
Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-1

TABLE OF CONTENTS – ADVANCED VISUAL BASIC
TABLE OF CONTENTS – ADVANCED VISUAL BASIC...1
REVIEW OF IMPORTANT PROGRAMMING CONCEPTS...4

OVERVIEW ...4
EXCERPT FROM WIKIPEDIA ARTICLE ON CAMELCASE...5
REVIEW QUESTIONS...6

RUN-TIME ERROR HANDLING...7
TWO DIFFERENT METHODS OF CORRECTING THE BUGS IN TIME CONVERTER 1.0 ALPHA ...7

The Code for Version 1.0 Beta ...7
The Code for Version 1.0 Final Release...8

TIME CONVERTER VERSION 1.1 ALPHA ...9
Questions..10

TIME CONVERTER VERSION 1.1 BETA ...11
Questions..13

CREATING THE FINAL VERSION OF TIME CONVERTER ...14
Brief Summary of the Evolution of the Time Converter Program ..14
Your Assignment...14
Evaluation Guide for Time Converter 1.1 Final Release ...15

COUNTED LOOPS AND CONDITIONAL LOOPS IN VB ...16
CONDITIONAL LOOP EXAMPLE ..16
COUNTED LOOP EXAMPLE ...16
VARIOUS CONDITIONAL LOOP STRUCTURES IN VISUAL BASIC..16

COUNTED LOOPS IN VB - “FOR…NEXT” LOOPS..16
“FOR…NEXT” (COUNTED LOOP) EXERCISES ..17

“DO … WHILE” AND “DO … UNTIL” LOOP STRUCTURES (CONDITIONAL LOOPS)..18
QUESTION ..18
EXAMPLES ...19
“DO…LOOP” (CONDITIONAL LOOP) EXERCISES ...20

AN ENHANCED VERSION OF THE DO LOOP GUESSING GAME...21
QUESTIONS ..21

USING VISUAL BASIC TO PRODUCE STRING ART...23
THE STRING ART ALGORITHM ...23
EXAMPLES OF STRING ART ..23

String Art Example 1 ..23
String Art Example 2 ..23
String Art Example 3 ..23

EXERCISES ...23
FRACTALS..24

FRACTAL GEOMETRY...24
THE CHAOS GAME ...24
THE SIERPINSKI TRIANGLE ..25
ASSIGNMENT (TO BE HANDED IN) ..25

EUCLID AND THE GCD...26
DEFINITION OF GCD..26
BRUTE FORCE (SLOW) METHOD FOR COMPUTING THE GCD OF TWO INTEGERS ...26
DESCRIPTION OF EUCLID’S (FAST) METHOD FOR COMPUTING THE GCD OF TWO INTEGERS...26
EXAMPLE ...27
YOUR TASK ...27
TEST OUT THE EUCLID ALGORITHM...27

LEARNING ABOUT ARRAYS AND NESTED LOOPS THROUGH THE “GENERATING RANDOM INTEGERS
WITHOUT REPETITION” PROBLEM ..28

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-2

A SOLUTION ..28
WHY ARRAYS ARE NECESSARY TO IMPLEMENT THE ABOVE ALGORITHM ...28
GENERAL FACTS ABOUT ARRAYS ..30
DECLARING FIXED-SIZE ARRAYS ..30
SETTING UPPER AND LOWER BOUNDS ...30

WORKING WITH ARRAYS (ARRAY EXERCISES)..31
SPACE VERSUS TIME: THE ETERNAL CONFLICT IN COMPUTER SCIENCE ...33

BACKGROUND..33
A PROBLEM THAT ILLUSTRATES THE TRADE-OFF BETWEEN SPACE AND TIME ..33
TWO DIFFERENT SOLUTIONS ...33

Solution 1 ...33
Questions..33
Solution 2 ...34
Questions..34

MORE IMPORTANT QUESTIONS ..34
INTRODUCTION TO SUBSTRINGS, CONTROL ARRAYS AND TRANSLATING OBJECTS ..35
LOTS AND LOTS OF EXAMPLES OF STRING PROCESSING ..36
CHARACTER SETS AND STRING MANIPULATION FUNCTIONS..39

