TABLE OF CONTENTS — ADVANCED VISUAL BASIC

TABLE OF CONTENTS — ADVANCED VI ISU AL B A S C ..ttt iitiiii ittt ittt i sttt sttt tesaetssstsesaesistesssasessstasessssthteresassstasassrsssiseeesas 1
REVIEW OF IMPORTANT PROGRAMMING CON CE P T S .t ittiii ittt ittt it sttt sttt essistesssassesisissesssistesssasseststisessssisbsrssasersaiisenes 4
OVERVIEW .. uutiie ittt e it e ettt e e s et et e s est e e e eate e e e st teeeeehs s s eabes e e ts e e e e st e s eht e e o1t e e e et e s s 8o e s e 41t e s 2ot s s ehb e s e eat e e e eAmes s e anbeeesansbesesnnnssssnrenasan 4
EXCERPT FROM WIKIPEDIA ARTICLE ON CAMEL C ASE ... tttttitiiiiiittttttitiessteittttesssasstaissstssssssstesssstesssssssstassbesssasesstasssesssssessiasssssesssesssessssres 5
REV IE W UE S TION S .ttt ttt ittt iees sttt et e ee e sast bttt e e e e e ittt e e ettt e e e e ettt et e ettt e e £ 24 ettt e 224 Attt e s 4 e oo ettt e s e e e et bt bbb aeeassnnnrbes 6
RUN-TIME ERROR HAIND LN G ...ttt tiii ittt ittiis s ittt is ittt s ssistsssssestssssaseessstasesss sttt essssesess st be s s s o1t te s s o1t es e th b e e s eehttsseeabessesisbesesabsbsssssrenas 7
Two DIFFERENT METHODS OF CORRECTING THE BUGS IN TIME CONVERTER 1.0 ALPHA ..uuuiiiiiiiiiiitiiiiieeiisiisiesiisssisissiesiiassssiessieeesaes 7
THE COUE O VEISION 1.0 BEEa .ttt ittiiiiittiisiteiies ittt iesestessssssesaes et teeesasseessease s e e et e e e e as e e et s e e et £ e et e e et e e et te e e s st sesebbbeasansbasasasns 7
The Code fOr VEIrSION 1.0 FINal REIBASE. .. .uuiii ittt ittt s itttee sttt e satstsssessesasssteeeseases e sasesee s st esehs e s eh s e e et teeesbsesesebbeeasansbesasases 8
TIME CONVERTER VERSION L. L A L PH A . uttttttiiiiiiitttttttiestiaistttesssssssaessstessssssssissbessesse e tasbbseeee s e e e8sbe b e e e e e e s e tnat b e e s eeee e bntbeeseasessssnbbnbnnasas 9
QU EIONS ..ttt eet et e et e et e estt et e eet et e et e et e ettt oottt et £ e oAbt s e oAt e £ bt e oAt et e oAbt et e oAbt s bt s eh bt s bt e ehbesabeeanreran 10
TIME CONVERTER VERSION L. L BT A i uuttitiiiiiiiiitttttisiesiiettstttssessiesttsteessesstastseteesseessassss b e e s eee e e tsae b e e e e e e e e anb b e eeeeee e anbbbbeeaseessnbbbbsnssas 11
QU TIONS vttt sttt st s sttt e st e et e ese et eest et eesb et eehb e et e et et e oAbt e bt e oAb s bt e oAb e s b e s ehbe s hEesehbe s bbeseAbe s besehbesabesanresaresareran 13
CREATING THE FINAL VERSION OF TIME CONVERTER ... uuttieiittttstiituttsiessesssissssssasssssiassssssossssssasessssssssssossssssansessssnssnssssssessansessssnneess 14
Brief Summary of the Evolution of the Time CONVErter PrOQram ... i i iiiiieisieiisieesieiissessieissssessssessssesssssssasessssesssersssessseeans 14
Y OUT A S ST O T N .ttt ett ettt e e ettt ettt e ettt et et e ettt ettt e ettt et e e e ettt £ et e e et e e ettt s sabneaesbbeneaas 14
Evaluation Guide for Time ConVErter 1.1 FINAl REIEASEeiiiiiiiiitiiiiitiie ittt iee sttt iasastttssssseaesiesesesassessssabesessisresesassessssaseeas 15
COUNTED LOOPS AND CONDITIONAL LOOPS IN VB L. iiiiiiiiiiiiiiitii i sttt sssitetsssttsssiissssssissssssaisssssiessssssissrzasissrresssrzssiisereaas 16
CONDITIONAL L OOP EXAMPLE . ttiiiiiiittttttttesstsissstestssssssiasstesssssssssassbessssss s sassbeeessss s sassbese e e s e o4 e 88 bebee s s e o4 48ss s bessseeseesnssbesssesssesansbesssassssias 16
COUNTED L OOP E X AIMPLE .. .uttttitiiesiietttteetseesssissstestsesssssastteeseese e sas s beee e e e oo saae e et e e s oo oAb et e e e e oo oAb et e e e £ oo 4ttt s 4 s oo e bt b e e s s e e e s anbbbbaeasssssns 16
VARIOUS CONDITIONAL LOOP STRUCTURES IN VISUAL B ASIC . .uuttiiiiiiiiiitttiiiiesiiiiittttttessisisstessssssssiessssssssssssiassssssssessionsssssssessiasssnne 16
COUNTED LOOPS IN VB - “FOR ... NEX T L OO P S ..ottt ittt ittt e s ettt ettt tesestetesaestetssaeseeestetesesasssesstaseseesisseessaassstesasseessiseresas 16
“FOR...NEXT” (COUNTED LOOP) EXERCISES ... uuiiiutieiuutsisttssssssistssssssstasssssssststssssssssssssssssssssssssssssssssssssssstessssssssssssssssssssssssssssssssesssses 17
“DO ... WHILE” AND “DO ... UNTIL” LOOP STRUCTURES (CONDITIONAL LOOPS).....cciiiiiiiiiiiiiiciieiiieeiieesiieesnneeans 18
UESTION 1.t utttt et ittt e e stte e ettt e e s ettt eeest e e e esse e e s et e e e st e e e eame e s mt e s e eat s e oo e e e bt e e e o st e s e ohs e s e n e e e eme s s e emb s e e n e e e et e seembaeesatnbeeesannessesnnenis 18
E XA P LES ...ttt ittiie e ittt ettt e et ettt e e ettt e e et eestteeeeemt e e eabe e e ettt eeeenne s e eebeeeeeatte s e e Ane e e ehneseeanteseeAnneeeehbeeseenteeseeabeeseethbereeanbteseaanreseasrrereaas 19
“DO...LOOP” (CONDITIONAL LOOP) EXERCISES ..iiiiutttitieuuttesistetessssstsssssssssssesssasssssssosssssssssssssassessstsssssssissesssasssssssosssessissesesossessssoseees 20
AN ENHANCED VERSION OF THE DO LOOP GUESSING GAME ..ottt s s it isisieesssisesesssssisiiessssiisersssisieraiases 21
(D UE ST IONS Lttt ettt ettt e e e sttt ettt e e e e ettt e s e e et bttt e oo ettt et e bttt e e ettt e e oottt e 44 ettt e s oo ettt 4 s e e e ettt s s e e e e annbebaeaeaaeins 21
USING VISUAL BASIC TO PRODUGCE ST RING AR T .. ittt ittt ittt it i ittt ssiettssssassssssissesssessesssassesssissessssestsrsaassesssisrerszaserreasses 23
THE STRING A RT A LGORITHM &.utttttttiieiieituttesttasstsisssessssssssisssssssssssstsssssssssssstasssssssssssssasssstesssssstassstesssssststsssssssssssssiosssesssessssiessssseases 23
E X AP LES OF STRING A R T Lttttttiiiiiettttttttessieissstesssessteiasstesssasstatasstsessssssetassbesesssesantseessesseetansbesesseeestansbeeesssesstsssetessseestessbsbesssasssassnsren 23
SO AT EXAMDIE L Lottt ittt it i s etee et e s et eeste e st eestesesteeest e e et eeeet e e eeht e ettt e e it e e oAt e st s et st e ettt e et s esehb e s s baeabbesasbeeanbesan 23
ST NG AT E XA 2 ittt it i tee et s s et eeete e s et eeste e ettt e est e e et eeet e e ab e eat e et e it e et e oAt e st st e et e e bt et s et s esehb e e besabbesabbesanbesas 23
ST NG AT E XA B .t itiiitie ittt et s s et seete e sttt eeste s ettt e est e e et eeet e e eeht e et e e it e e e oAt e £t e et £ et ettt s oAbt £ e s ehb e s baeabbesabbesanbesas 23
EXE R CISES ..ttt iutiie sttt ettt e ettt e e e e stte e e et e e e st eeeeme e e embe e e st e e e e st e e e e e s oo at b e e e oA e e e e e e e e e an e e s e eAnne e e hbe e s e nteeseennes e thbereeanbresesanneseasrrereaas 23
R A G T A L S L. ittt ittt ittt e ettt e ettt et e s te et b e ee sttt e e ees et e e ee e e e ettt e ehet e e e et e e oo sttt £ et s e ettt £ £ £kt e £ oAbt e £ttt £ £ £ttt £ oAt £ e et e e e oAb et ethbeeesetbrseabes 24
R A C T AL GEOME TR Y it ittttttttieestesttttetssees sttt beeesees e sase bt e e e e e ettt e s e e oo eht bttt e e oo e a ettt s e e s ettt s 4 oo e ottt e e e s e ettt e s s e e e bbb beeasaassanbnrbes 24
THE CHAOS G AME ... uttttiiiieesietttteestessteisseteesseessesastbe e s e e e e e sast et e e e e e e hase e et e e s oottt e e e £ oo ettt e s £ oo ettt 4 £ 244 e ettt s e e e ettt eesaseessanbbrbenasas 24
THE SIERPINSKI TRIANGLE L..iiiutttttttieesieistttettseesssissstesssssssssassseessssssssassseeessseesssesetee s s e e s asse b ee s s e e o tbae e e e s e e e e astbeeseeee e tantbebesasesssnsbrnssasas 25
ASSIGNMENT (TO BE HANDED IN) ... utttiiiitttieieusttesissssassestesssasstssssssesassestssssasssssssassssssstessseassssssasesssstsbesssesssssssasssssssssssssassssstasessssissesess 25
EUCLID AND THE G D L..iiiiiiiiiiiittiiisitii s s st s e st teess st eesssssssssssssssesteeseesseeseesseees st teessessesseehsees s e et e s e e ssessseasesse st beesansssssssbeessasbrseases 26
DEFINITION OF Gl DD it iiiutttiiiiei ittt ettt e et te sttt e e eesee st e e e e e e e ettt e e e e e eeab b bttt e e e oo a bttt e e e s oot 4 e s 4o oo ettt e s e s oottt e e 4 s e e e bbb beessasssassnrben 26
BRUTE FORCE (SLOW) METHOD FOR COMPUTING THE GCD OF TWO INTEGERSuuiiiiuiiistisistsiessssisesiossssossssossssisssssssssssessssesssesssess 26
DESCRIPTION OF EUCLID’S (FAST) METHOD FOR COMPUTING THE GCD OF TWO INTEGERS. . tuiiiuiiiitiiiitiiiirisiisiisisisissessssessssessisessseesas 26
E X AIMIPLE L1tiiii ittt et e d ettt e e st ettt et e e s ettt bttt e e oo bttt e e e oo oAbttt e e oo AnE bttt e e oo AD bbbt e e e s oo Db b e bt e e oo oAb be e e e e e oo A bbbt e e e seeetabbbbeettesaiaanbrres 27
Y OUR T ASK 1 tuttttitiuttte sttt e e eette e e sttt eeesatteeesss e e esteeseetsbe e e et s e ehte e s e ettt e s e oA e e b e s oot b e e e oA s e ohbe e s e 0s e e e e Ame s s ebseeesansbesesannes s anbesssannsesananns 27
TEST OUT THE EUCLID A LGORITHM e iitiiiituttttttetitsiittsstessessiasssssessesstasssssessesstassssssssesstanssssssssssssatssssssssssssstnnsssssesssssionsssssessessinmssssesees 27
LEARNING ABOUT ARRAYS AND NESTED LOOPS THROUGH THE “GENERATING RANDOM INTEGERS
WITHOU T REPE T I T ION " P ROB LM Lttt ittt ittt i s sttt e s s s stesssiesseasses s eessastesss st e se s et esssesseseseabesss s s tesesetsbssesbessssthbessssssbesasases 28

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-1

A SOLUTION L. uuttttiitiees ittt s eeessessse b et e e e e e ettt e e e e e e eatt bttt e e e e e eat bttt e e oo ettt e e £ oottt e oo ettt e £ oottt 4 e 4 e e oAbttt e e s e e et bbbeeasaessannbnten 28

WHY ARRAYS ARE NECESSARY TO IMPLEMENT THE ABOVE ALGORITHM ttttiiiiiieitutttttieesieisstetssesstsiosssessssssssiosssesssssessiomssserssessiomssies 28
GENERAL FACTS ABOUT A RR A Y S i iuuttttitieeiteissttetstasstsisstessssssssiassteessssssstasssetesssssssssbeseesseese8sbeteessees0essssbessseessesssssesssesssesssbesssassssins 30
DECLARING FIXED =S IZE A RRAY S .. .utttttitietiieiststetttessteiasstesssssstatsssteessssssetassbesssssesesastseesssseeetan s besesseeeetansbseesssesstsssebeesseestassbbbesssasssassssren 30
SETTING UPPER AND LOWER BOUNDS ..utttiiiiiiiiittttttiieesisisstettsassssissssessssssssiassssssssssssssssssssssesssasssssesssesssasssssssssssssssssssssssessssiosrsssesssssins 30
WORKING WITH ARRAYS (ARRAY EXE R C IS S). iuuttiiiittiiiiiitii ittt te st tete s sttt tssssesesissetesassstsstasessssissetesassttesasesesioseresssssesssaes 31
SPACE VERSUS TIME: THE ETERNAL CONFLICT IN COMPUTER SCIENCEiooiiiiiiiiiiiiiiii et ie e ssiiiineeeeeaes 33
B A CK GROUND . .. ttttttitte et ietttteeeeeestetbeteee e e e s s sst b e e e e e e s e bt b e e e e e 48t b et e e e oo o8t b e et e e oo o8t e e e e e e o4t e 4t e 4o oot e e e e s £ oottt e e e s e e e b bbbeessasssannnnbes 33

A PROBLEM THAT ILLUSTRATES THE TRADE-OFF BETWEEN SPACE AND TIME L.uuuiiiiituiisiiitisisiiseesesisesessisesssissessssisssesaisessssasssssinseneans 33
TWO DIFFERENT SOLUTIONS L.utitiiutttetistttsiessssssisssssssstssesassssssisssssssssessssasssssstessssssessssssssssssthsssssasssssssansssssssssssssossesssanssssssnsessesnsserasanes 33
SOIULION L i iuiii ittt e sttt e st e et e este e et eest et e esb et e esb et e oot et s oAbt ettt e oAbt et e oAb e e oAbt s e e s ehbe s hbeseAbe s besahbesabesanresabesanreran 33

QU STIOMIS ..ttt e ettt ettt ettt ettt e et e ettt et ettt ettt ettt ettt £ttt ettt e et e e oAttt e e bn e e e tabaeesannbeeasnns 33
SO UL O 2 ittt ittiie sttt ettt ittt ettt e ettt ettt ettt et e ettt ettt e et ettt ettt £ ettt ettt £ttt e et e e oAttt e e bn et e eabaeesanbeeesnns 34
QU S EIOMIS .ttt ettt ittt e sttt e st e ettt et e e et e ettt et e ettt £ £t et e e e et £ £t e £ ettt e e h e £ttt e At e e e oAttt eeehets e ehbeeesanberasnns 34
IMIORE I IMPOR T ANT O UE ST IONS ... uttttttitietsiessssttsssesstassstsssssestetasssesssssssssasseesssssesssanssesesssesssasssstessssessetanstesssesesetasssesssssesstanssssssssesssesssten 34
INTRODUCTION TO SUBSTRINGS, CONTROL ARRAYS AND TRANSLATING OBJECTS ...t 35
LOTS AND LOTS OF EXAMPLES OF STRING PROCESSING L.uuuiiiiiiiiiiitttiiiiesiisiitietitassssiessteessessssiesssersssssssiassesreseessiisreeseeees 36
CHARACTER SETS AND STRING MANIPULATION FUNCT IONS ... ittt ittt ittt it iessieitseieriiessiaissieriraseseiissieeieeeaeaies 39
ANSI, DBCS, AND UNICODE: DEFINITIONS .1t tttttttttiiutttsttstetsiessssssessessiassssssssssssianssssssssssstsnsssssssssstsiosssssssssstsionsssssestesiiommereetieeiiamnmie 39

