
Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-1

UNIT 2 – USING VB TO EXPAND OUR KNOWLEDGE OF PROGRAMMING

UNIT 2 – USING VB TO EXPAND OUR KNOWLEDGE OF PROGRAMMING ... 1

IMPORTANT PROGRAMMING TERMINOLOGY AND CONCEPTS .. 2

Program.. 2
Programming Language.. 2
Code ... 2
Algorithm .. 2

A COMPUTER AS A DATA PROCESSING MACHINE .. 2

A QUICK INTRODUCTION TO THE VISUAL BASIC DEVELOPMENT ENVIRONMENT... 3

STARTING A NEW PROJECT AND MAKING SURE IT IS SAVED PROPERLY ... 3
THE MAIN FEATURES OF THE VISUAL STUDIO DEVELOPMENT ENVIRONMENT ... 4

INTRODUCTION TO VISUAL BASIC: ASTRONOMICAL CALCULATOR .. 5

QUESTIONS .. 5
PICTORIAL DESCRIPTION OF THE EXECUTION OF THE “ASTRONOMICAL CALCULATOR” PROGRAM ... 7

AN ACCELERATED INTRODUCTION TO VISUAL BASIC .. 8

VISUAL BASIC (VB FOR SHORT) ... 8
COMPARING THE MAIN STRUCTURES OF APP INVENTOR TO THE MAIN STRUCTURES OF VB .. 8
LOOPING STRUCTURES IN VB NOT AVAILABLE IN APP INVENTOR ... 11

UNDERSTANDING THE LEARNVBBYCOMPARINGTOAPPINVENTOR PROGRAM ... 13

DATA TYPES .. 16

DATA (INFORMATION) – A PARTIAL LIST OF VB DATA TYPES .. 16
Important Points about Data Types ... 17
Questions .. 17

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-2

IMPORTANT PROGRAMMING TERMINOLOGY AND CONCEPTS

Program

 A program is a sequence of instructions that a computer can interpret and execute.

Programming Language

 A programming language is a very precise and unambiguous language that is designed to allow
instructions to be given to a computer.

Code

 Programming instructions are often called “code.” Programmers say that they are “writing code” when they

write programs.

Algorithm

 An algorithm is a systematic procedure (finite series of steps) by which a problem is solved. Long division is

an example of an algorithm that you learned in elementary school.

 In cooking, algorithms are called recipes.

 For many problems, there exist many different algorithms.

 For some problems, there are no known efficient algorithms (too slow and/or require too much memory).

e.g. What are the prime factors of a number?

 Some problems cannot be solved by a computer (i.e. no algorithm exists that can be implemented on a

computer).

A Computer as a Data Processing Machine

A simple but very useful model of a computer is shown below. A computer can be viewed, at a very simple

level, as a machine that processes data (information). As the diagram suggests, information is given to a

computer, the information is then processed by the computer and finally, the results are displayed.

This process is similar to industrial processes such as plastic injection moulding. The diagram below shows the

basic idea of how a plastic injection moulding machine produces its output.

Input Processing Output

Memory

Plastic pellets are the
INPUT of a plastic

injection moulding

machine.

The finished product is the

OUTPUT of a plastic

injection moulding machine.

The plastic injection

moulding machine

PROCESSES the INPUT

(i.e. the plastic pellets).

The MEMORY of this machine is the MOULD that is used to make the

plastic bins. The shape of the bin is “memorized” by the mould.

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-3

A QUICK INTRODUCTION TO THE VISUAL BASIC DEVELOPMENT ENVIRONMENT

Starting a New Project and Making Sure it is Saved Properly

1. Double-click

the “VB 2010

Express” icon.

2. After the Visual Basic 2010 Express is loaded into memory, the “Start Page” is displayed. Click

on “New Project” to begin a new project.

3. Choose “Windows Forms Application” and click “OK.” A form is simply a standard Windows window.

Microsoft
Visual Basic

2010 Express

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-4

4. A blank project with one form (window) is created after “OK” is clicked in the previous step. The project should be

saved properly right away to prevent the possibility of data loss. To do this, follow the steps given below.

The Main Features of the Visual Studio Development Environment

1. Select a control (component) from

the toolbox.

2. Place the selected control on the

form.