ANSI, DBCS, AND UNICODE: DEFINITIONS...39
ENVIRONMENT...39

Character Set(s) Used ..39
ANSI (AMERICAN NATIONAL STANDARDS INSTITUTE) ...39
DBCS (DOUBLE-BYTE CHARACTER SYSTEM)...39
UNICODE..39
EXAMPLE: CHARACTER CODES FOR "A" IN ANSI, UNICODE, AND DBCS..39
ISSUES SPECIFIC TO THE DOUBLE-BYTE CHARACTER SET (DBCS) ...40
DBCS STRING MANIPULATION FUNCTIONS...40
THE ANSI CHARACTER SET ..41
KEY CODE CONSTANTS IN VISUAL BASIC..42
EXERCISES ...43

CREDIT CARD VALIDATION ASSIGNMENT...44
INTRODUCTION ..44
RULES FOR CREDIT CARD NUMBER VALIDITY: ...44
EXAMPLE ...44
PROGRAM PLAN...45
ADDITIONAL NOTES...45
ADDITIONAL CHALLENGE FOR EXTRA CREDIT ..45
PRACTICE EXERCISES ..46
EVALUATION GUIDE FOR CREDIT CARD VALIDATOR PROGRAM ...47

NOTES ON DEBUGGING TO HELP YOU WITH YOUR CREDIT CARD VALIDATOR PROGRAM..................................48
EXAMPLE 1 ..48
EXAMPLE 2 ..48
QUESTIONS ..48

ASSIGNMENT ON TWO-DIMENSIONAL ARRAYS (OPTIONAL TOPIC)...49
DATA ENCRYPTION USING THE VIGENÈRE CIPHER ..49
QUESTIONS ..50

USING VISUAL BASIC TO PRODUCE STRING ART...51
THE STRING ART ALGORITHM ...51
EXAMPLES OF STRING ART ..51
EXERCISES ...51

FRACTALS..52
FRACTAL GEOMETRY...52
THE CHAOS GAME ...52

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-3

THE SIERPINSKI TRIANGLE ..53
ASSIGNMENT (TO BE HANDED IN) ..53

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-4

REVIEW OF IMPORTANT PROGRAMMING CONCEPTS
Overview
• Sequence (statements executed one after the other), selection and repetition are the main structures of programming.

• Selection (“If” statements in VB) is used whenever programs need to make decisions.

• Loops (repetition structures) are used whenever groups of statements need to be repeated.

• Loops are useful in processing large amounts of data, adding up lists of numbers, finding averages, animating objects
and a wide variety of other applications.

• Loops are classified as “counted” or “conditional.”

• Counted loops (“For … Next” loops in VB) are used whenever the number of repetitions is known at design-time.
Counted loops automatically increment the counter variable.

• Conditional loops (“Do … Loop” loops in VB) are used whenever the number of repetitions is not known at design-
time. These loops continue while a certain condition is true or until a certain condition is true.

• Within a form (object) module or a code module, variables can be declared locally (called “at procedure level” in VB)
or globally (called “at module level” in VB).

• A variable that is declared locally exists (i.e. is visible) only within the Sub in which it is declared. It is created when
the Sub or Function is invoked (called) and destroyed when the Sub or Function returns (is finished executing).
Local variables cannot be accessed outside the Sub or Function of declaration. Since local variables are destroyed
as soon as the Sub or Function finishes executing, memory can be freed for other parts of the program or for other
applications. Furthermore, local variables help to decrease debugging time (because bugs are localized to Subs and
Functions) and they help to make code reusable. WHENEVER POSSIBLE, DECLARE VARIABLES AS LOCAL
VARIABLES!

• A variable that is declared globally (at module level) is accessible to all Subs or Function within the module.
Moreover, if the variable is declared as Public, then it is accessible to Subs or Functions in all modules of the
program. USE GLOBAL VARIABLES ONLY WHEN NECESSARY (ESPECIALLY IF THEY ARE Public). IF GLOBAL
VARIABLES ARE USED IN A CARELESS MANNER, PROGRAMS CAN BECOME EXTREMELY DIFFICULT TO UNDERSTAND,
MODIFY AND DEBUG. IN ADDITION, THE OVERUSE OF GLOBAL VARIABLES MAKES IT DIFFICULT TO DESIGN REUSABLE
CODE.

• In C and C++, local variables are called automatic variables and global variables are called external variables.

• Use names like InsertionPoint instead of insertionpoint, INSERTIONPOINT, insertion_point or INSERTION_POINT.
This practice is known as “UpperCamelCase.” (See excerpt from Wikipedia article on the next page.)

• Use names that clearly describe the purpose of a variable, constant, sub procedure or function procedure.