E NV IR OINIMIEN T .ttt ettt e tttee e sttt e e e estee e e et e e et e e e st e s eate e e ettt eeemm e e oo e s e st e e e oA e e s oo e 221t e s e oA s e e st e e st eeseembne s s smbeeesanneesesnnesssssseneaas 39
CNAFACTEE SEL(S) USBA ... utiiitiiiitis ittt i itte ittt ites it s st sesteesbessste e st e sete s st seabe e e ot semt e et ssht e st sehbe e e e b st semb e s e bbesambessnesanbesasbessnnesan 39
ANSI (AMERICAN NATIONAL STANDARDS INSTITUTE) 1. uttttutttitttsistsisttsissssissssssssissssssssisssssosssssssssssssnsssssssssnssssosssssssssssessossssesaness 39
DBCS (DOUBLE-BYTE CHARACTER SY STEM) .ttttttiuttttttttttttistttetasststsiessssssssssssasssssstessssssossssssassssssisssssssssssssassssssiosssssssstetsiossssesioesess 39

U IN T ODE L 1ttt e ettt e ettt ettt e e ettt bttt e ettt e e ettt s oottt e 44ttt ettt e 4 £ oottt e e e s ettt e e b e e e nbbebbeaseesiabnrbes 39
EXAMPLE: CHARACTER CODES FOR "A" IN ANSI, UNICODE, AND DB CS ... ittt sttt e sttt itietsiessiesbeteesiessiassbsresssesssassnsees 39
ISSUES SPECIFIC TO THE DOUBLE-BYTE CHARACTER SET (DB ICS) ..itiiiiiutiiiiittiiiiitttiisisttiesisttiesasstsssisssassissssssssssssssassesssissesssssseesasanes 40
DBCS STRING IMANIPULATION FUNCTIONS. .ttt ttttttttieutttettsassseiasstsssssssssissssssssssssssssssssssssssiosssssssssssstosssssssssssstessssssssssstiomssssssssessiemisstes 40
THE AN S| CHARA CTER SE T .uutttiiiieiiieitttttttsesstsisstetssssssstssssessssssstassseesssseesesetetsessees s sss s beesee o4 tsssbessseee e tnnsbeessseseetansbebssasssssassbssssass 41
KEY CODE CONSTANTS IN VISUAL B ASIC . utttttiiiiiiiiitttittieeiiiiitttsttesssssiestsssssssesssassssseessesssasssbeessseesetassbeeesesesetasbbeseessesstanbbbbsessesssassnsren 42
X E R CISES ittt iuttttttt et et ittt ettt e ettt ettt e e e ettt bttt e e 4ottt et e e oot bttt e oot bttt e e oot et e e e s 4o b e bt e e e oo At b et e e e oo e bb et e e e seeetabbbbbetteesiaannrres 43
CREDIT CARD VALIDATION ASS I GN IMIEIN T L.ttt itiiiiit it itttee sttt te s st tseteteesesestesesaestesstassessstasesesaassesstasessesisseeessasssrssasseesioseresas 44
INTRODUGCTION ttteiieuuttttttesstsiensssssessessiansssssessesssasssseeesseestasnssseseeeesaatnssseseeesestanssssssssesstnssssssssesstanssssssssessssnnsssssssssssstansssssessessinnssssseeses 44
RULES FOR CREDIT CARD NUMBER VAL IDITY . 1ttt iitttitiittttsiistttesastsssiesessssestssesanssssssesssssssessssasnsssstssessssssessesanssssssnsssssanssssssansssssssereaas 44

E X AIMIPLE ..ttt ittt ettt e e sttt ettt e e ettt e e ettt et ettt e e oo Attt e e oAbttt e Attt e e oo et bttt s e s e e b bt tee e s e e eenbbbbeeeseesaabnrbes 44

P ROGRAM PLAN L. tttttii it ittt et i e et sttt et e e e sttt bttt s e e ettt bt e e e e ettt et e e oo ehb ettt e e e e oo ettt e e e e ettt e 4 oo e ettt e e e s e ettt e e e e e e bbbt e easaesaanbnrbes 45

A DD T ION AL N O T E S it ttttttittieestettttetteesssstastteessessessass bt eeeese e tass bttt e e s e e st bttt e e e oo ettt e s £ oo ottt e £ e oo ettt e 4 e e e ettt e e s e e e bbb beeasaessansnnben 45
ADDITIONAL CHALLENGE FOR EXTRA CRE DI T 1tiiiiiiiiutttttttieisiessuettsstessiasssssssssssiasssstesssssstasssstesssssssstasttesssssssstonssssssssesstonssssesssassiessssren 45

P RA C T ICE EXERCISES ...iiutttttttieeiieststettsesstessstesssessteasstessesss e tasseeeseees e as e bt e e e e e oo eas bt et s e e e oo oAt be e e s s oo o4ttt e e e s e ettt ee e s e et bbb beeasasssassnsben 46
EVALUATION GUIDE FOR CREDIT CARD VALIDATOR PROGRAM .1tttiiiiiiiittttttitsttsiesstssstsssssiessssssssssssiasssssssssssstesssssssstessiemssssesssessiaissre 47
NOTES ON DEBUGGING TO HELP YOU WITH YOUR CREDIT CARD VALIDATOR PROGRAMcooiiiiiiiiiiiieeiieiinens 48
E X AIMIPLE L oot iittttiii i e e st ittt ettt e e st ettt ettt e e st ettt et e e e e aet b e et e e oottt e et e e oo An b bttt e e e Db et e e e oo Db b e bt e e oo oAb bbb e e e e e oA bbbt e e e seeetabbbbbeeteseiaanbrres 48

E X AIMIPLE 2 i iiiiittttiit it e sttt ettt e e st ettt et e e s e ettt bttt e e e e ettt e e e e oo bbb et e e oo oDt bt et e e oot b et e e e e oo Db b e bt e e oo oAb bbb e e e e e et A bbbt e e e seeetabbbbeetteestannbrres 48
U S TIONS ... uttitetitttee ettt e ettt e e s ettt e e e stte e e e e e s ohbe e e ettt e e e eame e e ht e s e eat e s eese e s e bt e e e s st e s e ohs e s e m e e s e emn s s e eebe s e e n e e e st e seenbaeesatnbeeesannessasnnenis 48
ASSIGNMENT ON TWO-DIMENSIONAL ARRAYS (OPTIONAL TOPIC) ...ttt ittt s iitetiesiiiiessstiiesisesssiisersssiseesasases 49
DATA ENCRYPTION USING THE VIGENERE CIPHER L.ttt iuetieiittiteiiisttssissssesestssssassssssssssssssosessssassssssissssssssessssassssssssssessnsessssassessssssereaas 49

(D UE ST IONS Lttt it tettte e e e sttt e s e e ettt et e e e ettt bttt e oo ettt et ettt e 4o bttt e e oo ettt e 4644ttt e 4o ettt 4 s oo ettt h s e e e e anrbebaeaeaaeins 50
USING VISUAL BASIC TO PRODUGCE ST RING A R T L.ttt ittt ittiii ittt it itetssiestssstassessstsessssestesssassessstsessssestesstasesssibesssasstrrasases 51
THE STRING A RT A LGORITHM &.ttttttttietiieittttettteesssisstetsssssssssssssssssssstssssessssssssasssssssssesssasssstesssesssesssstesssssssstsssssssssssssiossesssesessiessssssases 51

E X AP LES OF STRING A R T L utttttiiiiiittttttttessteissstesssessteasstessssssseassteessesssetastbeseseseeantteeseeseeetan s beee s s e e e tans b e eeessee et stbebeesseestesbbbbesssasssasssben 51
X E R CISES it ittttttieie ettt ettt et e e sttt e e e e ettt ettt bttt e oottt s oo Attt et e 4ottt s e oot 44 e e oo Attt bt e e e oAb bt tee e s e et b bbbbetseesiabbrbes 51
R A G T A L S .o ittt ittt ittt et ittt ee ittt eesitteeesettesee et eeeseeseeeeesteeeeeessese et b e e s e st s e e e ehs s e e et s e e s et e s s e eht e e s et b e s e e bt e s s e ehnesseettteesaenreeseibbrrssatrrseares 52
R A C T AL GEOME TR Y it iutttttttteetietttteeteeestesstteeesessseaeebee e e e s e e taet b e e s e e e oo aa et e e e e e s oo 8t b e e s e e s o448t b e e e e s oo o448t e e 4 e oo bbbt e e e e e e e b bbbbeasasssannnnrns 52
THE CHAOS G AME ... uttttittieeiieitttteesteestaseueteesessssatastseeeesee e sas b b e e e e e s oo ea8b b et e e e s oo 48t b e et e s e oo 448t b e e s e oo 4ttt e e e e e o444 hb et e e e e e e et bbbt e asaassanbbrbsnasas 52

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-2

THE SIERPINSKI TRIANGLE L..iiiutttttttieesieitsstettsesssssesstesssssssssassseessssssssassseeesesesssasebetees s e e s s sssebe e s s e e e tsae b e e e s e oo astbeeseeee e tabtbebesasesssnbbrsssasas 53
ASSIGNMENT (TO BE HANDED IN) ... ttttttiitttieieusttesiesstassostesssassessssesssssssstesssasssssstasssssssssesssanssssssssssssststesesssssssssasssssssssssssasssssssassssssiosenesas 53

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-3

REVIEW OF IMPORTANT PROGRAMMING CONCEPTS

Overview

Sequence (statements executed one after the other), selection and repetition are the main structures of programming.
Selection (*If” statements in VB) is used whenever programs need to make decisions.
Loops (repetition structures) are used whenever groups of statements need to be repeated.

Loops are useful in processing large amounts of data, adding up lists of numbers, finding averages, animating objects
and a wide variety of other applications.

Loops are classified as “counted” or “conditional.”

Counted loops (“For ... Next” loops in VB) are used whenever the number of repetitions is known at design-time.
Counted loops automatically increment the counter variable.

Conditional loops (“Do ... Loop” loops in VB) are used whenever the number of repetitions is not known at design-
time. These loops continue while a certain condition is true or until a certain condition is true.

Within a form (object) module or a code module, variables can be declared locally (called “at procedure level” in VB)
or globally (called “at module level” in VB).

A variable that is declared locally exists (i.e. is visible) only within the Sub in which it is declared. It is created when
the Sub or Function is invoked (called) and destroyed when the Sub or Function returns (is finished executing).
Local variables cannot be accessed outside the Sub or Function of declaration. Since local variables are destroyed
as soon as the Sub or Function finishes executing, memory can be freed for other parts of the program or for other
applications. Furthermore, local variables help to decrease debugging time (because bugs are localized to Subs and
Functions) and they help to make code reusable. \WHENEVER POSSIBLE, DECLARE VARIABLES AS LOCAL
VARIABLES!

A variable that is declared globally (at module level) is accessible to all Subs or Function within the module.
Moreover, if the variable is declared as Publ i c, then it is accessible to Subs or Functions in all modules of the
program. USE GLOBAL VARIABLES ONLY WHEN NECESSARY (ESPECIALLY IF THEY ARE PublicC). IF GLOBAL
VARIABLES ARE USED IN A CARELESS MANNER, PROGRAMS CAN BECOME EXTREMELY DIFFICULT TO UNDERSTAND,
MODIFY AND DEBUG. IN ADDITION, THE OVERUSE OF GLOBAL VARIABLES MAKES IT DIFFICULT TO DESIGN REUSABLE
CODE.

In C and C++, local variables are called automatic variables and global variables are called external variables.

Use names like InsertionPoint instead of insertionpoint, INSERTIONPOINT, insertion_point or INSERTION_POINT.
This practice is known as “UpperCamelCase.” (See excerpt from Wikipedia article on the next page.)

Use names that clearly describe the purpose of a variable, constant, sub procedure or function procedure.

Using meaningful, descriptive names will allow you to write programs that are for the most part self-explanatory. This
means that you do not need to include too many comments. However, comments should still be considered an
integral part of the software development process. Comments should be included as you write your code, not after it
is written!

Generally, include comments for major blocks of code and for any code that is not self-explanatory.

Use global variables only when necessary! All other variables should be declared either within procedures or as
parameters of procedures.

Avoid repetitive code by writing sub procedures or function procedures and calling them whenever they are needed.
Consider several different algorithms and implement the one that best suits your needs.
Indent your code properly as you write it! Do not consider indentation an afterthought.

Test your code thoroughly under extreme conditions. Allow other people to conduct some of the testing and note all
bugs.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-4

Excerpt from Wikipedia Article on CamelCase
For the full text of the article, visit http://en.wikipedia.org/wiki/CamelCase .

CamelCase

From Wikipedia, the free encyclopedia

CamelCase, camel case or medial capitals is the practice of writing
compound words or phrases where the words are joined without spaces, and
each word is capitalized within the compound. The name comes from the
uppercase "bumps” in the middle of the compound word, suggestive of the
humps of a camel.

A road zign with CamelCaze

This practice is known by a large variety of names, including camelBack,
BiCapitalization, InterCaps, MixedCase, etc_, and many of its users do
not ascribe a name to it at all.

CamelCase is a standard identifier naming convention for several programming languages, and has become fashionable in
marketing for names of products and companies. Outside these contexts, however, CamelCase is rarely used in formal written
English, and most style guides recommend against it.

Variations and synonyms

There are two common varieties of CamelCase, distinguished by their handling of the initial letter of what would otherwise be
the first of separate words. Where the first letter is capitalized is commonly called UpperCamelCase, PascalCase
(references: WikiVWiki\Web &/, Brad Abrams &), BiCapitalized. or WalkingCamel (in reference to the position of a camel's
head when it is walking). Where the first letter is left in lowercase is commonly called lowerCamelCase. This variant has also
been occasionally called camelBack, dromedaryCase, drinkingCamel (in reference to the position of a camel's head when
it is drinking), or simply camelCase. For clarity, this article will use the terms UpperCamelCase and lowerCamelCase,
respectively.

camelCaseLooksLikeThis
lowerCamelCaseLooksTheSame
UpperCamelCaselooksLikeThis

The term StudlyCaps is similar — but not necessarily identical — to CamelCase. It is sometimes used in reference to
CamelCase but can also refer to random mixed capitalization (as in "MiXeD CaPitALiZaTioN"™) as popularly used in online
culture.

Other synonyms include:

= camelBack

= BumpyCaps

= BumpyCase

= camelBase Case

= CamelCaps

= CamelHumpedWord

= CapWords in Python (reference) &

= mixedCase (for lowerCamelCase) in Python (reference) &
s CICI {Capital-lower Capital-lower) and sometimes CIC
= HumpBackNotation

= InterCaps

= InternalCapitalization

= MerdCaps
= WordMixing

= WordsStrungTogether or WordsRunTogether

The name CamelCase is not related to the "Camel book” (Frogramming Perl), which uses all-lowercase identifiers with
underscores in its sample code.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic

GA-5

http://en.wikipedia.org/wiki/CamelCase

Review Questions
1. How can you tell that a program might require loops?

2. What is the difference between a local variable and a global variable? What is a “Static” local variable?

3. Explain why it is wise to avoid global variables whenever possible.

4. Describe a situation in programming that makes the use of global variables necessary.

5. Explain the terms “design-time,

run-time” and “compile-time.”

6. Explain the rules of indentation. Why is proper indentation so important to the software development process?

7. When is it appropriate to use comments? Why is it a bad idea to omit comments altogether? Is it ever possible to
include too many comments?

8. Suppose that you notice that the same or similar code is used in several places throughout a program. What would you
do to make the program far more streamlined?

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-6

RUN-TIME ERROR HANDLING

Two Different Methods of Correcting the Bugs in Time Converter 1.0 Alpha
The Code for Version 1.0 Beta

PROGRAMMER®"S NAME: Nick E. Nolfi VERSION: Time Converter Version 1.0 Beta
PURPOSE OF PROGRAM: Convert a time given in seconds to the format hours : minutes : seconds (h:m:s).

LIMITATIONS and BUGS
This version corrects the bugs in Version 1.0. Now any error, including any user
input errors, are handled (which prevents this program from crashing).

NOTE
It is a good idea to set the "MaxLength" property of the "txtSeconds' text box to 10. This
prevents the user from entering more than 10 digits (2731 — 1 = 2147483647, which is 10 digits long).

Option Explicit

Const CtrlC=3, Ctrlv=22, Ctrlx=24 | Whatare the words shown in blue boldface called? Why?
Private Sub cmdClose_Click(Q)

Dim Response As VbMsgBoxResult
Response = MsgBox(*'Are you sure you wish to close this program?', _
vbYesNo + vbDefaultButton2, '‘Leaving so soon?')

IT Response = vbYes Then
Unload Me
End

End If

End Sub

“Convert a time specified in seconds to the format hours:minutes:seconds.