Additional Notes

(i) Event handlers are created by

double-clicking the desired event

in the event list. Click the

lightning-bolt icon to see the

complete list of events.

(ii) Change the control name to

something meaningful. Generic

names like “Button1” should not

be used.

3. Use the “Properties” window to

modify properties of the control.

(i) Click the “Save All” icon. Once you do this, a window that

looks like the following will appear:

(ii) Change the name of the project to something meaningful. Avoid

the use spaces in project names.

(iii) Make sure that “Create directory for solution” is checked. This

creates a single folder (directory) that contains all project files

and folders.

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-5

INTRODUCTION TO VISUAL BASIC: ASTRONOMICAL CALCULATOR

 Label

 Group Box

 Radio Button

 Form

 Button

Questions

Copy S:\OUT\Nolfinator\ICS3U0\01-Visual Basic 2010\Astronomical Calculator to your “G” drive. Open the Visual

Basic solution as demonstrated in class. Study the code as well as the form designer. Then answer the following

questions:

1. Unlike App Inventor, Visual Basic requires that variables be declared to have a specific data type. Explain the

meaning of the data types found in the “Astronomical Calculator” application. (i.e. Long, Double and String)

2. How can you tell the difference between local variables and global variables in Visual Basic?

3. What is a Sub in Visual Basic?

4. What is the purpose of the “if” statement at the end of the event hander called “ConvertButton_Click?”

5. What is the purpose of the “Val” function? What can go wrong if it’s not used?

6. What is a named constant? What are the advantages of using named constants?

7. What is the purpose of comments in computer programs? How are comments created in Visual Basic?

8. What are strings? Why are quotation marks used to enclose the values of strings?

9. Radio buttons have a property called “Checked.” What is the purpose of this property?

10. The “&” operator is called the string concatenation operator. What is its purpose? Which block in App Inventor

serves the same purpose?

11. The string "" is called the null string or empty string. What does it mean?

12. What is the purpose of the “CStr” function?

13. What is the reason that certain lines in Visual Basic code end with a space followed by an underscore?

14. What is a “class?”

Text Box

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-6

Public Class AstronomicalCalculatorForm

 'GLOBAL Named Constants. These make programs both easier to read AND easier to modify.
 Const KM_IN_ONE_LIGHT_YEAR As Long = 9460528400000
 Const KM_IN_ONE_PARSEC As Long = 30856775800000

 'If any GLOBAL variables are required, they should be declared here, that is, outside of the procedures.

 'Event handler: The procedure "ConvertButton_Click" handles the "Click" Event on "ConvertButton"
 Private Sub ConvertButton_Click(sender As System.Object, e As System.EventArgs) Handles ConvertButton.Click

 'MEMORY: Declare LOCAL Variables
 Dim distance As Double, convertedDistance As Double, timeToTraverseDistance As Double
 Dim fromUnits As String, toUnits As String

 'INPUT: Copy value in text box to the variable "distance."
 'The function "Val" converts from string (text) form to numeric form.
 distance = Val(distanceTextBox.Text)

 'PROCESSING: Determine which radio buttons are selected and perform appropriate calculations.
 If fromKmRadioButton.Checked And toLightYearsRadioButton.Checked Then
 convertedDistance = distance / KM_IN_ONE_LIGHT_YEAR
 timeToTraverseDistance = distance / KM_IN_ONE_LIGHT_YEAR
 fromUnits = "km"
 toUnits = "light year(s)"

 ElseIf fromKmRadioButton.Checked And toParsecsRadioButton.Checked Then
 convertedDistance = distance / KM_IN_ONE_PARSEC
 timeToTraverseDistance = distance / KM_IN_ONE_LIGHT_YEAR
 fromUnits = "km"
 toUnits = "parsec(s)"

 ElseIf fromLightYearsRadioButton.Checked And toKmRadioButton.Checked Then
 convertedDistance = distance * KM_IN_ONE_LIGHT_YEAR
 timeToTraverseDistance = distance
 fromUnits = "light year(s)"
 toUnits = "km"

 ElseIf fromLightYearsRadioButton.Checked And toParsecsRadioButton.Checked Then
 convertedDistance = distance * KM_IN_ONE_LIGHT_YEAR / KM_IN_ONE_PARSEC
 timeToTraverseDistance = distance
 fromUnits = "light year(s)"
 toUnits = "parsec(s)"

