concatenation (string joining) to piece together
the output messages:

“1000” & “” & “light year(s)” & “=" &

1000

“light year(s)”

“km”

“outputLabel2.”

The output messages are displayed in
two labels, “outputLabel” and

This is accomplished by setting the
“Text” property of each label to the
strings generated in the last step.

Copyright ©, Nick E. Nolfi

“9.4605284E+15” & “” & “km” & “.”

“Moving at the speed of light, it would take ” &
“1” & “year(s) to travel ” & “1000”
& “ light year(s) ” & “.”

'

A

ed.of "fﬁt.;_-.it}iduld take
fo travel 1080 light year(s). =
R

ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming UVBEKP-7

AN ACCELERATED INTRODUCTION TO VISUAL BASIC

Visual Basic (VB for Short)

e Why Visual?
As with App Inventor, the user interface can be created by pointing, dragging and dropping.
The user interface can be created without writing a single line of code, that is, entirely visually!

Why BASIC?

BASIC is an acronym for “Beginner’s All-purpose Symbolic Instruction Code”

BASIC is a family of general-purpose, high-level programming languages whose design philosophy is ease of use.
The first version dates back to 1964! (That’s old! Mr. Nolfi was born in 1963!)

For more background information, see http://en.wikipedia.org/wiki/BASIC.

Comparing the Main Structures of App Inventor to the Main Structures of VB

GLOBAL VARIABLES

App Inventor Visual Basic
Public Class Forml
In App Inventor, global variables must be declared using 'Global variables are DECLARED at the class
“initialize global” blocks. Such blocks require that both the name ‘level. Unlike App Inventor, the data type of

and the initial value of the variable be specified. However, App ;:Ei:ﬁiiiozuiai’zmgﬁﬂ“;Eii’l:i’es;ﬁgg ;2

Inventor does not have a mechanism for explicitly defining the ‘variables can also be assigned in
type of data that a variable will store. This is determined "declarations. The command "Dim" is used to
implicitly once a value is assigned to the variable. "begin a variable declaration statement.

Dim sum As Integer = ©
initialize global fo
Dim clownName As String = "Ronald McDonald"
initialize ghhal:tﬂ » Ronald McDonald J§ Dim answerFound As Boolean = False

initialize global EL=) to |

End Class

Note: Due to lack of space, some of the VB statements shown below are spread over two or more physical lines. The
character combination “_” (a space followed by an underscore) is used in VB to indicate that a statement continues on the
next line.

LOCAL VARIABLES
Local variables make debugging easier and allow memory to be used more efficiently. Use them whenever possible!
App Inventor Visual Basic
'Local variables are DECLARED within procedures and
Local variables are declared within procedures and ‘subsections of procedures (e.g. within "If" statements
subsections of procedures using “initialize local” blocks. ‘and loops). The following shows variables declared and
Recall that such variables onIy “exist” on a temporary initialized within an event-handling "Sub" procedure.
basis and in a restricted section of code. Private Sub ConvertButton_Click(sender As _
. System.Object, e As System.EventArgs) _
LR ConvertButton - BeTES Handles ConvertButton.Click
o initaize local EIZENE) to .m 'MEMORY: Declare Variables
L convertedDistance [N Dim distance As Double = @
1= o o | timeToTraverseDistance |- 0] Dim convertedDistance As Double = @
S I Dim timeToTraverseDistance As Double = @
e fromUnits R Dim fromUnits As String = ""

initialize local [Z[/75) to Dim toUnits As String = ""

“Sub” stands for subroutine or subprogram.

End Sub

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming UVBEKP-8

http://en.wikipedia.org/wiki/BASIC

ASSIGNMENT STATEMENTS

App Inventor

Visual Basic

Assignment statements assign (give) values to variables.

== d global gcd - R

set global answerFound - to false - |

== o global ClownName - R B Russell Peters [

cail Cutputlabel - I Text - RIS B

'The following assumes that the variables
'have already been declared.

gad =1

clownName = "Russell Peters"”

answerFound = False

'Controls that are created using the Forms designer
'are declared automatically but the declarations are
'normally hidden from the applications programmer.
'Occasionally, it is necessary to access this
'"hidden" code. This can be done through the
""Solution Explorer" window.