Private Sub cmdConvert Click
- O This means that if a run-time error like

On Error GoTo ErrorHandler 4————___________________-__-__-_—-_‘bvmﬂow”ocan&theVB[Nogmmnﬁng
environment will not take control of your

“Memory . . program, halt its execution and display an
Dim SecondsRemaining As Long, Hours As Long, Minutes As Byte enormeéage

Instead, the program will branch to the lines
of code labelled “ErrorHandler.” In other

"Input
SecondsRemaining = Val (txtSeconds.Text)

I'f SecondsRemaining >= 0 Then words, the program itself intercepts the error
. , and generates its own error messages.
Processing)
Hours = SecondsRemaining \ 3600 Note that “ErrorHandler” is a name chosen
SecondsRemaining = SecondsRemaining Mod 3600 by the programmer. It is not a VB keyword.

Minutes = SecondsRemaining \ 60
SecondsRemaining = SecondsRemaining Mod 60 — -
“output Why is this “Exit Sub” statement
IblHoursMinutesSeconds.Caption = CStr(Hours) & ™ : " & _ needed?
CStr(Minutes) & " - " & _
CStr(SecondsRemaining)

Else

MsgBox "You must enter a positive value." _
VvbE

on, "Oops!™
End If
Exit Sub

ErrorHandler:
If Err.Number = 6 Then

MsgBox ""The number you have entered is too large.", vbExclamation, "Oops!"

Else
MsgBox 'An unexpected error has occurred: " & Err._Description & ". Error Number: " _
& Err._.Number, vbCritical, "What happened?"
End If
End Sub How do we know that the “overflow” error is error number 6? What is “Err?”

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-7

The Code for Version 1.0 Final Release

* PROGRAMMER®"S NAME: Nick E. Nolfi VERSION: Time Converter Version 1.0 Final Release
* PURPOSE OF PROGRAM: Convert a time given iIn seconds to the format hours : minutes : seconds

* LIMITATIONS and BUGS

" This version corrects the bugs in Version 1.0 Alpha. Now any error, including any user input
" errors, are trapped, which prevents crashing. Note that this version Is an improvement over

" version 1.0 Beta because the input in the text box is restricted to the digits 0 — 9

" NOTE
" It is a good idea to set the "MaxLength™ property of the "txtSeconds' text box to 10. This stops
* the user from entering more than 10 digits (2731 — 1 = 2147483647, which is 10 digits long).

Option Explicit
Const CtriIC=3, Ctrlv=22, CtrliX=24
Private Sub cmdClose_Click()

Dim Response As VbMsgBoxResult
Response = MsgBox("'Are you sure you wish to close this program?", _
vbYesNo + vbDefaultButton2 + vbQuestion, '"Leaving so soon?')

IT Response = vbYes Then
End
End IFf

End Sub
"Convert a time specified in seconds to the format hours:minutes:seconds.
Private Sub cmdConvert_Click()

On Error GoTo ErrorHandler

“Memory
Dim SecondsRemaining As Long, Hours As Long, Minutes As Byte

"Input

SecondsRemaining = Val (txtSeconds. Text) Why is it not necessary in this version to use

an “If” statement that checks if a negative
"Processing number has been entered?

Hours = SecondsRemaining \ 3600
SecondsRemaining = SecondsRemaining Mod 3600
Minutes = SecondsRemaining \ 60
SecondsRemaining = SecondsRemaining Mod 60

"Output
IblHoursMinutesSeconds.Caption = CStr(Hours) & " : " & _
Cstr(Minutes) & ™ :© " & _
CStr(SecondsRemaining)
Exit Sub
ErrorHandler:

IT Err.Number = 6 Then
MsgBox ""The number you have entered is too large.", vbExclamation, "Oops!"

Else
MsgBox "An unexpected error has occurred: " & Err.Description & ". Error Number: " & _
Err_Number, vbCritical, "What happened?"
End If
End Sub

" Reject any characters typed in the "txtSeconds™ text box that do not lie between 0 and 9, except
"for the backspace key.

Private Sub txtSeconds_KeyPress(KeyAscii As Integer)
IT (KeyAscii < vbKeyO Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack
And KeyAscii <> CtrIC And KeyAscii <> CtrIX And KeyAscii <> CtrlV Then

KeyAscii = 0 - —
End If v\ What is the purpose of this line of code?

End Sub

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-8

Time Converter Version 1.1 Alpha

w. Time Converter Version 1.1 Alpha

" PROGRAMMER®"S NAME: Nick E NolFi Enter values for any or all of the following text boxes.

- VERS I ON - T i me Conve rte r Ve rs i on l N l AI pha “fou do not need ta restrict the values for hours, minutes and seconds to walues lower than 24, 60 and B0 respectively
Days 1234 Hours |FE7ER3 Minutes |378787 Seconds 737687

"LIMITATIONS and BUGS

This version correctly handles the conversion to
® the format d:h:m:s but the stop watch has not

yet been implemented. Start | @ Coutlp
FeEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEssEEEEEEEEEEEE Close S .

Option Explicit

Conwersion Stop "Watch

Const SecslInMin = 60, SecslnHour = 3600 The best represeniation of 29673 :18:15:7
Const SecslnDay = 86400, HourslnDay = 24 (in the formatd: h : m : s):

Const MinslInDay 1440, MinslInHour = 60
Const CtriIC=3, Ctrlv=22, CtriXx=24

"Convert a time specified iR _d:h:m:s to the best d:h:m:s representation
Private Sub cmdConvert_Click()

On Error GoTo ErrorHandler

"MEMORY
Dim Seconds As Long, Hours As Long
Dim Days As Long, Minutes As Long

e These statements are called constant declarations.

e Constant identifiers are just like variable identifiers except that the
value of a constant is not allowed to change. Attempting to change
the value of a constant generates a run-time error.

"INPUT o .
Seconds = Val (txtSeconds. Text) e Constant identifiers make programs easier to understand.
Minutes = Val(txtMinutes.Text) e Constant identifiers make programs easier to modify (change).

Hours = Val (txtHours.Text)
Days = Val (txtDays.Text)

"PROCESSING: Convert to d:h:m:s and find final value of "Seconds”

Days = Days + Seconds \ SecslnDay . .
Seconds = Seconds Mod SecslInDay Explain the purpose of this statement.

Hours = Hours + Seconds \ SecslnHour

Seconds = Seconds Mod SecslnHour
Minutes = Minutes + Seconds \ SecsInMin
Seconds = Seconds Mod SecsInMin

"Convert to d:h:m and find final value of "Minutes”
Days = Days + Minutes \ MinslInDay

Minutes = Minutes Mod MinslInDay

Hours = Hours + Minutes \ MinslnHour

Minutes = Minutes Mod MinslnHour

"Convert to d:h and find final values of "Hours® and "Days”
Days = Days + Hours \ HourslInDay
Hours = Hours Mod HourslnDay

"OUTPUT
IbITime.Caption = CStr(Days) & " : " & CStr(Hours) & _
oot & CStr(Minutes) & M - " & CStr(Seconds)
Exit Sub
ErrorHandler:

IT Err.Number = 6 Then
MsgBox "'The number you have entered is too large.", vbExclamation, "Oops!"

Else
MsgBox "An unexpected error has occurred: " & Err_Description & ". Error Number: "™ & _
Err_Number, vbCritical, "What happened?
End If
End Sub

"The code is continued on the next page

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-9

Private Sub cmdClose_Click(Q)

"Generate the "Unload" event (to be intercepted by "Form_Unload')
Unload Me
End Sub

"Intercept the unloading of the form to prevent the user from accidentally quitting. This sub
"procedure is invoked (called into action) whenever the "Close" button or the "X" (top right hand
® corner of form) is clicked. This happens because both actions generate the "‘Unload" event.

Private Sub Form_Unload(Cancel As Integer)

Dim Response As VbMsgBoxResult
Response = MsgBox(''Are you sure you wish to close this program?', _
vbYesNo + vbDefaultButton2, *Leaving so soon?')

IT Response = vbYes Then

End
Else

Cancel = 1 “"Set "Cancel"™ to any non-zero value to cancel the unloading of the form.
End If

End Sub

Invalid character rejection subroutines.

Private Sub txtSeconds_KeyPress(KeyAscii As Integer)
IT (KeyAscii < vbKeyO Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack _
And KeyAscii <> CtrlIC And KeyAscii <> CtrIX And KeyAscii <> CtrlV Then
KeyAscii = 0
End If
End Sub

Private Sub txtMinutes_KeyPress(KeyAscii As Integer)
IT (KeyAscii < vbKeyO Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack _
And KeyAscii <> CtrlIC And KeyAscii <> CtrIX And KeyAscii <> CtrlV Then
KeyAscii = 0
End If
End Sub

Private Sub txtHours_KeyPress(KeyAscii As Integer)
IT (KeyAscii < vbKeyO Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack _
And KeyAscii <> CtrlIC And KeyAscii <> CtrIX And KeyAscii <> CtrlV Then
KeyAscii = 0
End If
End Sub

Private Sub txtDays KeyPress(KeyAscii As Integer)
IT (KeyAscii < vbKeyO Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack _
And KeyAscii <> CtrIC And KeyAscii <> CtrIX And KeyAscii <> CtrlV Then
KeyAscii = 0
End If
End Sub

Questions
1. Explain why the “cmdClose_Click” sub procedure contains only the statement “Unload Me.”

2. Explain the purpose of the “Form_Unload” sub procedure.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-10

Time Converter Version 1.1 Beta

PROGRAMMER®"S NAME: Nick E. Nolfi VERSION: Time Converter Version 1.1 Beta

LIMITATIONS and BUGS

This version correctly handles the conversion to the format d:h:m:s. The stop watch appears to work correctly
but, depending on the speed of the processor and the number of tasks running, the stop watch loses anywhere
from a few to several minutes per hour. This is due to the fact that with an interval of 1000 ms, the
processor receives a request to execute the code in the "tmrStopWatch" sub procedure every 1000 ms (1 s). If
the processor is busy executing code that cannot be interrupted, the execution of "tmrStopWatch" is delayed.

Option Explicit

Const SecslInMin
Const MinslInDay

60, SecslnHour = 3600, SecslInDay = 86400, CtriIX = 24
1440, MinslnHour = 60, HourslnDay = 24, CtriIC = 3, CtrlVv = 22

"The variables below must be declared globally. (Why?)
Dim Seconds As Long, Hours As Long, Days As Long, Minutes As Long

"Start or stop the timer
Private Sub cmdStartStop_Click(Q)

IT Trim(LCase(cmdStartStop.Caption)) = ''start" Then

tmrStopWatch._Enabled = True
cmdStartStop.Caption = "'Stop"
Else
tmrStopWatch.Enabled = False
cmdStartStop.Caption = "Start”
End If
End Sub

"Convert a time specified in d:h:m:s to the best d:h:m:s representation
Private Sub cmdConvert_Click()

On Error GoTo ErrorHandler

" INPUT

Seconds = Val (txtSeconds.Text)

Minutes = Val(txtMinutes.Text)

Hours = Val (txtHours.Text)

Days = Val(txtDays.Text)

"PROCESSING: Convert to d:h:m:s and find final value of "Seconds”
Days = Days + Seconds \ SecslnDay

Seconds = Seconds Mod SecslnDay

Hours = Hours + Seconds \ SecslnHour

Seconds = Seconds Mod SecslnHour
Minutes = Minutes + Seconds \ SecsInMin
Seconds = Seconds Mod SecslInMin

"Convert to d:h:m and find final value of “Minutes*

Days = Days + Minutes \ MinslnDay

Minutes = Minutes Mod MinslInDay

Hours = Hours + Minutes \ MinsInHour

Minutes = Minutes Mod MinslInHour

"Convert to d:h and find final values of "Hours® and "Days”

Days = Days + Hours \ HourslInDay

Hours = Hours Mod HourslnDay

*OUTPUT

IbITime._Caption = CStr(Days) & "™ : " & CStr(Hours) & ™ :© "™ & CStr(Minutes) & _
" oo " & CStr(Seconds)

Exit Sub

ErrorHandler:

IT Err_Number = 6 Then
MsgBox "'The number you have entered is too large.", vbExclamation, "Oops!"

Else
MsgBox "An unexpected error has occurred: " & Err.Description & ". Error Number: "™ & Err.Number, _
vbCritical, "What happened?"
End If
End Sub

Private Sub cmdClose_Click(Q)

"Generate the "Unload" event (to be intercepted by "Form_Unload™)
Unload Me

End Sub

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-11

Private Sub Form_Unload(Cancel As Integer)

Dim Response As VbMsgBoxResult
Response = MsgBox("'Are you sure you wish to close this program?",

Intercept the unloading of the form to prevent the user from inadvertently quitting.

vbYesNo + vbDefaultButton2 + vbQuestiEn, ""Leaving so soon?'")

IT Response = vbYes Then
End
Else

"Set "Cancel' to any non-zero value to cancel the unloading of the form.

Cancel = 1
End If

End Sub

"This sub is automatically executed every 1000 ms once tmrStopWatch.Enabled is set to "True"

Private Sub tmrStopWatch_Timer()
Dim UpOrDownOne As Integer

"""UpOrDownOne" equals either 1 or -1 depending on whether "Count Up" or

UpOrDownOne = optCountUp.Value * (-1) + optCountDown.Value * 1
Seconds = Seconds + UpOrDownOne

IT Seconds = SecsInMin Or Seconds = -1 Then
Seconds = Seconds Mod SecsInMin - (Seconds = -1) * SecslInMin
Minutes = Minutes + UpOrDownOne
If Minutes = MinslnHour Or Minutes = -1 Then
Minutes = Minutes Mod MinslnHour - (Minutes = -1) * MinslInHour
Hours = Hours + UpOrDownOne
I¥ Hours = HourslnDay Or Hours = -1 Then
Hours = Hours Mod HourslnDay - (Hours = -1) * HourslnDay
Days = Days + UpOrDownOne
End If
End If
End If
"OUTPUT
IbITime._Caption = CStr(Days) & " : " & CStr(Hours) & " : " & CStr(Minutes) _
End Sub

Invalid character rejection subroutines.
Private Sub txtSeconds_KeyPress(KeyAscii As Integer)

IT (KeyAscii < vbKeyO Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack _
And KeyAscii <> CtrIC And KeyAscii <> CtrIX And KeyAscii

KeyAscii = 0
End If
End Sub

Private Sub txtMinutes_KeyPress(KeyAscii As Integer)

IT (KeyAscii < vbKeyO Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack _
And KeyAscii <> CtrlIC And KeyAscii <> CtrlIX And KeyAscii

KeyAscii = 0
End If
End Sub

Private Sub txtHours_KeyPress(KeyAscii As Integer)

IT (KeyAscii < vbKeyO Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack _
And KeyAscii <> CtrlIC And KeyAscii <> CtrIX And KeyAscii

KeyAscii = 0
End If
End Sub

Private Sub txtDays_ KeyPress(KeyAscii As Integer)

IT (KeyAscii < vbKeyO Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack _
And KeyAscii <> CtrlIC And KeyAscii <> CtrIX And KeyAscii

KeyAscii = 0
End If
End Sub

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic

""Count Down"

<>

<>

<>

<>

: " & CStr(Seconds)

CtrlV Then

ctrlV Then

ctrlV Then

ctrlV Then

is chosen.

GA-12

Questions

1. The code for the “tmrStopWatch_Timer” sub procedure is quite compact but it seems a little difficult to understand.
Compare the code in version 1.1 Beta to the following alternative way of writing the code.

Private Sub tmrStopWatch_Timer()
1T optCountUp.Value = True Then

Seconds = Seconds + 1

If Seconds = SecsInMin Then
Seconds 0
Minutes Minutes + 1

Strengths of this Version

If Minutes = MinslnHour Then

Minutes = O
Hours = Hours + 1

If Hours = HourslnDay Then

Hours = 0
Days = Days + 1
End If
End If
End If

Else
Seconds = Seconds - 1
If Seconds = -1 Then
Seconds 59
Minutes Minutes - 1
I Minutes = -1 Then
Minutes = 59
Hours = Hours -1
If Hours = -1 Then

Hours = 23
Days = Days -1
End If
End If
End IFf
End If
"OUTPUT
IbITime.Caption = CStr(Days) & " : "
CStr(Hours) & " - " &
Cstr(Minutes) & "

End Sub

Strengths of Version 1.1
Beta

&

- " & CStr(Seconds)

Weaknesses of this Version

Weaknesses of Version 1.1
Beta

2. Thoroughly test version 1.1 Beta (you will find it in the usual place on the I: drive). Then complete the following table.

Bugs found in Version 1.1 Beta

Copyright ©, Nick E. Nolfi

Improvements that are Required for Version 1.1 Final Release

ICS3MO Advanced Visual Basic

GA-13

Creating the Final Version of Time

Converter

Brief Summary of the Evolution of the Time Converter Program

Statement of
Problem
Convert a time
specified in
seconds to the
format h:m:s.