 ElseIf fromParsecsRadioButton.Checked And toKmRadioButton.Checked Then
 convertedDistance = distance * KM_IN_ONE_PARSEC
 timeToTraverseDistance = convertedDistance / KM_IN_ONE_LIGHT_YEAR
 fromUnits = "parsec(s)"
 toUnits = "km"

 ElseIf fromParsecsRadioButton.Checked And toLightYearsRadioButton.Checked Then
 convertedDistance = distance * KM_IN_ONE_PARSEC / KM_IN_ONE_LIGHT_YEAR
 timeToTraverseDistance = convertedDistance / KM_IN_ONE_LIGHT_YEAR
 fromUnits = "parsec(s)"
 toUnits = "light year(s)"

 Else
 convertedDistance = distance
 fromUnits = ""
 toUnits = ""

 End If

 'OUTPUT: Display the results (Note that "<>" means "not equal to")
 If fromUnits <> toUnits Then
 outputLabel.Text = CStr(distance) & " " & fromUnits & " = " & CStr(convertedDistance) & " " & toUnits
 outputLabel2.Text = "Moving at the speed of light, it would take " & vbCrLf & _
 CStr(timeToTraverseDistance) & " year(s) to travel " & distance & " " & fromUnits & "."
 Else
 outputLabel.Text = "WTF!!!! Why would you convert to the SAME unit?"
 outputLabel2.Text = ""
 End If

 End Sub

End Class

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-7

Pictorial Description of the Execution of the “Astronomical Calculator” Program

Use “Val” to

convert “1000”

from “String”

form to numeric

form.

Store the result in the

variable “distance.”

MEMORY

distance: 1000

Check which radio buttons are selected.

Since “From light years” and “To km” are

selected, the following happens:

MEMORY

convertedDistance:

timeToTraverseDistance:

fromUnits:

toUnits:

9.4605284E+15

“light year(s)”

“km”

Generate the output.

Since the values of “fromUnits” and “toUnits” are different, the

program uses string concatenation (string joining) to piece together

the output messages:

“1000” & “ ” & “light year(s)” & “ = ” &

“9.4605284E+15” & “ ” & “km” & “.”

“Moving at the speed of light, it would take ” &

“1” & “year(s) to travel ” & “1000”

& “ light year(s) ” & “.”

1000

The output messages are displayed in

two labels, “outputLabel” and

“outputLabel2.”

This is accomplished by setting the

“Text” property of each label to the

strings generated in the last step.

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-8

AN ACCELERATED INTRODUCTION TO VISUAL BASIC

Visual Basic (VB for Short)

 Why Visual?
As with App Inventor, the user interface can be created by pointing, dragging and dropping.

The user interface can be created without writing a single line of code, that is, entirely visually!

 Why BASIC?

BASIC is an acronym for “Beginner’s All-purpose Symbolic Instruction Code”

BASIC is a family of general-purpose, high-level programming languages whose design philosophy is ease of use.

The first version dates back to 1964! (That’s old! Mr. Nolfi was born in 1963!)

For more background information, see http://en.wikipedia.org/wiki/BASIC.

Comparing the Main Structures of App Inventor to the Main Structures of VB

GLOBAL VARIABLES

App Inventor Visual Basic

In App Inventor, global variables must be declared using

“initialize global” blocks. Such blocks require that both the name

and the initial value of the variable be specified. However, App

Inventor does not have a mechanism for explicitly defining the

type of data that a variable will store. This is determined

implicitly once a value is assigned to the variable.

Public Class Form1

 'Global variables are DECLARED at the class
 'level. Unlike App Inventor, the data type of
 'variables must be explicitly specified in
 'declaration statements. Initial values of
 'variables can also be assigned in
 'declarations. The command "Dim" is used to
 'begin a variable declaration statement.

 Dim sum As Integer = 0

 Dim clownName As String = "Ronald McDonald"

 Dim answerFound As Boolean = False
 .
 .
 .
End Class

Note: Due to lack of space, some of the VB statements shown below are spread over two or more physical lines. The

character combination “ _” (a space followed by an underscore) is used in VB to indicate that a statement continues on the

next line.

LOCAL VARIABLES
Local variables make debugging easier and allow memory to be used more efficiently. Use them whenever possible!