OutputlLabel.Text =" <-~_§__§_§§§\\\~§-§‘
X T

Name of Is Given Name of The “Null” or Name of Name of Is Given The “Null” or
Component the Value Property “Empty” String Object Property the Value “Empty” String
“IF” STATEMENTS

App Inventor

Visual Basic

get CITE

then | set t
sl EER o

, et £33 ER

get

If x Mod divisor = @ And _
y Mod divisor = @ Then

gcd = divisor

End If

If x <=y Then

smaller = x
Else

smaller =y
End If

Copyright ©, Nick E. Nolfi

ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming

UVBEKP-9

“IF” STATEMENTS (continued)

App Inventor Visual Basic

If percentMark>=80 And percentMark<=100 Then
letterMark = "A"

<24 percentMark - JIf = - J&§ 80 (24 percentMark - Ji < - Il 100

then = set to
= ElseIf percentMark>=70 And percentMark<80 Then

1 percentMark - | = - -1 percentlark - (80 .
letterMark = "B

then | set [EELELES to
= ElseIf percentMark>=60 And percentMark<70 Then

letterMark = "C"

=] percenthiark - | P21 percenthark -

then | set to
S

70

ElseIf percentMark>=50 And percentMark<60 Then
letterMark = "D"

721 percentidark - J| = - I8 50] P21 percenthdark - JL < - I 60)

then ~iet | letterMark - §]
ElseIf percentMark>=50 And percentMark<60 Then

letterMark = "F"

=Y percentidark - JL =~ I O WA= SERPST percentivark - J < - I 50)

then \Eet | letterlark - RG]
End If

COUNTED LOOPS

App Inventor Visual Basic

for each ({111, 1) from

For number As Integer = lowest To highest _
Step Increment
sum = sum + number

Next

CONDITIONAL LOOPS

App Inventor Visual Basic

'Perform the Euclidean algorithm to find

"the greatest common divisor of 'x' and 'y’

do | set CTUELdE to get 8 Do While y <> @ ' "<>" means "not equal to"
set [to octEE - | ot copyOfyY =y
jet £ to | get i : l(ol;l;gf¥
Loop

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming UVBEKP-10

Looping Structures in VB not Available in App Inventor

VB has a far richer variety of features than App Inventor does. Listed below are some VB looping structures for which
there are no analogues in App Inventor.

Various forms of Conditional Loops: Four Different Ways of Implementing the Euclidean Algorithm

'In the first two examples, the looping "In the next two examples, the looping
'condition appears at the beginning of the loop. ‘condition is placed at the end of the
'This means that it is possible for the loop to be | 'loop. This means that at least one
'skipped entirely. "repetition must be performed.
Do While y <> @ Do

copyOfX = x copyOfX = x

X =y X =y

y = copyOfX Mod y y = copyOfX Mod b
Loop Loop While y <> @
Do Until y = © Do

copyOfX = x copyOfX = x

X =y X =y

y = copyOfX Mod y y = copyOfX Mod y
Loop Loop Until y = @

PROCEDURES
App Inventor Visual Basic

'A procedure WITH a result is called a
""Function" in Visual Basic

BN calculatePercentAverage | listOfViarks
result | (@] initialize local ET) fo | ([0
m—

do foreach (= 3 inlist | get (EIPIR
@ sctEmM o | () oot ETIRD | + I ool LD

—

Private Function calculatePercentAverage _

i (listOfMarks As List(Of Single)) As Single
in

Dim sum As Single

For Each mark As Single In listOfMarks

H I -
resul | ("oet EVIRD) 1 1 engiotis st | get (EELETD e TS mark

Return sum / listOfMarks.Count

o erceibveraelabel W Text + UL calitePerceibverage ° End Function
(3011 - lobal pevcenthlarkLst 'Example call

percentAveragelabel.Text = _
calculatePercentAverage(percentMarkList)

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming UVBEKP-11

PROCEDURES (continued)

App Inventor

Visual Basic

BN reseiGame

T HitsLabel * W 1ext * R O]
=¥ VissesLabel * I Text * MeIRE O
= StartBution +] Enabled * Belg e |
= PauseResumeBution + I ext + KBl Pause B
= VoleClock -~ B merEnabled + lly . false =
{1 global moleMoving ~)

call

'A procedure WITHOUT a result is called a
""Sub" in Visual Basic

Private Sub resetGame()

hitsLabel.Text = ©
misseslLabel.Text = ©
startButton.Enabled = True
pauseResumeButton.Text "Pause"
moleClock.Enabled = False
moleMoving = False