A 4

We used a specific
example of the
problem to develop
an algorithm. The
algorithm involved
the operators
“Mod” and “\.”

\ 4

Version 1.0 Alpha
Numeric Overflow
Problem

A 4

Version 1.0 Beta:“On
Error Goto” was used
to correct the numeric

overflow problem.

Version 1.0 Final:
KeyPress event used to
filter out invalid keys.

Version 1.1Alpha
The format d:h:m:s
was added as well
as a method of
intercepting the
“X” close button.
Constant identifiers
were introduced.

A 4

Version 1.1Beta
A stop watch was
added to version
1.1 Beta. However,
the stop watch did
not keep time
accurately. In
addition, there were
several other
annoying bugs.

Your Assignment

1. Use a word processor to create and complete a table that looks just like the following:

Version 1.1Final
Your job is to
produce this
version by
correcting the
problems in version
1.1Beta.

Final
Version

New Concepts Learned while

Program

Developing the Time Converter

Explanations of New Concepts

Examples Involving the New

Concepts

(You supply the details.)

(YYou supply the details.)

(You supply the details.)

2. Use a word processor to create a list of all the bugs in version 1.1 Beta. Also, include a list of improvements that

should be made to the program.

Bugs (Include the Cause of Each Bug)

Improvements to be Made in Version 1.1 Final Release

(You supply the details.)

(You supply the details.)

3. Create version “1.1 Final Release” of the “Time Converter” program. Incorporate all the bug fixes and improvements

that you listed in question two.

Copyright ©, Nick E. Nolfi

ICS3MO Advanced Visual Basic

GA-14

Evaluation Guide for Time Converter 1.1 Final Release

: o Descriptor
Categories Criteria LU Level | Average
Level 4 Level 3 Level 2 Level 1 Level 0
Knowledge and |Understanding of Programming Concepts Extensive | Good | Moderate | Minimal | Insufficient
Understanding
(KU) Understanding of the Problem Extensive | Good Moderate | Minimal | Insufficient
Correctness . . - -
To what degree is the output correct? Very High High Moderate Minimal | Insufficient
Application Declaration of Variables
(APP) To what degree are the variables declared with Very High | High Moderate Minimal | Insufficient
appropriate data types?
Debugging
To what degree has the student employed a logical, | Very High | High Moderate Minimal | Insufficient
thorough and organized debugging method?
Degree of Improvement over Version 1.1 Beta
To what degree has the student incorporated . . - -
significant improvements to Time Converter 1.1 Very High | High Moderate Minimal | Insufficient
Beta?
Ability to Design and Select Algorithms Independently
Thinking, To what degree has the student been able to design | Very High | High Moderate Minimal | Insufficient
Inquiry and and select algorithms without assistance?
Problem
?_?_Il\gg? Ability to Implement Algorithms Independently
To what degree is the student able to implement Very High | High Moderate Minimal | Insufficient
chosen algorithms without assistance?
Efficiency of Algorithms and Implementation
To what degree does the algorithm use resources Very High | High Moderate Minimal | Insufficient
(memory, processor time, etc) efficiently?
Indentation of Code Very Few | AFew | Moderate Large Very Large
Insertion of Blank Lines in Strategic Places or no Minor | Number of | Number of | Number of
(to make code easier to read) Errors Errors Errors Errors Errors
Comments
 Effectiveness of explaining abstruse (difficult-to-
understand) code Very High | High Moderate Minimal | Insufficient
« Effectiveness of introducing major blocks of code
» Avoidance of comments for self-explanatory code
Descriptiveness of Identifier Names
Communication | Variables, Constants, Objects, Functions, Subs, etc
(CoMm) Inclusion of Property Names with Object Names
(e.g. ‘txtName.Text’ instead of ‘txtName’ alone)
Clarity of Code Masterful | Good Adequate | Passable | Insufficient
How easy is it to understand, modify and debug the
code?
Adherence to Naming Conventions
(e.g. use “txt” for text boxes, “Ibl” for labels, etc.)
User Interface
To what degree is the user interface well designed, | Very High | High Moderate Minimal | Insufficient
logical, attractive and user-friendly?
Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-15

COUNTED LOOPS AND CONDITIONAL LOOPS IN VB

Conditional Loop Example

Counted Loop Example

Stir Coffee Until the Sugar has Fully Dissolved

" The following is not real VB. It is called “pseudo-code” which
" means false code. It is a mixture of VB and English and is a
"useful method for planning the overall structure of your

' programs.

Do
keep stirring
Loop Until Sugar is Dissolved

Note

The number of repetitions of the code in this loop is dependent
upon how long the sugar takes to dissolve. The number of
repetitions is impossible to predict. You, as a programmer, will
not in general be able to determine beforehand the number of
repetitions of a conditional loop.

Add Three Spoonfuls of Sugar to the Coffee

' The following is not real VB. It is called “pseudo-code” which
"means false code. It is a mixture of VB and English and is a
"useful method for planning the overall structure of your

' programs.

Forl1=1To3
add one spoonful of sugar
Next |

Note

In this example, the number of repetitions is exactly three. This
is easy to predict in advance because we know that the initial
value of “I” is 1. After the first repetition, “I"” becomes 2, after
the second repetition, “I” becomes 3 and after the third
repetition, the loop halts.

VARIOUS CONDITIONAL LOOP STRUCTURES IN VISUAL BASIC

Repeat Zero or More Times

Repeat At Least Once

Do While condition
statements
Loop

Do Until condition
statements
Loop

Do
statements
Loop While condition

Do
statements
Loop Until condition

CouNTED Looprs IN VB - “FOR...NEXT” LOOPS

The following program produces a TABLE of SQUARES. The user types in a START value and then clicks the “Show Table”
button. A table of 10 values is printed on the form.

Private Sub cmdShow_Click()
Dim 1 As Integer, Start As Integer,

Start = Val (txtStart.Text)
Me.Cls “Clear the form

For I = Start To Start + 9
ISquared = 1 ~ 2
Print I, ISquared
Next |
End Sub

(O] %]

. Table of Squares

ISquared As Integer
Enter Start Walue

—

"l and its square are printed

auiT |

The instruction “For 1 = Start To Start + 9” means that the counter variable “I” should have an initial value of “Start”
and a final value of “Start + 9.”

The instruction “Next 1” means that the value of “I” should be increased by 1 and that the loop should continue to repeat the group of
statements enclosed between “For” and “Next.”

ALWAYS DECLARE THE LOOP COUNTER VARIABLE AS A LOCAL VARIABLE!

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-16

“For...Next” (Counted Loop) Exercises

1. Given the variables shown below, describe in words what will happen when each of the program segments below is
executed. Show a trace chart (memory map) for the variables used. (The first one is done for you.) Check your
answers by using Visual Basic and break points!

Size Count Score Sum
11217 10 142 0
Values Before X Sum Count Output
For X = 1 To 5 Entering Loop > 0 0 10 1
Sum = Sum + X 1 11 3
Count = Count + 1
Print Sum 2 12 6
Next X 3 13 10
Print Count 15
Values After 4 10 14 15
Exiting Loop ™ 5 15 15
6 15 15
For N = Count To O Step -2 For N = 7 To Count
Sum = Size Mod Count Sum = Score Mod N
Score = Score + Sum If Sum = 0 Then
Size = Size - Sum Print Score
Next N End If
txtNuml.Text = CStr(Score) Score = Score + Sum
txtNum2.Text = CStr(Size) Next N
For Num = 1 To Count
Sum = Sum + Num For X = 0 To 8 Step 2
Score = Score — Sum Score = Score — 1
If Score Mod 2 = 0 Then Sum = Score + X
Print "Even Score" Print Sum
Else
Print "0dd Score" Ne%t X
End IFf Print Score
Next Num

2. Write a “For...Next” loop to perform each of the following tasks:
a) Print your name 20 times on the form

b) Add up the numbers from 1 to 50
¢) Add up all even numbers less than 100
d) Print the sequence of squares, “1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256" on the form.
3. Design and code a program that computes the sum from Lower to Upper, where Lower and Upper are variables

that store two numbers entered by the user into text boxes (Lower < Upper). The result should be displayed in a
label box.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-17

“DoO ... WHILE” AND “DO ... UNTIL” LOOP STRUCTURES (CONDITIONAL LOOPS)

This Game demonstrates a “Do ... Loop Until”” loop structure.
Once the “Start” button is clicked, the player keeps entering guesses Shart RIGHT ON!
Until the entered guess is equal to the secret number.

Questions

1. What is the purpose of the “Randomize” statement?
Why is it used within a “Form_Load” sub

"To try out this program, just load it from the I:drive procedure? Why would it be wasteful to include the
"1:\Out\Nolfi\lcs3mo\Do Loop Guessing Game With Multiple Forms “Randomize” statement in the “cmdStart Click”
Option Explicit sub procedure? -
Private Sub Form_Load()

Randomize
End Sub

Private Sub cmdStart_Click(Q)
Dim Guess As Byte, SecretNumber As Byte

SecretNumber = Int(100 * Rnd + 1)
IbIClue.Caption = ™"

2. Why is it possible in this program to declare both
“SecretNumber” and “Guess” as local (procedure
level) variables. Why is it not necessary to use any

Do “Beginning of Roop global (module level) variables?
Guess = Val(InputBox("'Enter a Guess'"™, "))

If Guess > SecretNumber Then
IbIClue.Caption = "Too High!"

Elself Guess < SecretNumber Then
IbIClue.Caption = "Too Low!"

End If 3. Why is the “Val” function used in conjunction with
Loop Until Guess = SecretNumber "End of loop the “InputBox” function? What could go wrong if
IbIClue.Caption = "RIGHT ONI"™ “Val” were omitted?

End Sub

Here are the various LOOP PATTERNS you can use. The four variations shown below differ in subtle ways.

Do Do Do Until condition Do While condition
[statements] [statements] [statements] [statements]
[Exit Do] [Exit Do] [Exit Do] [Exit Do]
[statements] [statements] [statements] [statements]

Loop Until condition Loop While condition Loop Loop

Question

Explain the subtle differences in the four loop structures shown above.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-18

Examples

Example of Adding Up a List of Numbers using a Flag Variable to Signal the End of the Input

Pseudo-Code

Sum = 0 Initialize sumto 0
Do Begin the loop
Num = InputBox("’Enter a Number™,™") Get user input
Sum = Sum + Num
Loop Until Num = O Add “Num” to “Sum”

Stop if user enters a ZERO

To use the same method to Average a list, we need to Count the number of inputs.

Sum = 0 Pseudo-Code
NumEntries = O
Initialize Sum and Count to zero

Do

Num = InputBox("'Enter a Number,'™) BegiggeNISr%pto user input

Sum = Sum + Num
NumEntries = NumEntries + 1 Add Num to Sum
Add 1 to NumEntries

Loop Until Num = 0 Stop if user enters a ZERO (when Num=0)
NumEntries = NumEntries — 1

- Remove zero from the count
Average = Sum / NumEntries

Calculate Average

Example of Rolling 2 Dice until the Roll is a Seven

Pseudo-Code

Do
Diel = Int(Rnd * 6) + 1 Begin the loop
Die2 = Int(Rnd * 6) + 1 Roll first die
Roll = Diel + Die2 Roll second die
Loop Until Roll = 7 A_dd their values
Stop if Roll =7

Example to find the Smallest Divisor (other than 1) of a Number

Pseudo-Code

SmallestDivisor = 1 User enters number
Set smallestDivisor to 1

Do
SmallestDivisor = SmallestDivisor + 1 Begin loop
Remainder = Num Mod SmallestDivisor Add 1 to smallestDivisor
Loop Until Remainder = 0 Or SmallestDivisor = Num Set remainder to number mod smallestDivisor
If Remainder = 0 Then Stop if remainder =0 or smallestDivisor = number
Print SmallestDivisor If remainder =0
Else Print llestDivi
Print "The number is prime." rint smaflestbvisor
End If Else

Print “Number is prime”

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-19

“Do...Loop” (Conditional Loop) Exercises

1. Each of the following loops uses an “InputBox” to get data from the user. In each question, a sample of user data is
given. Create a trace chart (memory map) for each code segment and show the exact output.

User Data: 65, 54, 70, 68, 52, 81, 75, 0
Biggest = 0
Do
Num = InputBox("Enter a Number™,'")

IT Num > Biggest Then
Biggest = Num
End if

Loop Until Num=0
Print Biggest

User Data: 23, 12, 5, 34, 88, 15, 120, 25

Count = O
Do

Num = InputBox("Enter a Number™",'")

If Num >=15 Then
Count = Count + 1
Print Num;
End If
Loop While Count < 100

Print "****"- Count

2. Write a “Do...Loop” to perform each of the following tasks:

User Data: 65, 54, 70, 68, 52, 81, 75, 0
Sum = 0
Do

Num = InputBox(“Enter a Number™,™")
Unit = Num Mod 10
Sum = Sum + Unit

Loop Until Num=0
Print Sum

User Data: 22, 11, 5, 12, 4, 33, 16, 9, 3
Sum = 0
Do Whille Sum >= 0
Num = InputBox("Enter a Number",''")

I¥f Num Mod 2 = 0 Then
Sum = Sum + Num
Else
Sum = Sum — Num
End If

Loop
Print Sum

a) Add up the numbers1+ 2+ 3+ 4 + ... until the Sum > 100.

b) Determine how many numbers 2 +4 + 6 + 8 + ... are needed to give a Sum > 1000.
c) Output all powers of 2 (i.e. 1, 2, 4, 8, 16, 32, ...) that are less than 1000000.

d) Output the smallest number (other than 1) that divides evenly into 2701.

3. Design and Code the programs described below.

a) The USER enters numbers using an Input Box. A zero is used to flag the final input. The computer then uses a
Label to show the AVERAGE of the Highest and Lowest numbers that were entered.

b) The USER enters numbers using an Input Box. A zero is used to flag the final input. The computer then uses a
Label Box to state whether the Even or Odd numbers had the largest total.

Copyright ©, Nick E. Nolfi

ICS3MO Advanced Visual Basic GA-20

AN ENHANCED VERSION OF THE DO LoOP GUESSING GAME

Note: you will find a copy of this program in the folder
I:\Out\Nolfi\lcs3mO0\Do Loop Guessing Game with Multiple Forms

You are probably accustomed to writing Visual Basic programs with only one form.
The enhanced version of the “do loop guessing game is an example of a program with
two forms (more precisely, “form modules”) and one code module.

Form Modules

Code Module

"This is an example of a "Code Module (“'modCommonCode'™). It is used as

"a "'storage area' for code that is required by 2 or more "Form Modules."
"Unlike form modules, code modules are not associated with any objects.

Option Explicit

Public Guess As Integer

Public GiveUp As Boolean, ValidGuess As Boolean

"This program is designed to help you understand the following: Using
"multiple forms, using code modules to store code that is common to
"multiple forms, using "application modal' forms, using the enter
"key to signify the end of input. (This form is "frmGuessingGame')
Option Explicit

Const ApplicationModal = 1

Private Sub Form_Load()

Randomize
Me . Show
cmdStart.SetFocus

End Sub

Private Sub cmdStart_Click()
Dim SecretNumber As Byte

SecretNumber = Int(100 * Rnd + 1)
IbIClue.Caption = "

Do
"The user®s response is obtained from a different form.
"This prevents the loop from becoming infinite.

frmEnterGuess.Show (ApplicationModal)

"The values of "GiveUp," " Guess"™ and "ValidGuess"
"are assigned in the form "frmEnterGuess."

IT Not GiveUp And ValidGuess Then
IT Guess > SecretNumber Then
MsgBox *"Too HIGH™
Elself Guess < SecretNumber Then
MsgBox "‘Too LOW"
End IFf
End If

Loop Until Guess = SecretNumber Or GiveUp

IT Guess = SecretNumber Then
IbIClue.Caption = _
“Right on! You got it! Click START to play again."
Else
IbIClue.Caption = _
"You gave up! The secret number is" & _
Str(SecretNumber) & . Click START to try again.”
End If

End Sub

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic

llProject - Projectl x|

|

= g Project1 {Do Loop Guessing G
=5 Forms

B9 frmEntercuess (FrmGuess.
B frmGuessing@ame (Do Looj

—»
-5 Modules
//y ¥ modCommanCods (Module

L3 2

Questions

1.

What is the purpose of the code
stored in the code module
“modCommonCode?”

How does an “application
modal” form differ from a non-
modal form?

Why is it necessary to use an
application modal form in this
program to receive input from
the user

GA-21

"This form ("frmEnterGuess'™) is used to obtain a guess from the 4. What makes it possible to use the

"user or to allow the user to give up. It is an "application ENTER key to enter the guess

"modal*form, which means that the application is suspended until instead of clicki the “Ent

"the user responds to this form. (ins ea}, ot clicking on the “tnter
] o Guess” button)?