App Inventor Visual Basic

Local variables are declared within procedures and

subsections of procedures using “initialize local” blocks.

Recall that such variables only “exist” on a temporary

basis and in a restricted section of code.

'Local variables are DECLARED within procedures and
'subsections of procedures (e.g. within "If" statements
'and loops). The following shows variables declared and
'initialized within an event-handling "Sub" procedure.

Private Sub ConvertButton_Click(sender As _
 System.Object, e As System.EventArgs) _
 Handles ConvertButton.Click

 'MEMORY: Declare Variables
 Dim distance As Double = 0
 Dim convertedDistance As Double = 0
 Dim timeToTraverseDistance As Double = 0
 Dim fromUnits As String = ""
 Dim toUnits As String = ""
 .
 .
 .

End Sub

“Sub” stands for subroutine or subprogram.

http://en.wikipedia.org/wiki/BASIC

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-9

ASSIGNMENT STATEMENTS

App Inventor Visual Basic

Assignment statements assign (give) values to variables.

'The following assumes that the variables
'have already been declared.

gcd = 1

clownName = "Russell Peters"

answerFound = False

'Controls that are created using the Forms designer
'are declared automatically but the declarations are
'normally hidden from the applications programmer.
'Occasionally, it is necessary to access this
'"hidden" code. This can be done through the
'"Solution Explorer" window.

OutputLabel.Text = ""

“IF” STATEMENTS

App Inventor Visual Basic

If x Mod divisor = 0 And _
 y Mod divisor = 0 Then

 gcd = divisor

End If

If x <= y Then

 smaller = x

Else

 smaller = y

End If

Name of

Object

Name of

Property

Is Given

the Value

The “Null” or

“Empty” String
Name of

Component

Name of

Property

Is Given

the Value

The “Null” or

“Empty” String

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-10

“IF” STATEMENTS (continued)

App Inventor Visual Basic

If percentMark>=80 And percentMark<=100 Then

 letterMark = "A"

ElseIf percentMark>=70 And percentMark<80 Then

 letterMark = "B"

ElseIf percentMark>=60 And percentMark<70 Then

 letterMark = "C"

ElseIf percentMark>=50 And percentMark<60 Then

 letterMark = "D"

ElseIf percentMark>=50 And percentMark<60 Then

 letterMark = "F"

End If

COUNTED LOOPS

App Inventor Visual Basic

For number As Integer = lowest To highest _
 Step Increment
 sum = sum + number

Next

CONDITIONAL LOOPS

App Inventor Visual Basic

'Perform the Euclidean algorithm to find
'the greatest common divisor of 'x' and 'y'

Do While y <> 0 ' "<>" means "not equal to"

 copyOfY = y
 y = x Mod y
 x = copyOfY

Loop

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-11

Looping Structures in VB not Available in App Inventor

VB has a far richer variety of features than App Inventor does. Listed below are some VB looping structures for which

there are no analogues in App Inventor.

Various forms of Conditional Loops: Four Different Ways of Implementing the Euclidean Algorithm

'In the first two examples, the looping
'condition appears at the beginning of the loop.
'This means that it is possible for the loop to be
'skipped entirely.

Do While y <> 0

 copyOfX = x
 x = y
 y = copyOfX Mod y

Loop

Do Until y = 0

 copyOfX = x
 x = y
 y = copyOfX Mod y

Loop

'In the next two examples, the looping
'condition is placed at the end of the
'loop. This means that at least one
'repetition must be performed.

Do

 copyOfX = x
 x = y
 y = copyOfX Mod b

Loop While y <> 0

Do

 copyOfX = x
 x = y
 y = copyOfX Mod y

Loop Until y = 0

PROCEDURES

App Inventor Visual Basic

'A procedure WITH a result is called a
'"Function" in Visual Basic

Private Function calculatePercentAverage _
 (listOfMarks As List(Of Single)) As Single

 Dim sum As Single

 For Each mark As Single In listOfMarks
 sum = sum + mark
 Next

 Return sum / listOfMarks.Count

End Function

'Example call
percentAverageLabel.Text = _
 calculatePercentAverage(percentMarkList)

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-12

PROCEDURES (continued)