End Sub

'"Example call
resetGame()

O] godEucid | x |
resut | (o] initialize local (1019 o | (1)

do | while test getm m

b sel ETELAD b | ge! (D
= Mv (D -
2] copyOfY

bty v |

set (X to
L=

Private Function gcdEuclid (ByVal x As _
Integer,ByVal y As Integer) As Integer

Dim copyOfY As Integer
While y <> ©
copyOfyY =y
y = X Mod y
Loop
Return x

End Function

"Example call: a and b are Integer variables
percentGed.Text = gcdEuclid(a, b)

Copyright ©, Nick E. Nolfi

ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming

UVBEKP-12

UNDERSTANDING THE LEARNVBBYCOMPARING TOAPPINVENTOR PROGRAM

1. List all the global variables in the “LearnVbByComparingToAppInventor” program.

Variable Name Data Type (Type of Data Stored) | Purpose of Variable

2. Explain the difference between global and local variables. Why should you exercise caution when using global
variables?

3. What is an array? Explain how the array called ‘prime’ is used in the Eratosthenes’ Sieve program. Is ‘prime’ a
global or local array?

4. List all the global objects in the “LearnVbByComparingToAppInventor” program. (Don’t bother to list the objects
created visually by using the form designer. Only list the objects that are defined through code.)

Object Name Type of Object Purpose of Object

5. List all the event handler procedures in the “LearnVbByComparingToAppInventor” program.

Event Handler Name | Event Handled | Purpose of Procedure

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming UVBEKP-13

(Continued from previous page)

Event Handler Name

Event Handled | Purpose of Procedure

6. List all the general procedures in the “LearnVbByComparingToAppInventor” program.

Procedure Name

Parameters (if any)

Purpose of Procedure

7. Explain the difference between an event handler procedure and a general procedure.

8. List all the methods in the “LearnVbByComparingToAppInventor” program.

Method Name

Class that Method
belongs to

Purpose of Method

Copyright ©, Nick E. Nolfi

ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming

UVBEKP-14

9. Variable declaration statements are programming statements that are used to state the name and type of a variable.

Examples
Dim funkyPicStep As Integer = 10 '"Initial value of 'funkyPicStep' is 10
Dim erasePicture As Boolean = False 'Initial value of 'erasePicture' is 'False'

List examples of variable declaration statements in the “LearnVbByComparingToAppInventor” program.

10. Assignment statements are programming statements that are used to give values to variables.
Examples
xShift = 2 '"Assigns a value of '2' to the variable 'xShift’

'Assign a string value to the 'Text' property of the object 'EratosthenesLabel’
EratosthenesLabel.Text = "Removing Proper Multiples of " & CStr(number) & "..."

List examples of assignment statements in the “LearnVbByComparingToAppInventor” program.

11. Describe the structure of counted and conditional loops in Visual Basic 2010. Use examples from the
“LearnVbByComparingToAppInventor” program to illustrate your answer.

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming UVBEKP-15

DATA TYPES

Data (Information) — A Partial List of VB Data Types
As mentioned earlier in this unit, a computer can be viewed as a data processing machine. Since data can be categorized
into various forms that require differing amounts of memory and different types of operations, programming languages

offer diverse data types. A summary of the most commonly used types of data studied in this course is given in the

following diagram.

Data

Numeric Text | Logical
' And,
+5_,*,/;/\,... Lft, or
Right, '
Miid Nt
Integers Floating-Point Numbers .NET Decimal Numeric '
Type
Byte Integer Long Single Double Decimal String | Boolean
(1 byte (4 bytes (8 bytes storage) (4 bytes storage) (8 bytes storage) (16 bytes storage) (storage (2 bytes
storage) storage) dggeiggs storage)
platform)
0..28-1 2% 2% 1 288281 —-3.402823E38 —1.79769313486232E308 0 True
through through through or
(0 ...255) (_2147483648 (_9223372036854775808 —1.401298E-45 —4.94065645841247E-324 +/-79228165]}4264337593543950335 False
through through for negative for negative 'th(+ '7d9".'E+|28). -
2147483647) 9223372036854775807) values values with no decimal point;
Thet:?nge is The r:?nge is 1.401298E-45 4.94065645841247E-324 thrc?ugh
roughly from roughly from through through
i : /-7.9228162514264337593543950335
ne*_ga_ltlve 2 ne_ggtlve 9 3.402823E38 1.79769313486232E308 W.'i-th 28 places to the right of the decimal;
billion to trillion to for positive for positive
p(k))S'IItII'Ve ? pos_|t|_ve ® values values smallest nonzero number is
illion L A .
triltion (7 significant (15 significant digits) +/-0.0000000000000000000000000001
digits) (+/-1E-28)

Integer values are used whenever an
application needs to work with whole
numbers. Computers can work more
efficiently with integers than with other
numbers. Therefore, integers should be used
whenever possible.