Option Explicit

"The ""Activate' event occurs every time a

*form becomes the active window.

Private Sub Form_Activate()

txtGuess.Text = "
txtGuess.SetFocus

End Sub

Private Sub cmdEnterGuess_Click()
Guess = Val (txtGuess.Text)

If Guess >= 1 And Guess <= 100 Then
ValidGuess = True

ElseMSgBOX 5. How is the maximum length of the
"Your guess must be a whole number between 1 and 100.", _ user’s input limited to three
vbExclamation characters?

ValidGuess = False
End If

GiveUp = False
txtGuess.Text = "
txtGuess.SetFocus
Me.Hide

End Sub

Private Sub cmdGiveUp_Click()

GiveUp = True
Me_Hide

End Sub

"Prevent the user from entering any characters other

“than the digits from O to 9. It also allows the pressing of
"the ENTER key to signify the end of the input.

Private Sub txtGuess_KeyPress(KeyAscii As Integer)

IT (KeyAscii < vbKeyO Or KeyAscii > vbKey9) And _
KeyAscii <> vbKeyBack Then

S

Why are the digits 0 to 9 and the
BACKSPACE accepted while all
other keys are rejected?

KeyAscii = 0
End IFf

End Sub

7. What is the difference between the
“Activate” event and the “Load”
event?

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-22

USING VISUAL BASIC TO PRODUCE STRING ART

The String Art Examples of String Art

Algorithm
A set of N points is read in from a String Art Example 1 String Art Example 2
data file (or are defined from code) . Form1 M= 5 . Form]

and connected according to the
following algorithm. Note that the
following /S NOT Visual Basic code!
It is pseudo-code! Your job is to
translate the pseudo-code into VB!

Initialize the values of A and B

Set A=1 and B=some value between
1&N
loop

join point A to point B

add 1to A

join point B to point A

add 1to B

% "l'5<:)<l .
if B>N
set B=1

until A=N

By changing the initial value of B (just
before the loop) a different pattern
can be produced.

Exercises
1. How many points are used in string art example 1?

2. How many points are used in string art example 2?

3. How many points are used in string art example 3?

4. Explain the string art algorithm in plain English.

String Art Example 3

. Form1

POIMTS

=1 3

5. Write a VB program that can produce any string art given “N” points and an initial value of “B.” Include a feature that allows the user to change the initial value of “B” and to

select the colours used. Allow the user to select up to three colours.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-23

FRACTALS

Fractal Geometry

Fractal geometry is the branch of mathematics that deals with producing extremely irregular curves or shapes for which
any suitably chosen part is similar in shape to a given larger or smaller part when magnified or reduced to the same size
(this property of fractals is known as self-similarity.). A “picture” or “image” produced by a fractal geometry algorithm is
usually called a fractal. Fractal geometry is closely related to a branch of mathematics known as chaos theory.

The Chaos Game

To gain a basic understanding of fractals, it is helpful to play a game called the chaos game. The game proceeds in its
simplest form as follows. Place three dots at the vertices of any triangle. Colour the top vertex red, the lower left green
and the lower right blue. Then take a die and colour two faces red, two green and two blue.

To play the game, you need a seed, an arbitrary starting point in the plane. Starting with this point, the algorithm begins
with a roll of the die. Then, depending upon which colour comes up, plot a point halfway between the seed and the
appropriate coloured vertex. Repeat this process using the terminal point of the previous move as the seed for the next.
To obtain the best possible results, do not plot the first 15 (or so) points generated by this algorithm! Only begin
plotting after the first 15 points have been generated!

For example, Figure 1 shows the moves associated with rolling red, green, blue and blue in order.

Figurel Playing the chaos game with rolls of red, green, blue, blue.

People who have never played this game are
always surprised and amazed at the result!
Most expect the algorithm to yield a blur of
points in the middle of the triangle. Some
expect the moving point to fill the whole
triangle. Surprisingly, however, the result is
anything but a random mess. The resulting
picture is one of the most famous of all fractals,
the Sierpinski triangle.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-24

The Sierpinski Triangle
Now to see the Chaos Game in action, run the program “Sierpinski's Triangle.vbp” in the folder “I:\Out\Nolfi\Drawing,
Graphics, Game Program Examples\Sierpinski’s Triangle V1 and V2.”

si| Sierpinski's Triangle Yersion 1 @@@

You must be patient once you click on the “Start” button!

It takes a few minutes for this program to generate Sierpinski’s triangle. However,
it will be well worth the wait! You will be amazed by the figure generated by this
seemingly random and chaotic algorithm!

Assignment (To be handed in)

1. Use the Internet (or whatever other resources that you wish to use) to find algorithms that produce the following
fractals:

a. Sierpinski Triangle (this one is easy because | have already given it to you)
b. Sierpinski Pentagon

. Sierpinski Hexagon

d. Sierpinski Carpet

e. Koch Snowflakes

. Any other fractal that is not too difficult to code

o

Then create a word processor document that gives a brief outline of each algorithm. Include diagrams to supplement
the description of each algorithm.

2. Using a Web browser, load the Java applet with URL http://math.bu.edu/DYSY S/applets/fractalina.html. Experiment
with this applet for a few minutes to familiarize yourself with its various features. Then write a Visual Basic program
that is similar to the “Fractalina” applet. Your program must be able to generate the following fractals:

a. Sierpinski Triangle
b. Sierpinski Pentagon
c. Sierpinski Hexagon
d. Sierpinski Carpet
e. Koch Snowflakes

Note that your program need not have “New Point,” “Kill Point” and “Zoom Out” buttons. However, your program
should allow the user to drag the vertices of the shapes to different locations.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-25

http://math.bu.edu/DYSYS/applets/fractalina.html

EUCLID AND THE GCD

Definition of GCD

By definition, the Greatest Common Divisor (GCD) of two positive integers is the largest integer that divides both
integers exactly.

Brute Force (Slow) Method for Computing the GCD of Two Integers

You have already developed an algorithm for finding the GCD of two integers. Use the provided space to write a pseudo-
code description of your algorithm. (See “Fraction Calculator” in unit 2.)

Description of Euclid’s (Fast) Method for Computing the GCD of Two Integers

Background
More than 2000 years ago, Euclid published an algorithm for finding the GCD of two numbers. His version was strictly
geometric since algebra had not been invented yet, but the algebraic version is described below.

Take any two positive integers a and b, with b smaller than a (i.e. b < a).

Euclid noted that there are integers r (the remainder) and g (the quotient) such thata=qb +r:
If b is divided into a, g is the quotient and r is the remainder.
(For example, if a =120, b = 25, then 120 = 4(25) + 20, which means that g = 4 and r = 20.)

Any common factor, N, of b and r divides a exactly:

If N divides b, it also divides gb. Since N divides r, it must also divide the sum, gb + r, which is a of course.
(Continuing the above example, N = 5 divides both b = 25 and r = 20. Therefore, N =5 must also divide

gb + r =4(25) + 20 = 120 since N = 5 is a common factor of 4(25) and 20.)

Any common factor, M, of a and b divides r exactly:

i —5_ r_a_Gb o a ab i ir di r i
Sincer =a - qgb, MM M Since M and M are both integers, then their difference, M , must also be an integer.
Therefore, M divides r.

(M=5 divides both a = 120 and b =25. Therefore it must also divide a — gb = 120 — 4(25) = 20)

It follows that the largest N must equal the largest M. In other words, gcd(a,b) = gcd(b,r). Since b is less than a and
r is less than b, we can repeat these steps substituting b for a and r for b until r becomes 0. The final step has
a=gb+ 0and b is the desired GCD.

Summary
The Euclid algorithm can be expressed concisely by the following recursive formula:
gcd(N, M) = gcd(M, N mod M), where M < N.

Note: Please recall that N mod M means the remainder obtained when M is divided by N.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-26

Example

Here is an example of Euclid’s algorithm in action.

Find the GCD of 2322 and 654.

gcd(2322, 654) = ged(654, 2322 mod 654) = gcd(654, 360)
gcd(654, 360) = gcd(360, 654 mod 360) = gcd(360, 294)
gcd(360, 294) = gcd(294, 360 mod 294) = gcd(294, 66)
gcd(294, 66) = gcd(66, 294 mod 66) = gcd(66, 30)

gcd(66, 30) = ged(30, 66 mod 30) = gcd(30, 6)

gcd(30, 6) = gcd(6, 30 mod 6) = gcd(6, 0)

gcd(6,0) =6

Your Task
1. Use Euclid’s method to calculate gcd(4896, 432)

Therefore, gcd(2322,654) = 6.

2. Use the provided space to write a pseudo-code description of the Euclid GCD algorithm. When you are finished, show
the pseudo-code to me. Once | approve of your pseudo-code, you will write a VB function procedure that uses Euclid’s

algorithm to calculate the GCD of two numbers.

Test out the Euclid Algorithm

In the folder I:\Out\Nolfi\lcs3mo\Euclid’s GCD Algorithm you will find two implementations of Euclid’s algorithm. One of them
is just a straight implementation of the algorithm. The other compares Euclid’s algorithm to its slower counterpart from unit 1. Test

both programs thoroughly. List your observations below.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic

AVB-27

LEARNING ABOUT ARRAYS AND NESTED LOOPS THROUGH THE
"GENERATING RANDOM INTEGERS WITHOUT REPETITION” PROBLEM

Purpose: To learn about arrays and nested loops
Motivation: The problem of generating random numbers without repetition

Statement of the Problem

Suppose that you wanted to write a program to generate random numbers for a lottery such as Lotto 6/49”. It is simple enough to
write a “For ... Next” loop that generates six random integers, but how would you prevent the computer from generating the same

random number two or more times?
A Solution

Consider the following example of generating six random integers between 1 and 49 without repetition. A new random integer is
generated with each iteration of the main loop. Whenever a previously generated integer appears, a new one must be generated to
replace it. Pseudo-code for this algorithm is given below.

3 3 3
17 17
3
A “3” has already been

generated so a new
random integer needs to
be generated to replace it.

3 3
17 17
12 12

14

A “17” has already been
generated so a new
random integer needs to
be generated to replace it.

For 1 =1 To 6

Do

Generate random integer
Loop Until random integer has not already been generated

Set random integer I to the new one just generated

Next 1

Why Arrays are Necessary to implement the above Algorithm

3
17
12
14
17

A “14” has already been
generated so a new
random integer needs to
be generated to replace it.

3
17
12
14
43

3
17
12
14
43
14

3
17
12
14
43
45

An array is a structure that allows you to use a single name to refer to a group of two or more variables. To distinguish
one variable in the group from another, a number, called the index or subscript, is used. Arrays help you to create smaller

and simpler code in many situations, because you can set up loops that deal efficiently with any number of cases.

Carefully study the following code. You can find a copy in the folder
I:\Out\Nolfi\lcs3mo\Space Versus Time\Lotto 649.

Private Sub cmdQuickPick_Click()
Dim QuickPick(1l To 6) As Byte, RandomPick As

Byte

Dim I As Byte, J As Byte, Repetition As Boolean

For I =1 To 6
Do

RandomPick = Int(Rnd * 49 + 1)

Repetition = False
For 3 =1To Il -1

IT RandomPick = QuickPick(J) Then

Repetition = True

Exit For
End IFf
Next J

Loop Until Repetition = False
QuickPick(l) = RandomPick

Next 1

Copyright ©, Nick E. Nolfi

“QuickPick” Array

Index

OOUTh,WN -

Data
3
17
12
14
43
25

QuickPick(1)

QuickPick(2)

QuickPick(3)

QuickPick(4)

QuickPick(5)

QuickPick(6)

Notice that each element (member) of the array has the

ICS3MO Advanced Visual Basic

same name but a different index (subscript).

AVB-28

For 1 = 0 To 5
IbIQuickPick(l).Caption = QuickPick(l + 1)

Next 1
End Sub

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-29

General Facts about Arrays
e All the elements in an array usually have the same data type.

e Of course, when the data type is Variant, the individual elements may contain different kinds of data (objects, strings,
numbers and so on). You can declare an array of any of the fundamental data types, including user-defined types and
object variables.

e Because Visual Basic allocates space for each index number, avoid declaring an array larger than necessary.
e Arrays have both upper and lower bounds and the elements of the array are contiguous within those bounds.

* In Visual Basic, there are two types of arrays. Fixed-size arrays always remain the same size and dynamic arrays can
be resized at run-time. Dynamic arrays will be discussed later.

Declaring Fixed-Size Arrays
There are three ways to declare a fixed-size array, depending on the scope you want the array to have:
e To create a public array, use the Public statement in the “declarations” section of a module to declare the array.

e To create a module-level array, use the Private or Dim statement in the “declarations” section of a module to declare
the array.

e Tocreate a local array, use the Private or Dim statement in a procedure to declare the array.

Setting Upper and Lower Bounds

When declaring an array, follow the array name by the upper bound in parentheses. The upper bound cannot exceed the
range of a Long data type (-2,147,483,648 to 2,147,483,647). For example, these array declarations can appear in the
“declarations” section of a module:

Dim Counter(14) As Integer <15 elements with indices ranging from 0 to 14.
Dim Sum(20) As Double "21 elements with indices ranging from O to 19.

To create a public array, you simply use Public in place of Dim or Private.

Public Counter(14) As Integer
Public Sum(20) As Double

The first declaration creates an array with 15 elements, with subscripts running from 0 to 14. The second creates an array
with 21 elements, with subscripts ranging from 0 to 20. The default lower bound is 0.

To specify a lower bound, provide it explicitly (as a Long data type) using the “To” keyword:

Dim Counter(l To 15) As Integer

Dim Sum(100 To 120) As String

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-30

have been appropriately declared.

Array

Index Num NumDoubled |NumMod2 Result Answer
1 25
2 13
3 34
4 16
5 9
For M = 1 To 5 For Y =1 To 5
NumDoubled(M) = 2* Num(M) NumMod2(Y) = Num(Y) Mod 2
Next M Next Y
Sum = 0
For P =1 To 5 For X =1 to 5
Answer(P) = Num(P) + Num(P) Sum = Sum + Num(X)
Next P Total (X) = Sum
Next X
For R =2 To 5 For B =1 To 4

WORKING WITH ARRAYS (ARRAY EXERCISES)

1. Given the array Num with the values shown, fill in the remaining parallel arrays based on the code below. The arrays

Num2(R) = Num(R-1)

Next R

Num3(B) = Num(B) + Num(B+1)

Next B

Total Num1 [Num2 |[Num3 |Num4

For Z = 1 To 4 "be careful here
Result(Z) = 3*Num(Z) - 1
Next Z

For W = 1 To 4 "be careful here
Numl(W) = Num(W+1)
Next W

M=1
For D=1 To 5
IT Num(D) > 15 Then
Num4(M) = Num(D)
M=M+1
End If
Next D

2. Write simple For...Next loops to do the following to the array Num in question 1.

a) Add up the numbers and show the answer in a label box.
b) Find and show the largest number in a label box.
c¢) Count how many even numbers there are and show the answer in a label box.
d) Add 1 to all the odd numbers in the array.
e) Copy the numbers to a new array in reverse order.

Copyright ©, Nick E. Nolfi

ICS3MO Advanced Visual Basic

AVB-31

3. For each loop below, draw a diagram of the new array formed and show any output produced. Use the original Age

array for each question.

Index Age
1 43
2 64
3 25
4 78
5 19

For Cell =1 To 5
Age(Cell) = Age(Cell)*2

For X =1 To 5
Age (X) = Age(6-X)

Next Cell Next X
X=1 X =1
Answer = Age(X) Mod 2 Do

Do While Answer <> 0

Print "0dd";AGE(X) Age(X+1) = Age(X)

X=X+1 End If
Answer = Age(X) Mod 2 X=X+1
Loop Loop Until X > 4
X=1 X=1
Do While X < 5 Do
Num(X+1) = Age(6 - X) Age(X)= Age(X) + Age(6-X)
X=X+1 X=X+1
Loop Loop While X < 5

If Age (X+1) > Age (X) Then

X=1
Do While X < 6

Age (X) = Age(X)+5
Loop

X = 4
Do

Num(X)= Age(X) + Age(X+1)
X=X-1
Print X; Num(X)

Loop While X > 1

X =2
Do

Age(X) = Age(X) - Age(X - 1)
X=X+1

Loop Until X =5

4. Using the array Age shown in question 3, trace the execution of (i.e. create a memory map for) the following code

segment. In addition, state the purpose of the code segment.
For A=1To 5
Biggest = 0
For B =1 to 5
IT Age(B) > Biggest Then
Biggest = Age(B)

Pos = B
End IT
Next B
Print Age(Pos)
Age(Pos) = 0

Next A

5. Write a VB program that can perform each of the following functions.
a) Allow the user to enter a set of marks.
b) Find and display the average, median or mode of the entered marks.
c) Raise or lower one or more marks by a specified percentage.
d) Display a list of the failing marks.
e) Display a list of the passing marks.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic

AVB-32

SPACE VERSUS TIME: THE ETERNAL CONFLICT IN COMPUTER SCIENCE

Background

The two most important resources that a computer uses are main memory (RAM) and processor time (CPU time). Every competent
programmer wishes to write programs that use as little memory and as little processor time as possible. In other words, software
developers want their programs to be fast and small. Unfortunately, there is a strong tendency for these two resources to offset each
other. Reducing the amount of memory that a program uses tends to make it use more processor time (i.e. run more slowly).
Decreasing the amount of processor time (i.e. increasing the speed) required by an algorithm tends to increase the amount of memory
needed.