App Inventor Visual Basic

'A procedure WITHOUT a result is called a
'"Sub" in Visual Basic

Private Sub resetGame()

 hitsLabel.Text = 0
 missesLabel.Text = 0
 startButton.Enabled = True
 pauseResumeButton.Text "Pause"
 moleClock.Enabled = False
 moleMoving = False

End Sub

'Example call
resetGame()

Private Function gcdEuclid (ByVal x As _
 Integer,ByVal y As Integer) As Integer

 Dim copyOfY As Integer

 While y <> 0
 copyOfY = y
 y = x Mod y
 Loop

 Return x

End Function

'Example call: a and b are Integer variables
percentGcd.Text = gcdEuclid(a, b)

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-13

UNDERSTANDING THE LEARNVBBYCOMPARINGTOAPPINVENTOR PROGRAM

1. List all the global variables in the “LearnVbByComparingToAppInventor” program.

Variable Name Data Type (Type of Data Stored) Purpose of Variable

2. Explain the difference between global and local variables. Why should you exercise caution when using global

variables?

3. What is an array? Explain how the array called ‘prime’ is used in the Eratosthenes’ Sieve program. Is ‘prime’ a

global or local array?

4. List all the global objects in the “LearnVbByComparingToAppInventor” program. (Don’t bother to list the objects

created visually by using the form designer. Only list the objects that are defined through code.)

Object Name Type of Object Purpose of Object

5. List all the event handler procedures in the “LearnVbByComparingToAppInventor” program.

Event Handler Name Event Handled Purpose of Procedure

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-14

(Continued from previous page)

Event Handler Name Event Handled Purpose of Procedure

6. List all the general procedures in the “LearnVbByComparingToAppInventor” program.

Procedure Name Parameters (if any) Purpose of Procedure

7. Explain the difference between an event handler procedure and a general procedure.

8. List all the methods in the “LearnVbByComparingToAppInventor” program.

Method Name
Class that Method

belongs to
Purpose of Method

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-15

9. Variable declaration statements are programming statements that are used to state the name and type of a variable.

Examples

Dim funkyPicStep As Integer = 10 'Initial value of 'funkyPicStep' is 10
Dim erasePicture As Boolean = False 'Initial value of 'erasePicture' is 'False'

List examples of variable declaration statements in the “LearnVbByComparingToAppInventor” program.

10. Assignment statements are programming statements that are used to give values to variables.

Examples

xShift = 2 'Assigns a value of '2' to the variable 'xShift'

'Assign a string value to the 'Text' property of the object 'EratosthenesLabel'
EratosthenesLabel.Text = "Removing Proper Multiples of " & CStr(number) & "..."

List examples of assignment statements in the “LearnVbByComparingToAppInventor” program.

11. Describe the structure of counted and conditional loops in Visual Basic 2010. Use examples from the

“LearnVbByComparingToAppInventor” program to illustrate your answer.

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-16

DATA TYPES

Data (Information) – A Partial List of VB Data Types

As mentioned earlier in this unit, a computer can be viewed as a data processing machine. Since data can be categorized

into various forms that require differing amounts of memory and different types of operations, programming languages

offer diverse data types. A summary of the most commonly used types of data studied in this course is given in the

following diagram.

Data

Numeric Text Logical

Integers Floating-Point Numbers .NET Decimal Numeric

Type

Byte
(1 byte

storage)

Integer
(4 bytes

storage)

Long
(8 bytes storage)

Single
(4 bytes storage)

Double
(8 bytes storage)

Decimal
(16 bytes storage)

String
(storage

depends

on the

platform)

Boolean
(2 bytes

storage)

0 … 28 – 1

(0 … 255)

–231 … 231 – 1

(2147483648

through

2147483647)

The range is

roughly from
negative 2

billion to

positive 2

billion

–263 … 263 – 1

(–9223372036854775808

through

9223372036854775807)

The range is

roughly from

negative 9

trillion to

positive 9

trillion

–3.402823E38

through

–1.401298E–45

for negative

values

1.401298E–45

through

3.402823E38

for positive

values

(7 significant

digits)

–1.79769313486232E308

through

–4.94065645841247E–324

for negative

values

4.94065645841247E–324

through

1.79769313486232E308

for positive

values

(15 significant digits)

0

through

+/-7922816514264337593543950335

(+/-7.9...E+28)

with no decimal point;

0

through

 +/-7.9228162514264337593543950335

with 28 places to the right of the decimal;

smallest nonzero number is

+/-0.0000000000000000000000000001

(+/-1E-28)

 True

or

False

Integer values are used whenever an

application needs to work with whole

numbers. Computers can work more

efficiently with integers than with other

numbers. Therefore, integers should be used

whenever possible.