• Using meaningful, descriptive names will allow you to write programs that are for the most part self-explanatory. This
means that you do not need to include too many comments. However, comments should still be considered an
integral part of the software development process. Comments should be included as you write your code, not after it
is written!

• Generally, include comments for major blocks of code and for any code that is not self-explanatory.

• Use global variables only when necessary! All other variables should be declared either within procedures or as
parameters of procedures.

• Avoid repetitive code by writing sub procedures or function procedures and calling them whenever they are needed.

• Consider several different algorithms and implement the one that best suits your needs.

• Indent your code properly as you write it! Do not consider indentation an afterthought.

• Test your code thoroughly under extreme conditions. Allow other people to conduct some of the testing and note all
bugs.

Excerpt from Wikipedia Article on CamelCase
For the full text of the article, visit http://en.wikipedia.org/wiki/CamelCase .

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-5

http://en.wikipedia.org/wiki/CamelCase

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-6

Review Questions
1. How can you tell that a program might require loops?

2. What is the difference between a local variable and a global variable? What is a “Static” local variable?

3. Explain why it is wise to avoid global variables whenever possible.

4. Describe a situation in programming that makes the use of global variables necessary.

5. Explain the terms “design-time,” “run-time” and “compile-time.”

6. Explain the rules of indentation. Why is proper indentation so important to the software development process?

7. When is it appropriate to use comments? Why is it a bad idea to omit comments altogether? Is it ever possible to
include too many comments?

8. Suppose that you notice that the same or similar code is used in several places throughout a program. What would you
do to make the program far more streamlined?

RUN-TIME ERROR HANDLING
Two Different Methods of Correcting the Bugs in Time Converter 1.0 Alpha
The Code for Version 1.0 Beta
'''
' PROGRAMMER'S NAME: Nick E. Nolfi VERSION: Time Converter Version 1.0 Beta
'
' PURPOSE OF PROGRAM: Convert a time given in seconds to the format hours : minutes : seconds (h:m:s).
'
' LIMITATIONS and BUGS
' This version corrects the bugs in Version 1.0. Now any error, including any user
' input errors, are handled (which prevents this program from crashing).
'
' NOTE
' It is a good idea to set the "MaxLength" property of the "txtSeconds" text box to 10. This
' prevents the user from entering more than 10 digits (2^31 – 1 = 2147483647, which is 10 digits long).
'''

Option Explicit

Const CtrlC=3, CtrlV=22, CtrlX=24

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-7

Private Sub cmdClose_Click()
 Dim Response As VbMsgBoxResult

What are the words shown in blue boldface called? Why?

 Response = MsgBox("Are you sure you wish to close this program?", _
 vbYesNo + vbDefaultButton2, "Leaving so soon?")
 If Response = vbYes Then
 Unload Me
 End
 End If
End Sub

'Convert a time specified in seconds to the format hours:minutes:seconds.
Private Sub cmdConvert_Click()

This means that if a run-time error like
“overflow” occurs, the VB programming
environment will not take control of your
program, halt its execution and display an
error message.
Instead, the program will branch to the lines
of code labelled “ErrorHandler.” In other
words, the program itself intercepts the error
and generates its own error messages.
Note that “ErrorHandler” is a name chosen
by the programmer. It is not a VB keyword.

 On Error GoTo ErrorHandler

 'Memory
 Dim SecondsRemaining As Long, Hours As Long, Minutes As Byte

 'Input
 SecondsRemaining = Val(txtSeconds.Text)

 If SecondsRemaining >= 0 Then

 'Processing
 Hours = SecondsRemaining \ 3600
 SecondsRemaining = SecondsRemaining Mod 3600
 Minutes = SecondsRemaining \ 60
 SecondsRemaining = SecondsRemaining Mod 60

 'Output
 lblHoursMinutesSeconds.Caption = CStr(Hours) & " : " & _
 CStr(Minutes) & " : " & _
 CStr(SecondsRemaining)
 Else

 MsgBox "You must enter a positive value." _
 , vbExclamation, "Oops!"
 End If

 Exit Sub

ErrorHandler:
 If Err.Number = 6 Then

Why is this “Exit Sub” statement
needed?