Increase Processor Time Required Decrease Me(r)nlg ry Required

OR
Increase Memory Required

Decrease Processor Time Required

Balancing memory
requirements and

processor time can be a
very tricky business!

A Problem that Illustrates the Trade-off between Space and Time
If N represents any positive integer, generate N random integers without repetition.

Two Different Solutions

Solution 1 Questions

"Solution 1: Generate random integers without repetition. 1. Briefly explain the algorithm used in solution 1.
Option Explicit
Dim RandomNum() As Integer
Private Sub cmdGenerateRandomNums_Click()
IblIRandomNums .Caption = "
Dim NumRandomNums As Integer, 1 As Integer
Dim J As Integer, NumToChooseFrom As Integer
Dim Repetition As Boolean, RandomNumList As String
NumRandomNums = Val (txtNumsToChoose.Text)
NumToChooseFrom = Val (txtNumToChooseFrom.Text)
ReDim RandomNum(1l To NumRandomNums)
IblIRandomNums .Caption = """
RandomNumList = "
For 1 = 1 To NumRandomNums
Do

Repetition = False A . .
RaﬁdomNum(l) = Int(Rnd * NumToChooseFrom + 1) 2. You will find the source code for solution 1 in the folder

For J=1To Il - 1 I:\Out\Nolfi\Space Versus Time. Run the program

If RandomNum(1) = RandomNum(J) Then several times using different values of

Repetition = True “NumRandomNums” and “NumToChooseFrom.” Try
Exit For values of NumRandomNums as large as 5000 and
End 1T NumToChooseFrom as large as 10000. What do you
Next J observe?

Loop Until Not Repetition
RandomNumList = RandomNumList & Str(RandomNum(l))
Next 1
IbIRandomNums .Caption = RandomNumList
End Sub

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-33

Solution 2 Questions

"Solution 2: Generate random integers without repetition. 1. Briefly explain the algorithm used in solution 2.

Option Explicit
Dim RandomNum() As Integer

Dim AlreadyUsed() As Boolean
Private Sub cmdGenerateRandomNums_Click()

IblIRandomNums.Caption = "

Dim NumRandomNums As Integer, 1 As Integer
Dim NumToChooseFrom As Integer

Dim RandomNumList As String

NumRandomNums = Val (txtNumsToChoose.Text)
NumToChooseFrom = Val (txtNumToChooseFrom.Text)
ReDim RandomNum(l To NumRandomNums)

ReDim AlreadyUsed (1 To NumToChooseFrom)

End Sub

RandomNumList = "'
For 1 = 1 To NumRandomNums
Do
RandomNum(1) = Int(Rnd * NumToChooseFrom + 1) 2. You will find the source code for solution 2 in the folder
;‘I’Op E”E"dN‘(’; A('jrezdylﬁ;;‘ (RindomN“m(')) 1:\Out\Nolfi\lcs3mo0\Space Versus Time. Run the
rea se anaomium = rue H H H
Random%umList = RandomNumList & Str(RandomNum(l)) preran]severalt”neSUSIng different values of

“NumRandomNums” and “NumToChooseFrom.” Try
values of NumRandomNums as large as 5000 and
NumToChooseFrom as large as 10000. What do you
observe this time? Compare your observations to those for

Next 1
IbIRandomNums .Caption = RandomNumList

solution 1.

More Important Questions
1. Which solution is faster? Which uses less memory? Explain.

2. Which solution would you choose?

3. What is the purpose of the ReDim keyword used in both solutions?

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic

AVB-34

INTRODUCTION TO SUBSTRINGS, CONTROL ARRAYS AND TRANSLATING OBJECTS

I have designed this program to illustrate concepts that are
new to most of the students in this course. The new concepts
are listed below.

FINDING SUBSTRINGS OF STRINGS

This program illustrates how to scan a string character-by-
character by using a "For...Next" loop and the "Mid" intrinsic
function.

USING CONTROL ARRAYS TO GROUP CONTROLS (Objects)

TRANSLATING OBJECTS

Dim NumSlides As Byte
Const InitialTop = 960

Private Sub cmdDone_Click()

Dim Position As Integer, Length As Integer
Dim Message As String

Message = Trim(txtMessage.Text)

Length = Len(Message)

txtMessage.Text = "

"Scan the entered string character by character. Fill the
“control array "IblCharacter™ with the individual
"characters found in '"Message."

For Position = 1 To Length

IbICharacter(Position - 1).Caption = Mid(Message, _

Position, 1)

Next Position
"This initializes the chain reaction of the enabling and
"disabling of the timers.
NumSlides = O
tmrTranslateCharacter(0).Enabled = True

End Sub

"This sub procedure causes the element "Index™ of the control
"array "IblCharacter'™ to move 100 units down the form. After 10
"'slides" down the form, the timer for element "Index" is
"disabled and the timer for element "Index+1" is enabled.

Private Sub tmrTranslateCharacter_Timer(Index As Integer)

NumSlides = NumSlides + 1
IbICharacter(Index).Top = IblCharacter(Index).Top + 100
IT NumSlides = 10 Then

NumSlides = O

IbICharacter(Index) .Caption = "

IbICharacter(Index).Top = InitialTop
tmrTranslateCharacter(Index) .Enabled = False

IT Index < 11 Then
tmrTranslateCharacter(Index + 1).Enabled = True
End If

End If
End Sub

. Watch Me Take Apart Your Message!!

Please enter a fiiendy message. [

Answer each of the following questions. You
may need to consult the MSDN help files or even
MSDN online (http://msdn.microsoft.com).

1. Define the term “substring.” Explain how it
applies to the code shown at the left.

2. Describe the purpose and the syntax of the
intrinsic functions “Left,” “Right” and “Mid.”

3. What causes the “IblCharacter” label boxes to
move down the form? How would you make
an object move across a form? Would it be
possible to cause an object to move diagonally
or along a curve?

4. Explain the concept of a “control array” and describe how programming tasks can be simplified by using control

arrays.

Copyright ©, Nick E. Nolfi

ICS3MO Advanced Visual Basic

AVB-35

LOTs AND LOTS OF EXAMPLES OF STRING PROCESSING

"This program can be found in 1:\Out\Nolfi\lcs3mO\String Examples

Option Explicit

Private Sub cmdGo_Click()
"Declaration of local variables.
Dim YourString As String, Character As String, ReversedString As String, DashPositions As String
Dim SpacedOut As String, YourString2 As String, Name As String, AbbreviatedName As String
Dim Position As Long, FirstSpace As Long
*variable Initializations Why are these string variables initialized to the null (empty) string?
YourString = Trim(txtString.Text)
YourString2 = Trim(txtString2.Text)
Name = Trim(txtName.Text)

ReversedString = "'

DashPositions = "

SpacedOut = "

"Scan "YourString," character by character, from right to left.

"Build "ReversedString," "DashPositions"™ and "SpacedOut." -

For Position = Len(YourString) To 1 Step -1 Why does this “For Loop” count down from the
Character = Mid(YourString, Position, 1) ‘\\\“\\\\\\\\\\\\ length of “YourString” to 1 in steps of —1?
ReversedString = ReversedString & Character
If Character = "-" Then

DashPositions = Str(Position) & "," & DashPositions
End If
SpacedOut = Character & " " & SpacedOut

Next Position

"Find the position of the first space in "Name." Then set the value of "AbbreviatedName" accordingly.

Position = 1

Do While Mid(Name, Position, 1) <> " " And Position <= Len(Name) What is the purpose of this condition?
Position = Position + 1

Loop

"Remove any extra spaces between the given name and the surname.

FirstSpace = Position

Do

Position = Position + 1
Loop Until Mid(Name, Position, 1) <> " "

AbbreviatedName = Mid(Name, 1, FirstSpace) & Mid(Name, Position, 1) & "."

IT DashPositions = """ Then
DashPositions = "No dashes found." Exer
Else "Remove comma at the very end of "DashPositions" e.c Se_

DashPositions = Mid(DashPositions, 1, Len(DashPositions) - 1) Modify this program (the code can be found

End If in the usual folder on the “I” drive) so that a
"Output string is displayed that combines the
IblReversed.Caption = ReversedString characters in an even position in
IblDashes.Caption = DashPositions “YourString”with the characters in an odd

IblSpacedOut.Caption = SpacedOut

_ X position in “YourString2.” For example, the
IT YourString < YourString2 Then

strings “Benjamin” and “Gumbley” would

IblAlphabetical .Caption = YourString & " " & YourString2 . .
Else combine to form the string
IblAlphabetical .Caption = YourString2 & " ' & YourString
End If “Gemjlmyi.”
IbIName.Caption = AbbreviatedName

End Sub

" Intercept the unloading of the form to prevent the user from accidentally quitting. This sub procedure is
invoked (called into action) whenever the '"Close" button or the "X (top right hand corner of form) is
"clicked. This happens because both actions generate the "Unload" event.
Private Sub Form_Unload(Cancel As Integer)
Dim Response As VbMsgBoxResult
Response = MsgBox("'Are you sure you wish to close this program?", _
vbYesNo + vbDefaultButton2, "Leaving so soon?')
IT Response = vbYes Then
End
Else
"Set "Cancel' to any non-zero value to cancel the close.
Cancel =1
End If
End Sub
Private Sub cmdQuit_Click()
Unload Me “Generate the "Unload" event.
End Sub

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-36

W String Processing Examples (Woo Hoo!)

Input Frame

Enter a String Here A16-967-1111

Enter Another Sking Wioohooooooool
Here

Enter a Two-ard

Mame Here [e.q0. Sana Jabbar
James Bazden)

Ouput Frame
Reversed Sting 1111-769-614

Dazhes Located at
Fozitions 4. 8

"Spaced Out"Sthna 41 6-967-1111

S Dizplaved
shabetio et 416-967-1111 Woohoooooooo!

Two-ford Mame
Dizplaped with
Abbreviated Surname

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic

AVB-37

Exercises

Variable Names Name | AccountNumber Word Variable VValues | “Fabulous Fabrizio” | “21574365” | “HELP!”

1. Using the above string variables, show the result of each of the following code segments. Note that “A” is a string
variable while B, C, P and X are integer variables.

A = Left(Name, 4) A = Right(Word, 3) A = Mid(AccountNumber, 3, 4)
Print A Print A Print A
A = Word & Right(Name, 7) |B = Len(Name)*Len(Word) B = Asc(Mid(AccountNumber, 7, 1)) — 48
Print A Print B C = Asc(Mid(AccountNumber, 3, 1)) - 48
Print B + C
For X = 1 To Len(Word) For X = Len(Name) To 1 Step -2 |For X = 1 To Len(Word)
A = Mid(Word, X, 1) A = Mid(Name, X, 1) A = Mid(Word, X, 1) & "*"
Print A Print A; Print A;
Next X Next X Next X
Print "Cursor Return Print
For X = 1 To 4 step 2 P=1 P=1
A = Mid(Word, X, 2) Do While Mid(Name, P,1) <> " " Do While Mid(Name, P, 1) <> " "
Print A P=P+1 P=P+1
Next X Loop Loop
Print Mid(Name,13-P,P+1) Print Mid(Name, P + 1, P)

2. The string array Book has been loaded as shown. What is the output for each of these loops?

Book a) For X = 0 To 3 b) For M =1 To 4

0 | Math For M =1 To 4 A = Mid(Book(M-1), M, 1)
- A = Mid(Book(X), M, 1) Print A

1 | Hist Next M Next M

2 | Geog Print A

3 Engl Next X

3. Write code segments to perform the following tasks.

a.
b.

Enter a word and display its letters in reverse order. (E.g. “System” would become “metsyS.”)

Enter a phone number and then display the positions of the “-”” symbol. (E.g. “905-826-1195 would display “4”
and “8.”)

Enter two words and display them with the longer WORD first.

Enter a word and then display it with a space between each pair of consecutive letters.

(E.g. “Visual” would become “Visual.”)

Enter two words and display them in ascending alphabetical order. The words can be in lower or upper case, so
be careful in your testing.

Enter a word and then display a solid “square” of “X’s” with dimensions being the size of the WORD.

(E.g. the word “BIG” would produce a 3x3 square as shown below.)

XXX
XXX
XXX

Enter a two-word name and then display it in the form given name followed by the first letter of the surname.
(E.g. “Ashley Langlois” would be displayed as “Ashley L.”

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-38

CHARACTER SETS AND STRING MANIPULATION FUNCTIONS
ANSI, DBCS, and Unicode: Definitions
Visual Basic uses Unicode to store and manipulate strings. Unicode is a character set in which 2 bytes are used to
represent each character. Some other programs, such as the Windows 95 API, use ANSI (American National Standards

Institute) or DBCS to store and manipulate strings. When you move strings outside of Visual Basic, you may encounter
differences between Unicode and ANSI/DBCS.

Environment Character Set(s) Used

Visual Basic Unicode
This table shows the ANSI, 32-bit object libraries Unicode

DBCS and Un_icode 16-bit object libraries ANSI and DBCS

character sets in different

environments. Windows NT/2000/XP API Unicode
Automation in Windows NT/2000/XP Unicode

Windows 95/98/Me API ANSI and DBCS
Automation in Windows 95/98/Me Unicode

ANSI (American National Standards Institute)

ANSI is the most popular character standard used by personal computers. Because the ANSI standard uses only a single byte to
represent each character, it is limited to a maximum of 256 character and punctuation codes. Although this is adequate for English, it
does not fully support many other languages. Note that originally, ANSI was called ASCII (American Standard Code for Information
Interchange). The ASCII standard uses seven bits to represent each character, allowing for a maximum of 128 (2') characters. The

ANSI character set, which uses eight bits (one byte), includes the ASCII character set (characters 0 to 127) plus an additional 128
characters (characters 128 to 255).

DBCS (Double-Byte Character System)

DBCS is used in Microsoft Windows systems that are distributed in most parts of Asia. It provides support for many different East
Asian language alphabets, such as Chinese, Japanese and Korean. DBCS uses the numbers 0 — 127 to represent the ASCII character
set. Some numbers greater than 127 function as lead-byte characters, which are not really characters but simply indicators that the
next value is a character from a non-Latin character set. In DBCS, ASCII characters are only 1 byte in length, whereas Japanese,
Korean and other East Asian characters are 2 bytes in length.

Unicode

Unicode is a character-encoding scheme that uses 2 bytes (16 bits) for every character. The International Standards Organization
(1S0) defines a number in the range of 0 to 65,535 (2'° — 1) for just about every character and symbol in every language (plus some
empty spaces for future growth). On all 32-bit versions of Windows, Unicode is used by the Component Object Model (COM), the
basis for OLE and ActiveX technologies. Unicode is fully supported by Windows NT/2000/XP. Although both Unicode and DBCS
have double-byte characters, the schemes are entirely different. (Visit www.unicode.org to find out more.)

Example: Character codes for ""A™ in ANSI, Unicode, and DBCS
Note: In Visual Basic, the code “&H” is used to indicate that the number that follows is in hexadecimal form.

Hexadecimal Binary Representation
Character Description Representation yRep
Byte 1 Byte 2 Byte 1 Byte 2
A ANSI Character “A” &HA41 01000001
A Unicode Character “A” &H41 &HO00 01000001 00000000
A DBCS Japanese Wide-Width “A” &H82 &H60 10000010 01100000
A Unicode Wide-Width “A” &H21 &HFF 00100001 11111111

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-39

Issues Specific to the Double-Byte Character Set (DBCS)

DBCS is a different character set from Unicode. Because Visual Basic represents all strings internally in Unicode format,
both ANSI characters and DBCS characters are converted to Unicode and Unicode characters are converted to ANSI
characters or DBCS characters automatically whenever the conversion is needed. You can also convert between Unicode
and ANSI/DBCS characters manually. For more information about conversion among different character sets, see

“DBCS String Manipulation Functions” below.

When developing a DBCS-enabled application with
Visual Basic, you should consider:

o Differences among Unicode, ANSI, and DBCS.
o DBCS sort orders and string comparison.

o DBCS string manipulation functions.

« DBCS string conversion.

o How to display and print fonts correctly in a DBCS
environment.

o How to process files that include double-byte
characters.

o DBCS identifiers.
e DBCS-enabled events.
e How to call Windows APIs.