Floating-point values are used
whenever an application needs to
work with numbers that are generally
not whole numbers. Typical uses
include most scientific applications.
The choice of Single or Double
depends on the number of significant
digits required.

The .Net Decimal type is best
suited to financial
applications (i.e. money).
This is due to the large
number of digits supported by
this type.

For a complete list of VVB.Net data types see http://msdn.microsoft.com/en-us/library/47zceaw7%28v=vs.100%29.aspx .

Copyright ©, Nick E. Nolfi

ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming

UVBEKP-16

http://msdn.microsoft.com/en-us/library/47zceaw7%28v=vs.100%29.aspx

Important Points about Data Types

o Although computer circuits can process only the binary values 0 and 1, programs need to process a wide variety of
types of data including numbers, text and logical values (i.e. values that are either true or false).

e Encoding schemes are used to give a meaning to raw binary data. That is, encoding schemes use binary numbers to
represent information. See the table below for a few common examples of encoding schemes.

o Variables need to be declared so that both of the following are known: i
Amount of Memory Required Bits and Bytes
Encoding Scheme that should be used to interpret the Raw Binary Data 1 bit=1 binary digit
1 Byte = 8 bits (1 B =8 b)
The following table gives several examples of commonly used encoding schemes.

Type of Name of Encoding Memory Examples
Data Scheme Required Raw Binary Data Stored in RAM What the Raw Binary Data Represent
Integer .
(Short in 16-bit Twos 2 bytes 0111111111111111 32767
Complement
VB)
String . =211
(Text) Unicode 2 bytes 0111111111111111 W&J
Integer i
(Integer 32-bit Twos 4Abytes | 11000011100110001101000000000000 1013395456
: Complement
in VB)
Floating
(Srnog;rg in 32-bit IEEE754 4 bytes 11000011100110001101000000000000 -305.625
VB)
Questions

1. Why do programming languages offer so many different data types?

2. Visit www.unicode.org and find the Unicode hexadecimal (base 16) code for each of the following characters. Then
use a Web-based converter or the Windows calculator to convert to binary. (Windows calculator must be in
“Scientific” view.)

@ 5 (Hiragana, Japanese) Hex code: Binary code:

(b) < (Guijarati, Indic) Hex code: Binary code:

3. Now interpret the codes that you found in question 2 as 16-bit integers. Convert each code from binary form to
decimal form. Again, you may use a Web-based converter or the Windows calculator.

4. Without an encoding scheme, does raw binary data have any meaning?

5. Complete the following table:

Standard Form Scientific Notation Scientific Notation (Programming Format)

23400000 2.34x107 2.34E7

9.10938188x10%! kg
(mass of an electron)

1.99x10% kg
(mass of sun)

1.79769313486232E308
(largest Double value in VB)

0.000000475 m
(wavelength of blue light)

0.000000014 m
(distance between conductors in a CPU,
known as the fabrication process size)

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming UVBEKP-17

http://www.unicode.org/

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 — Using VB to Expand our Knowledge of Programming UVBEKP-18

	Unit 2 – Using VB to Expand our Knowledge of Programming
	Important Programming Terminology and Concepts
	Program
	Programming Language
	Code
	Algorithm
	A Computer as a Data Processing Machine

	A Quick Introduction to the Visual Basic Development Environment
	Starting a New Project and Making Sure it is Saved Properly
	The Main Features of the Visual Studio Development Environment

	Introduction to Visual Basic: Astronomical Calculator
	Questions
	Pictorial Description of the Execution of the “Astronomical Calculator” Program

	An Accelerated Introduction to Visual Basic
	Visual Basic (VB for Short)
	Comparing the Main Structures of App Inventor to the Main Structures of VB
	Looping Structures in VB not Available in App Inventor

	Understanding the LearnVbByComparingToAppInventor Program
	Data Types
	Data (Information) – A Partial List of VB Data Types
	Important Points about Data Types
	Questions