 MsgBox "The number you have entered is too large.", vbExclamation, "Oops!"
 Else
 MsgBox "An unexpected error has occurred: " & Err.Description & ". Error Number: " _
 & Err.Number, vbCritical, "What happened?"
 End If

How do we know that the “overflow” error is error number 6? What is “Err?” End Sub

The Code for Version 1.0 Final Release
''
' PROGRAMMER'S NAME: Nick E. Nolfi VERSION: Time Converter Version 1.0 Final Release
'
' PURPOSE OF PROGRAM: Convert a time given in seconds to the format hours : minutes : seconds
'
' LIMITATIONS and BUGS
' This version corrects the bugs in Version 1.0 Alpha. Now any error, including any user input
' errors, are trapped, which prevents crashing. Note that this version is an improvement over
' version 1.0 Beta because the input in the text box is restricted to the digits 0 – 9
'
' NOTE
' It is a good idea to set the "MaxLength" property of the "txtSeconds" text box to 10. This stops
' the user from entering more than 10 digits (2^31 – 1 = 2147483647, which is 10 digits long).
''
Option Explicit
Const CtrlC=3, CtrlV=22, CtrlX=24
Private Sub cmdClose_Click()
 Dim Response As VbMsgBoxResult
 Response = MsgBox("Are you sure you wish to close this program?", _
 vbYesNo + vbDefaultButton2 + vbQuestion, "Leaving so soon?")
 If Response = vbYes Then
 End
 End If
End Sub

'Convert a time specified in seconds to the format hours:minutes:seconds.
Private Sub cmdConvert_Click()
 On Error GoTo ErrorHandler

 'Memory
 Dim SecondsRemaining As Long, Hours As Long, Minutes As Byte

 'Input

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-8

 SecondsRemaining = Val(txtSeconds.Text)

 'Processing
 Hours = SecondsRemaining \ 3600
 SecondsRemaining = SecondsRemaining Mod 3600
 Minutes = SecondsRemaining \ 60
 SecondsRemaining = SecondsRemaining Mod 60

 'Output
 lblHoursMinutesSeconds.Caption = CStr(Hours) & " : " & _
 CStr(Minutes) & " : " & _
 CStr(SecondsRemaining)

Why is it not necessary in this version to use
an “If” statement that checks if a negative
number has been entered?

 Exit Sub

ErrorHandler:
 If Err.Number = 6 Then

 MsgBox "The number you have entered is too large.", vbExclamation, "Oops!"
 Else
 MsgBox "An unexpected error has occurred: " & Err.Description & ". Error Number: " & _
 Err.Number, vbCritical, "What happened?"
 End If
End Sub

' Reject any characters typed in the "txtSeconds" text box that do not lie between 0 and 9, except
'for the backspace key.
Private Sub txtSeconds_KeyPress(KeyAscii As Integer)
 If (KeyAscii < vbKey0 Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack
 And KeyAscii <> CtrlC And KeyAscii <> CtrlX And KeyAscii <> CtrlV Then
 KeyAscii = 0

What is the purpose of this line of code? End If
End Sub

Time Converter Version 1.1 Alpha
''
'
' PROGRAMMER'S NAME: Nick E. Nolfi
' VERSION: Time Converter Version 1.1 Alpha
'
'LIMITATIONS and BUGS
' This version correctly handles the conversion to
' the format d:h:m:s but the stop watch has not
' yet been implemented.
'
''

Option Explicit
Const SecsInMin = 60, SecsInHour = 3600
Const SecsInDay = 86400, HoursInDay = 24
Const MinsInDay = 1440, MinsInHour = 60
Const CtrlC=3, CtrlV=22, CtrlX=24

'Convert a time specified in d:h:m:s to the best d:h:m:s representation
Private Sub cmdConvert_Click()

• These statements are called constant declarations.
• Constant identifiers

 On Error GoTo ErrorHandler

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-9

 'MEMORY
 Dim Seconds As Long, Hours As Long
 Dim Days As Long, Minutes As Long

 are just like variable identifiers except that the
value of a constant is not allowed to change. Attempting to change
the value of a constant generates a run-time error.

• Constant identifiers make programs easier to understand.
• Constant identifiers make programs easier to modify (change).