Floating-point values are used

whenever an application needs to

work with numbers that are generally

not whole numbers. Typical uses

include most scientific applications.

The choice of Single or Double

depends on the number of significant

digits required.

The .Net Decimal type is best

suited to financial

applications (i.e. money).

This is due to the large

number of digits supported by

this type.

For a complete list of VB.Net data types see http://msdn.microsoft.com/en-us/library/47zceaw7%28v=vs.100%29.aspx .

+, , *, /, ^, …
&,

Left,
Right,

Mid,

…

And,

Or,
Not.

…

http://msdn.microsoft.com/en-us/library/47zceaw7%28v=vs.100%29.aspx

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-17

Important Points about Data Types

 Although computer circuits can process only the binary values 0 and 1, programs need to process a wide variety of

types of data including numbers, text and logical values (i.e. values that are either true or false).

 Encoding schemes are used to give a meaning to raw binary data. That is, encoding schemes use binary numbers to

represent information. See the table below for a few common examples of encoding schemes.

 Variables need to be declared so that both of the following are known:

 Amount of Memory Required

 Encoding Scheme that should be used to interpret the Raw Binary Data

The following table gives several examples of commonly used encoding schemes.

Type of

Data

Name of Encoding

Scheme

Memory

Required

Examples

Raw Binary Data Stored in RAM What the Raw Binary Data Represent

Integer

(Short in

VB)

16-bit Twos

Complement
2 bytes 0111111111111111 32767

String

(Text)
Unicode 2 bytes 0111111111111111

Integer

(Integer

in VB)

32-bit Twos

Complement
4 bytes 11000011100110001101000000000000 1013395456

Floating

Point

(Single in

VB)

32-bit IEEE754 4 bytes 11000011100110001101000000000000 305.625

Questions

1. Why do programming languages offer so many different data types?

2. Visit www.unicode.org and find the Unicode hexadecimal (base 16) code for each of the following characters. Then

use a Web-based converter or the Windows calculator to convert to binary. (Windows calculator must be in

“Scientific” view.)

(a) (Hiragana, Japanese) Hex code: Binary code:

(b) (Gujarati, Indic) Hex code: Binary code:

3. Now interpret the codes that you found in question X2X as 16-bit integers. Convert each code from binary form to

decimal form. Again, you may use a Web-based converter or the Windows calculator.

4. Without an encoding scheme, does raw binary data have any meaning?

5. Complete the following table:

Standard Form Scientific Notation Scientific Notation (Programming Format)

23400000 2.34107 2.34E7

9.109381881031 kg

(mass of an electron)

1.991030 kg

(mass of sun)

1.79769313486232E308

(largest Double value in VB)

0.000000475 m

(wavelength of blue light)

0.000000014 m
(distance between conductors in a CPU,

known as the fabrication process size)

Bits and Bytes

1 bit = 1 UbiUnary digiUt

1 Byte = 8 bits (1 B = 8 b)

http://www.unicode.org/

Copyright ©, Nick E. Nolfi ICS3U0 Unit 2 – Using VB to Expand our Knowledge of Programming UVBEKP-18

	Unit 2 – Using VB to Expand our Knowledge of Programming
	Important Programming Terminology and Concepts
	Program
	Programming Language
	Code
	Algorithm
	A Computer as a Data Processing Machine

	A Quick Introduction to the Visual Basic Development Environment
	Starting a New Project and Making Sure it is Saved Properly
	The Main Features of the Visual Studio Development Environment

	Introduction to Visual Basic: Astronomical Calculator
	Questions
	Pictorial Description of the Execution of the “Astronomical Calculator” Program

	An Accelerated Introduction to Visual Basic
	Visual Basic (VB for Short)
	Comparing the Main Structures of App Inventor to the Main Structures of VB
	Looping Structures in VB not Available in App Inventor

	Understanding the LearnVbByComparingToAppInventor Program
	Data Types
	Data (Information) – A Partial List of VB Data Types
	Important Points about Data Types
	Questions