DBCS String Manipulation Functions

Tip

Developing a DBCS-enabled application is good practice,
whether or not the application is run in a locale where
DBCS is used. This approach will help you develop a
flexible, portable, and truly international application. None
of the DBCS-enabling features in Visual Basic will interfere
with the behaviour of your application in environments
using exclusively single-byte character sets (SBCS). Also,
the size of your application will not increase because both
DBCS and SBCS use Unicode internally.

For More Information

For limitations on using DBCS for access and shortcut keys,
see “Designing an International-Aware User Interface” in
the MSDN collection.

Although a double-byte character consists of a lead byte and a trail byte and requires two consecutive storage bytes, it
must be treated as a single unit in any operation involving characters and strings. Several string manipulation functions
properly handle all strings, including DBCS characters, on a character basis. These functions have an ANSI/DBCS
version and a binary version and/or Unicode version, as shown in the following table. Use the appropriate functions,
depending on the purpose of string manipulation. The “B” versions of the functions in the following table are intended
especially for use with strings of binary data. The “W” versions are intended for use with Unicode strings.

Function | Description

Returns the ANSI or DBCS character code for the
Asc . .

first character of a string.

Returns the value of the first byte in the given string
AscB L .

containing binary data.

Returns the Unicode character code for the first
AscW .

character of a string.
Chr Returns a string containing a specific ANSI or

DBCS character code.
ChrB Returns a binary string containing a specific byte.

Returns a string containing a specific Unicode
Chrw

character code.

Returns a specified number of ANSI or DBCS
Input -

characters from a file.
Mid Returns a specified number of characters from a

string.

Copyright ©, Nick E. Nolfi

Function

InStr

InStrB

Left,
Right

LeftB,
RightB

Len

LenB

InputB

MidB

ICS3MO Advanced Visual Basic

Description

Returns the first occurrence of one string within
another.

Returns the first occurrence of a byte in a binary
string.

Returns a specified number of characters from the
right or left sides of a string.

Returns a specified number of bytes from the left or
right side of a binary string.

Returns the length of the string in number of
characters.

Returns the length of the string in number of bytes.

Returns a specified number of bytes from a file.

Returns the specified number of bytes from a binary
string.

AVB-40

The functions without a “B” or “W” in this table correctly handle DBCS and ANSI characters. In addition to the functions above, the
String function handles DBCS characters. This means that all these functions consider a DBCS character as one character even if that

character consists of 2 bytes.

The behaviour of these functions is different when they are handling SBCS and DBCS characters. For instance, the Mid function is
used in Visual Basic to return a specified number of characters from a string. In locales using DBCS, the number of characters and the

number of bytes are not necessarily the same. Mid would only return the number of characters, not bytes.

In most cases, use the character-based functions when you handle string data because these functions can properly handle ANSI

strings, DBCS strings and Unicode strings.

The byte-based string manipulation functions, such as LenB and LeftB, are provided to handle the string data as binary data. When
you store the characters to a String variable or get the characters from a String variable, Visual Basic automatically converts between
Unicode and ANSI characters. When you handle the binary data, use the Byte array instead of the String variable and the byte-based

string manipulation functions.
The ANSI Character Set
(Characters 0 — 127 Originally Called “ASCII”” Character Set)

0 null char | 24 ctrl-X |48 | 0 72 | H 96
1 ctrl-A 25 oty (49 |1 73 |1 |97
2 ctrl-B 26 ctrl-Z | 50 |2 74] 98
3 ctrl-C 27 ESC |51 |3 |75 |K |99
4 ctrl-D 28 |1 52 |4 |76 |L | 100
5 ctrl-E 29 |1 58 5 |77 /M | 101
6 ctrl-F 0 |1 54 |6 |78 | N | 102
7 ctrl-G 31 |0 55 |7 |79 |0 | 103
8 ctrl-H 32 space |56 |8 |80 |P | 104

(backspace)

ctrl-1

9 Tap (B[57 9 |81 |Q | 105
10 ﬁf;lefjee g ¥ | 58 [: |8 |R | 106
1 ok |35 # 59 |; |8 |s | 107
12 | ol 6 | s 60 < |8 | T | 108
13 féﬂ'T"é'R) 37 | % 61 = |8 |U | 109
4 |arN |38 |& 62 |> |8 |V | 110
15 o0 39 | 63 |2 |87 |w |11l
16 | ctrl-P 0 | (64 @ |88 | X | 112
17 Q41) 65 A |8 |Y | 113
18 |aR 42 |x 6 |B |90 |z | 114
19 | ctls 43+ 67 |C |o1 |[|15
0 T 44, 68 D |92 |\ | 116
2 | |45 |- 69 |[E |93 |] | 117
2 v 46 . 70 F o4 |~ |18
23 w47/ 716 |9 119

120
a 121
b 122
c 123
d 124
e 125
f 126
g | 127
h 128
i 129
j 130
k 131
| 132
m | 133
n 134
0 135
p 136
q | 137
r 138
S 139
t 140
u 141
v 142
w 143

144

145

146

147

148

149

150

151

152

153

154

155;

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

I+

Ya

Yo

Ya

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

(@}

(o]}

€, These characters are not supported by Microsoft Windows.

Copyright ©, Nick E. Nolfi

ICS3MO Advanced Visual Basic

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

»

n

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

=1

o

o

=3

AVB-41

Key Code Constants in Visual Basic

Constant
vbKeyA
vbKeyB
vbKeyC
vbKeyD
vbKeyE
vbKeyF
vbKeyG
vbKeyH
vbKeyl
vbKeyJ
vbKeyK
vbKeyL
vbKeyM
vbKeyN
vbKeyO
vbKeyP
vbKeyQ
vbKeyR
vbKeyS
vbKeyT
vbKeyU
vbKeyV
vbKeyW
vbKeyX
vbKeyY

vbKeyZ

Copyright ©, Nick E. Nolfi

Value
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90

Description
A key
B key
C key
D key
E key
F key
G key
H key
I key
J key
K key
L key
M key
N key
O key
P key
Q key
R key
S key
T key
U key
V key
W key
X key
Y key

Z key

Constant Value
vbKey0 48
vbKeyl 49
vbKey2 50
vbKey3 51
vbKey4 52
vbKey5 53
vbKey6 54
vbKey7 55
vbKey8 56
vbKey9 57
vbKeyL Button 0x1
vbKeyRButton 0x2
vbKeyCancel 0x3
vbKeyMButton 0x4
vbKeyBack 0x8
vbKeyTab 0x9
vbKeyClear 0xC
vbKeyReturn 0xD
vbKeyShift 0x10
vbKeyControl 0x11
vbKeyMenu 0x12
vbKeyPause 0x13
vbKeyCapital 0x14
vbKeyEscape 0x1B
vbKeySpace 0x20
vbKeyPageUp 0x21
vbKeyPageDown 0x22

Description
0 key

1 key

2 key

3 key

4 key

5 key

6 key

7 key

8 key

9 key

Left mouse
Right mouse
CANCEL key
Middle mouse
BACKSPACE
TAB key
CLEAR key
ENTER key
SHIFT key
CTRL key
MENU key
PAUSE key
CAPS LOCK
ESC key
SPACEBAR
PAGE Up

PAGE Down

ICS3MO Advanced Visual Basic

Constant
vbKeyF1
vbKeyF2
vbKeyF3
vbKeyF4
vbKeyF5
vbKeyF6
vbKeyF7
vbKeyF8
vbKeyF9
vbKeyF10
vbKeyF11
vbKeyF12
vbKeyF13
vbKeyF14
vbKeyF15
vbKeyF16
vbKeyEnd
vbKeyHome
vbKeyL eft
vbKeyUp
vbKeyRight
vbKeyDown
vbKeySelect
vbKeyPrint

vbKeyExecute

vbKeySnapshot

vbKeylnsert

vbKeyDelete

vbKeyHelp

vbKeyNumlock

Value
0x70
0x71
0x72
0x73
0x74
0x75
0x76
ox77
0x78
0x79
Ox7A
0x7B
0x7C
0x7D
Ox7E
Ox7F
0x23
0x24
0x25
0x26
0x27
0x28
0x29
0x2A
0x2B
0x2C
0x2D

0x2E

0x2F

0x90

Description

F1 key

F2 key

F3 key

F4 key

F5 key

F6 key

F7 key

F8 key

F9 key
F10 key
F11 key
F12 key
F13 key
F14 key
F15 key
F16 key
END key
HOME key
LEFT

UP
RIGHT
DOWN
SELECT
PRT SCR
EXECUTE
SNAPSHOT
INSERT

DELETE

HELP key

Num Lock

AVB-42

Constant
vbKeyNumpad0
vbKeyNumpad1l
vbKeyNumpad?2
vbKeyNumpad3
vbKeyNumpad4
vbKeyNumpad5
vbKeyNumpad6
vbKeyNumpad7
vbKeyNumpad8
vbKeyNumpad9
vbKeyMultiply
vbKeyAdd
vbKeySeparator
vbKeySubtract
vbKeyDecimal

vbKeyDivide

Exercises

Value
0x60
0x61
0x62
0x63
0x64
0x65
0x66
0x67
0x68
0x69
0x6A
0x6B
0x6C
0x6D
0x6E

0x6F

Description
0 key
1 key
2 key
3 key
4 key
5 key
6 key
7 key
8 key

9 key

MULT. SIGN (*)

PLUS SIGN (+)

ENTER key

MINUS SIGN

DECIMAL POINT

DIVISION SIGN (/)

This table lists the VB key code constants for the numeric
keypad. Notice that the constant names are different from the
names of corresponding keys elsewhere on the keyboard.

e.g. vbKeyReturn — ENTER key near SHIFT key
vbKeySeparator — ENTER key on numeric keypad

Notice that some of the key code values are written as ordinary
decimal (base 10) values while others are written as hexadecimal
(base 16) values. The hexadecimal values are preceded by the
“0x” prefix. The “0x” prefix is used in C/C++ to denote
hexadecimal numbers. Recall that “&H” is the Visual Basic
notation for hexadecimal numbers.

Details on the hexadecimal system will be given in class.

1. Why it is better to use VB key code constant names instead of the actual numerical values? (For example, why is it
better to use the key code constant name “vbKeyBack™ instead of the actual ANSI code “8?)

2. Briefly describe the similarities and differences among the character standards ANSI, DBCS and Unicode.

3. Explain why using an n-bit code allows for the representation of 2" different characters. How many characters can be

represented using
a. an 8-bit code?

b. a 16-bit code?
c. a 32-bit code?

4. Colours are also represented as bit patterns. Explain why a 24-bit colour code allows for the representation of over

sixteen million colours.

Copyright ©, Nick E. Nolfi

ICS3MO Advanced Visual Basic AVB-43

CREDIT CARD VALIDATION ASSIGNMENT

Introduction
Assignment created by Mr. Dobias

All major credit cards contain an embedded pattern of digits. These digits are called
“check digits,” as they provide an easy way to check if any particular credit card number is
numerically valid. In this assignment, you will design and write a program that determines
whether a credit card number is numerically (structurally) valid.

Rules for Credit Card Number Validity:
1. Length and Prefix

Credit Card Type Valid Length Valid Prefix
Visa 13 or 16 4
Master Card 16 51-55
Amex 15 34 or 37
Discover 16 6011

All valid credit card numbers must have their respective length and prefix.
2. Internal Numeric Formula

Further, a credit card number must be validated as follows:
e Add all digits from right to left.
e Alternate “check” digits must be adjusted in the following way:
0 Multiply each alternate digit by 2.
o If the product is more than a single digit (i.e. greater than 9), add the two digits to obtain a single digit.

e The sum of all digits mod 10 must be equal to 0 (i.e. when the sum must be divisible by 10).
Initially, this may seem difficult, but the method is quite simple.

Example

Suppose you are testing the following Visa number: 4947152680730

1. Length and Prefix

Clearly the number has the correct prefix (4) and a correct length (13).

2. Internal Numeric Formula

We will add the digits from right to left (0,3,7,... to ...7,4,9,4), multiplying and adjusting alternate “check” digits:
1st 2nd 3rd 4th 5th 6th 7th 8th gth 1Oth 11th 1 2th 13th
0 3*2 7 0*2 8 6*2 2 5*2 1 7*2 4 9*2 4

- - =12 =10 =14 =18
1+2 1+0 1+4 1+8
=3 =1 =5 =9

Therefore we have: Sum = 0+6+7+0+8+3+2+1+1+5+449+4 =50

Now we must determine if the sum is divisible by 10 (sum mod 10 is equal to 0).
50 mod 10 = 0.

Therefore, the credit card number is valid, since it meets all conditions.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-44

Program Plan
You may, if you wish, plan your program as follows:

Step 1: Capture User Input
e What is the credit card type?

What is the credit card number?

Step 2: Determine Number Validity

Check length.
Check prefix.
Calculate and check the sum with the internal numeric formula (see above).

Step 3: Display the Result

Output a message about credit card validity (“Credit Card Valid” or “Credit Card Invalid”).
Allow the user to test another number.

Additional Notes

Please note that this method does not determine if a number is real, only valid.

You are expected to follow standard programming naming conventions (variable names, indentation, code
documentation).

Think carefully of which data types you will use.

The input for the program is a credit card type and a credit card number. The output should be a determination (true or
false) of credit card’s numerical validity.

HINT: think before you start programming. Do simple things first.

You are also expected to provide a set of test cases (sample inputs with corresponding sample outputs) for your
program that shows program correctness (i.e. that your program produced correct outputs for all inputs).

If the user input is anything but a valid number, your program should consider the number invalid.

If you’re stuck, make use of online and offline documentation and resources.

Additional Challenge for Extra Credit
Include a feature that allows the user to generate valid credit card numbers.

Remember...

“Remember, whether you say you can do something or you say you
can’t, you’re right.”

Anthony Robbins

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-45

Practice Exercises

1. Working in groups of 2-3, determine which of these credit card numbers are valid based on the prefix, length, and
internal numeric formula:

a) Is VISA number 4947152680730 valid?
Check Prefix: 4 (correct)
Check Length: 13 (correct)
Check Internal Numeric Formula: Sum = 6+7+8+3+2+1+1+5+4+9+4 = 50.
50 mod 10 = 0 (correct)
This number is VALID.

b) Is DISCOVER number 601195145328714 valid?
Check Prefix:
Check Length:
Check Internal Numeric Formula:
This number is

c) Is MASTERCARD number 5358390378156038 valid?
Check Prefix:
Check Length:
Check Internal Numeric Formula:
This number is

d) Is AMEX number 375627815798423 valid?
Check Prefix:
Check Length:
Check Internal Numeric Formula:
This number is

2. In your groups, change the invalid numbers above (by changing their digit or digits) into valid ones. How many ways
are there to do this?

3. Individually, come up with your own valid number (from scratch).

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-46

Evaluation Guide for Credit Card Validator Program

Categories

Criteria

Descriptors

Level 4

Level 3

Level 2

Level 1

Level 0

Level

Average

Knowledge
and
Understanding
(KU)

Understanding of Programming Concepts

Extensive

Good

Moderate

Minimal

Insufficient

Understanding of the Problem

Extensive

Good

Moderate

Minimal

Insufficient

Application
(APP)

Correctness
To what degree is the output correct?

Very High

High

Moderate

Minimal

Insufficient

Run-time Error Handling
How stable is the software?

Highly
Stable

Stable

Moderately
Stable

Somewhat
Unstable

Very
Unstable

Declaration of Variables
To what degree are the variables declared with
appropriate data types?

Very High

High

Moderate

Minimal

Insufficient

Unnecessary Duplication of Code
To what degree has the student avoided unnecessary
duplication of code?

Very High

High

Moderate

Minimal

Insufficient

Debugging
To what degree has the student employed a logical,
thorough and organized debugging method?

Very High

High

Moderate

Minimal

Insufficient

Thinking,
Inquiry and
Problem
Solving
(TIPS)

Algorithm Design and Selection

To what degree has the student used approaches such
as solving a specific example of the problem to gain
insight into the problem that needs to be solved?

Very High

High

Moderate

Minimal

Insufficient

Ability to Design and Select Algorithms Independently
To what degree has the student been able to design
and select algorithms without assistance?

Very High

High

Moderate

Minimal

Insufficient

Ability to Implement Algorithms Independently
To what degree is the student able to implement
chosen algorithms without assistance?

Very High

High

Moderate

Minimal

Insufficient

Efficiency of Algorithms and Implementation
To what degree does the algorithm use resources
(memory, processor time, etc) efficiently?

Very High

High

Moderate

Minimal

Insufficient

Communication
(COM)

Indentation of Code

Insertion of Blank Lines in Strategic Places
(to make code easier to read)

Very Few
or no
Errors

A Few
Minor
Errors

Moderate
Number of
Errors

Large
Number of
Errors

Very Large
Number of
Errors

Comments

» Effectiveness of explaining abstruse (difficult-to-
understand) code

o Effectiveness of introducing major blocks of code

» Avoidance of comments for self-explanatory code

Very High

High

Moderate

Minimal

Insufficient

Descriptiveness of Identifier Names
Variables, Constants, Objects, Functions, Subs, etc

Inclusion of Property Names with Object Names
(e.g. ‘txtName.Text” instead of ‘txtName’ alone)

Clarity of Code
How easy is it to understand, modify and debug the
code?

Adherence to Naming Conventions
(e.g. use “txt” for text boxes, “Ibl” for labels, etc.)

Masterful

Good

Adequate

Passable

Insufficient

User Interface
To what degree is the user interface well designed,
logical, attractive and user-friendly?

Very High

High

Moderate

Minimal

Insufficient

Copyright ©, Nick E. Nolfi

ICS3MO Advanced Visual Basic

AVB-47

INOTES ON DEBUGGING TO HELP YOU WITH YOUR CREDIT CARD VALIDATOR PROGRAM

Use “Print” statements, breakpoints and the “Debug” menu in VB when you need to verify whether your program is

working correctly!
Example 1

Option Explicit "Line 1
Private Sub Commandl_ Click()
Dim Number As Integer, Sum As Integer, X As Integer "Line 2
Number = Val(Textl.Text) "Line 3
Sum = 0 "Line 4
*Adds up numbers 1 to number-1
For X = 1 To Number — 1 “Line 5
Sum = Sum + X "Line 6
"Printing loop counter and the running sum
Print X, Sum "Line 7
Next X "Line 8
Textl.Text = CStr(Sum) "Line 9
End Sub
Example 2
Private Sub Commandl_ Click() "Line 10
Dim ccNum As String, Message As String "Line 11
Dim Sum As Integer, X As Integer "Line 12
Sum = O "Line 13
ccNum = Trim(Textl.Text) "Line 14
"Calculates sum of all the digits
For X = 1 To Len(ccNum) "Line 15
Sum = Sum + Val(Mid(ccNum, X, 1)) "Line 16
"Printing loop counter and the running sum
Print X, Sum "Line 17
Next X "Line 18
Message = "'The sum of the digits is " & CStr(Sum) & "." "Line 19
MsgBox Message "Line 20
End Sub "Line 21
Questions

1. What is the purpose of the Option Explicit statementon line 1? How does it help you to reduce the amount of

time needed to debug your programs?

2. On line 3, the “Val” function is used to convert the string value stored in the “Text” property of the text box to a
numeric value. If you omit the “Val” function, will the code still work? Why is it a bad idea to leave out the “Val”

function.

3. Inline 9, the “CStr” function is used to convert the numeric value stored in the “Sum” variable to a string value. If you

omit the “CStr” function, will the code still work? Why is it a bad idea to leave out the “CStr” function.

. Explain why the use of “Print” statements can be very helpful in the debugging process.
. What other methods of debugging have you already used in the development of VB programs?

~N o O &~

. Will the code on line 16 still work if the “Val” function is omitted? Why is it a bad idea to omit the “Val” function?

. Explore the “Debug” menu in VB. Explain how all the options in this menu (“Step Into”, “Step Out,” “Step Over,”
“Run to Cursor,” “Add Watch,” “Edit Watch,” “Quick Watch,” “Toggle Breakpoint,” “Clear All Breakpoints,” “Set
Next Statement,” “Show Next Statement™) can help you to debug programs.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-48

ASSIGNMENT ON TWO-DIMENSIONAL ARRAYS (OPTIONAL TOPIC)

Data Encryption using the Vigenére Cipher

Throughout history, espionage has always been widely practiced by governments and other organizations. To aid the cause of spies,
the military and other groups, algorithms like the Vigeneére cipher have been, and are continuing to be created. The Vigenére cipher is
a data encryption algorithm that was published in 1586 by Blaise de Vigenére from the court of Henry 11 of France. It was created
during a very turbulent period in European history to address the phenomenon of a rapidly growing number of new European nations.
Many European governments felt that it was necessary to use methods of enciphering text to prevent the myriad new nations from
obtaining sensitive information. Used for almost 300 years and considered virtually unbreakable, the Vigeneére cipher was finally
broken, in 1863, by a Prussian major named Kasiski. Since the Vigenére cipher was used by the Confederate army (“The South”)
during the American Civil War, Kasiski’s discovery ultimately helped to give the upper hand to the Union army (“The North”).

The Vigenere cipher is an example of a Polyalphabetic Substitution Cipher. It is a substitution cipher because letters in the original
text are replaced by other letters. It is called polyalphabetic because it involves several Caesar Shifts. A Caesar shift is a substitution
cipher that involves a simple transposition of letters. For instance, in a Caesar shift of three characters, an “A” would be replaced by a
“D,” a “B” would be replaced by an “E,” a “C” would be replaced by an “F” and so on. Caesar shifts are not very useful ciphers
because they are extremely easy to break. However, the Vigenére, being polyalphabetic, is much more difficult to break. It consists
of multiple Caesar shifts. Notice that the first row of the table shown below is a Caesar shift of zero characters, the second row is a
Caesar shift of one character, the third row is a Caesar shift of two characters and so on.

Plaintext

KEYWORD

N<XXs<CHPTOUTOZZIrXe“—"IOTMMUO®>

WOUMTOI—-<RXIrTZ000TVWACKE XN
OUMTOI—-<AFCFZIZO0OTVOTNWACK<sX<L<N»DW®
OMTOI—-<AMNMZTZ0T0000AC<K<sX<NDIDOO
MIAOI-“XMFZTZO0TVOITVWACKEX<X<NDI>®TOOIOU
TOEI-T<“XMFZTZO0OTVOTLVWACKESX<NI>®TOOMM
OI-“RAMrZTZOVOTVWACKSX<XND>TOOUMTT
I—-<CARAMrZZ0TVO0DVACKSXXNITOUOMT OO
—TCRMFZZOTODTOVWACKEX<X<N>WOUMTOINT
C“CRXRMFZTZOVOTLPACKSX<XN>PBOOMTEOI—|—
ArZZO0VO0OTVACKSXXN>PWOOMTEOI— <<
SXLKNPWOUMTMOI—-<XAXMCrZTZ0TVOT®»AHCKLL
X<NP>PWOOMTOEI-“ATCZTZOTVOITIVLACES
<XN>PWOUMTOI-—<XAMNZIZO0TVOTLAHACLE X|X
N>TOOMTOI-“XATCFZTZO0OTVOITVWACKE X
>PTWOUOMTMOI—<“XTZZO0TVOITNACKS X<N|IN

FZZO0POTVVWACKSEX<KND>DWOOUOMTEOI—< XA
ZTZ0TO0OTVACKSXXNPOWOUOMTOI—< XM
ZOVOITVWACKSEXKXND>DTOUOMTMOI—<XMZZ
OTVOITVWACKSEXXND>PWOUMTOI—<XIZZ|Z
TODTVWACKSXKN>DWOUOMTOI—<XCZZ0|0
OTNVACKSX<XNPTWOUOMTMOI—-—<XTCZZ07TT
DOVWACKSEX<KNI>PBOUMTMOI—<XRTZIZ0 VOO
WACKEX<XKND>PTOOUMMEI—<“XCZTZ0 VO DT
HC<K<KSX<XNPWTOUOMTOI—<ACZIZO0TOITOV®
CKEXXNPWOUOMMOI—<XTCZIZO0OTOITOV -
KSEXXNPWOUOMMOI—-“<AMCZIZ0TVOID®WAHC|C

Example

To use the Vigenére cipher to encode a message, a secret keyword is needed. To ensure secrecy, the keyword should be known only to the sender
and the recipient of the message.

Suppose that the keyword is JAMES and that the message is “FABRIZIO USES FORGED NOTES.” The keyword should be placed below the
plaintext as many times as necessary (as shown below). Then the encoded message is generated by replacing each character in the plaintext with the
character found at the intersection of the plaintext letter column and the keyword letter row (in the above table). Complete the third row below to
generate the enciphered message (ciphertext).
Plaintext | F|A|B|R |1 |Z]| 1 |O U|[S|E]|S FIO|R|G|E|D N|O|T|E]|S
Keyword JJ|A|M|E|S|J|A|M E|S|J|A M|E|S|J|A|M E|S|J|A

Ciphertext W|A|P

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-49

Write a program to implement the Vigenere cipher. Your program should be able to decipher (decode, decrypt) as well as encipher
(encode, encrypt). The plaintext processed by your program should be read (input) from a data file and the ciphertext output by your
program should be written to (stored in) a data file. There are several security issues to consider when developing this program. As
the development proceeds, you will become aware of them.

Questions

1. Define the terms cipher, encipher, decipher, cryptography, encrypt, decrypt, encode, decode, keyword, Caesar shift,
polyalphabetic, plaintext, ciphertext.

2. When was the Vigenere cipher broken and by whom? Which army fell partly because of the other side having learned how to
“crack the code?”

3. Is the Vigeneére cipher suitable for modern data encryption applications?
4. Do you think that it is possible to create an unbreakable data encryption algorithm?

5. Do some research to find out the names of the encryption algorithms used nowadays for making secure transactions on the Internet.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-50

USING VISUAL BASIC TO PRODUCE STRING ART

The String Art Algorithm

A set of N points is read in from a data file (or are defined from code) and connected according to the following
algorithm. Note that the following IS NOT Visual Basic code! It is pseudo-code! Your job is to translate the pseudo-
code into VB!

'Initialize the values of A and B

Set A=1 and B=some value between 1 & N

loop
join point A to point B
add1to A
join point B to point A
add1toB
ifB>N
set B=1
until A=N

By changing the initial value of B (just before the loop) a different pattern can be produced.

Examples of String Art
= Forml I [0

. Form1

POINTS POINTS POINTS

Exercises
6. How many points are used in string art example 1?

7. How many points are used in string art example 2?

8. How many points are used in string art example 3?

9. Explain the string art algorithm in plain English.

10. Write a VB program that can produce any string art given “N” points and an initial value of “B.” Include a
feature that allows the user to change the initial value of “B” and to select the colours used. Allow the user to select up
to three colours.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-51

FRACTALS

Fractal Geometry

Fractal geometry is the branch of mathematics that deals with producing extremely irregular curves or shapes for which
any suitably chosen part is similar in shape to a given larger or smaller part when magnified or reduced to the same size
(this property of fractals is known as self-similarity.). A “picture” or “image” produced by a fractal geometry algorithm is
usually called a fractal. Fractal geometry is closely related to a branch of mathematics known as chaos theory.

The Chaos Game

To gain a basic understanding of fractals, it is helpful to play a game called the chaos game. The game proceeds in its
simplest form as follows. Place three dots at the vertices of any triangle. Colour the top vertex red, the lower left green
and the lower right blue. Then take a die and colour two faces red, two green and two blue.

To play the game, you need a seed, an arbitrary starting point in the plane. Starting with this point, the algorithm begins
with a roll of the die. Then, depending upon which colour comes up, plot a point halfway between the seed and the
appropriate coloured vertex. Repeat this process using the terminal point of the previous move as the seed for the next.
To obtain the best possible results, do not plot the first 15 (or so) points generated by this algorithm! Only begin
plotting after the first 15 points have been generated!

For example, Figure 1 shows the moves associated with rolling red, green, blue and blue in order.

Figurel Playing the chaos game with rolls of red, green, blue, blue.

People who have never played this game are
always surprised and amazed at the result!
Most expect the algorithm to yield a blur of
points in the middle of the triangle. Some
expect the moving point to fill the whole
triangle. Surprisingly, however, the result is
anything but a random mess. The resulting
picture is one of the most famous of all fractals,
the Sierpinski triangle.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-52

The Sierpinski Triangle
Now to see the Chaos Game in action, run the program “Sierpinski's Triangle.vbp” in the folder “I:\Out\Nolfi\Drawing,
Graphics, Game Program Examples\Sierpinski’s Triangle V1 and V2.”

si| Sierpinski's Triangle Yersion 1 @@@

You must be patient once you click on the “Start” button!

It takes a few minutes for this program to generate Sierpinski’s triangle. However,
it will be well worth the wait! You will be amazed by the figure generated by this
seemingly random and chaotic algorithm!

Assignment (To be handed in)

3. Use the Internet (or whatever other resources that you wish to use) to find algorithms that produce the following
fractals:

g. Sierpinski Triangle (this one is easy because | have already given it to you)
h. Sierpinski Pentagon

i. Sierpinski Hexagon

J. Sierpinski Carpet

k. Koch Snowflakes

Then create a word processor document that gives a brief outline of each algorithm. Include diagrams to supplement
the description of each algorithm.

4. Using a Web browser, load the Java applet with URL http://math.bu.edu/DYSY S/applets/fractalina.html. Experiment
with this applet for a few minutes to familiarize yourself with its various features. Then write a Visual Basic program
that is similar to the “Fractalina” applet. Your program must be able to generate the following fractals:

f. Sierpinski Triangle
g. Sierpinski Pentagon
h. Sierpinski Hexagon
i. Sierpinski Carpet
J. Koch Snowflakes

Note that your program need not have “New Point,” “Kill Point” and “Zoom Out” buttons. However, your program
should allow the user to drag the vertices of the shapes to different locations.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-53

	Table of Contents – Advanced Visual Basic
	 Review of Important Programming Concepts
	Overview
	 Excerpt from Wikipedia Article on CamelCase
	 Review Questions

	 Run-Time Error Handling
	Two Different Methods of Correcting the Bugs in Time Converter 1.0 Alpha
	The Code for Version 1.0 Beta
	 The Code for Version 1.0 Final Release

	 Time Converter Version 1.1 Alpha
	Questions

	 Time Converter Version 1.1 Beta
	 Questions

	 Creating the Final Version of Time Converter
	Brief Summary of the Evolution of the Time Converter Program
	Your Assignment
	 Evaluation Guide for Time Converter 1.1 Final Release

	 Counted Loops and Conditional Loops in VB
	 Conditional Loop Example
	Counted Loop Example
	 Various Conditional Loop Structures in Visual Basic

	Counted Loops in VB - “For…Next” Loops
	 “For…Next” (Counted Loop) Exercises

	“Do … While” and “Do … Until” Loop structures (Conditional Loops)
	Question
	 Examples
	 “Do…Loop” (Conditional Loop) Exercises

	 An Enhanced Version of the Do Loop Guessing Game
	Questions

	
	Using Visual Basic to Produce String Art
	The String Art Algorithm
	Examples of String Art
	String Art Example 1
	String Art Example 2
	String Art Example 3

	Exercises

	Fractals
	Fractal Geometry
	The Chaos Game
	 The Sierpinski Triangle
	Assignment (To be handed in)

	 Euclid and the GCD
	Definition of GCD
	Brute Force (Slow) Method for Computing the GCD of Two Integers
	Description of Euclid’s (Fast) Method for Computing the GCD of Two Integers
	Example
	Your Task
	Test out the Euclid Algorithm

	 Learning about Arrays and Nested Loops through the “Generating Random Integers without Repetition” Problem
	A Solution
	Why Arrays are Necessary to implement the above Algorithm
	 General Facts about Arrays
	Declaring Fixed-Size Arrays
	Setting Upper and Lower Bounds

	 Working with Arrays (Array Exercises)
	 Space versus Time: The Eternal Conflict in Computer Science
	Background
	A Problem that Illustrates the Trade-off between Space and Time
	Two Different Solutions
	Solution 1
	Questions

	
	Solution 2
	Questions

	More Important Questions

	 Introduction to Substrings, Control Arrays and Translating Objects
	 Lots and Lots of Examples of String Processing
	 Character Sets and String Manipulation Functions
	ANSI, DBCS, and Unicode: Definitions
	Environment
	Character Set(s) Used

	ANSI (American National Standards Institute)
	DBCS (Double-Byte Character System)
	Unicode
	Example: Character codes for "A" in ANSI, Unicode, and DBCS
	 Issues Specific to the Double-Byte Character Set (DBCS)
	DBCS String Manipulation Functions
	The ANSI Character Set
	 Key Code Constants in Visual Basic
	Exercises

	 Credit Card Validation Assignment
	Introduction
	Rules for Credit Card Number Validity:
	Example
	 Program Plan
	Additional Notes
	Additional Challenge for Extra Credit
	 Practice Exercises
	 Evaluation Guide for Credit Card Validator Program

	 Notes on Debugging to Help you with your Credit Card Validator Program
	Example 1
	Example 2
	Questions

	 Assignment on Two-Dimensional Arrays (Optional Topic)
	Data Encryption using the Vigenère Cipher
	Questions

	 Using Visual Basic to Produce String Art
	The String Art Algorithm
	Examples of String Art
	Exercises

	 Fractals
	Fractal Geometry
	The Chaos Game
	 The Sierpinski Triangle
	Assignment (To be handed in)