 'INPUT
 Seconds = Val(txtSeconds.Text)
 Minutes = Val(txtMinutes.Text)
 Hours = Val(txtHours.Text)
 Days = Val(txtDays.Text)

 'PROCESSING: Convert to d:h:m:s and find final value of 'Seconds'
 Days = Days + Seconds \ SecsInDay
 Seconds = Seconds Mod SecsInDay
 Hours = Hours + Seconds \ SecsInHour
 Seconds = Seconds Mod SecsInHour
 Minutes = Minutes + Seconds \ SecsInMin
 Seconds = Seconds Mod SecsInMin

 'Convert to d:h:m and find final value of 'Minutes'
 Days = Days + Minutes \ MinsInDay
 Minutes = Minutes Mod MinsInDay
 Hours = Hours + Minutes \ MinsInHour
 Minutes = Minutes Mod MinsInHour

 'Convert to d:h and find final values of 'Hours' and 'Days'

Explain the purpose of this statement.

 Days = Days + Hours \ HoursInDay
 Hours = Hours Mod HoursInDay

 'OUTPUT
 lblTime.Caption = CStr(Days) & " : " & CStr(Hours) & _
 " : " & CStr(Minutes) & " : " & CStr(Seconds)

 Exit Sub

ErrorHandler:
 If Err.Number = 6 Then

 MsgBox "The number you have entered is too large.", vbExclamation, "Oops!"
 Else
 MsgBox "An unexpected error has occurred: " & Err.Description & ". Error Number: " & _
 Err.Number, vbCritical, "What happened?"
 End If
End Sub

'The code is continued on the next page

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-10

Private Sub cmdClose_Click()

 'Generate the "Unload" event (to be intercepted by "Form_Unload")
 Unload Me
End Sub

'Intercept the unloading of the form to prevent the user from accidentally quitting. This sub
'procedure is invoked (called into action) whenever the "Close" button or the "X" (top right hand
' corner of form) is clicked. This happens because both actions generate the "Unload" event.

Private Sub Form_Unload(Cancel As Integer)
 Dim Response As VbMsgBoxResult
 Response = MsgBox("Are you sure you wish to close this program?", _
 vbYesNo + vbDefaultButton2, "Leaving so soon?")
 If Response = vbYes Then
 End
 Else
 Cancel = 1 'Set "Cancel" to any non-zero value to cancel the unloading of the form.
 End If
End Sub

' Invalid character rejection subroutines.
Private Sub txtSeconds_KeyPress(KeyAscii As Integer)
 If (KeyAscii < vbKey0 Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack _
 And KeyAscii <> CtrlC And KeyAscii <> CtrlX And KeyAscii <> CtrlV Then
 KeyAscii = 0

End Sub

 End If

Private Sub txtMinutes_KeyPress(KeyAscii As Integer)
 If (KeyAscii < vbKey0 Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack _
 And KeyAscii <> CtrlC And KeyAscii <> CtrlX And KeyAscii <> CtrlV Then
 KeyAscii = 0
 End If
End Sub

Private Sub txtHours_KeyPress(KeyAscii As Integer)
 If (KeyAscii < vbKey0 Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack _
 And KeyAscii <> CtrlC And KeyAscii <> CtrlX And KeyAscii <> CtrlV Then
 KeyAscii = 0
 End If
End Sub

Private Sub txtDays_KeyPress(KeyAscii As Integer)
 (KeyAscii < vbKey0)
 And KeyAscii <> CtrlC And KeyAscii <> CtrlX And KeyAscii <> CtrlV Then

If Or KeyAscii > vbKey9 And KeyAscii <> vbKeyBack _

 KeyAscii = 0
 End If
End Sub

Questions
1. Explain why the “cmdClose_Click” sub procedure contains only the statement “Unload Me.”

2. Explain the purpose of the “Form_Unload” sub procedure.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-11

Time Converter Version 1.1 Beta
''
' PROGRAMMER'S NAME: Nick E. Nolfi VERSION: Time Converter Version 1.1 Beta
'
' LIMITATIONS and BUGS
' This version correctly handles the conversion to the format d:h:m:s. The stop watch appears to work correctly
' but, depending on the speed of the processor and the number of tasks running, the stop watch loses anywhere
' from a few to several minutes per hour. This is due to the fact that with an interval of 1000 ms, the
' processor receives a request to execute the code in the "tmrStopWatch" sub procedure every 1000 ms (1 s). If
' the processor is busy executing code that cannot be interrupted, the execution of "tmrStopWatch" is delayed.
''

Option Explicit
Const SecsInMin = 60, SecsInHour = 3600, SecsInDay = 86400, CtrlX = 24
Const MinsInDay = 1440, MinsInHour = 60, HoursInDay = 24, CtrlC = 3, CtrlV = 22
'The b low m cl red glo . Why?
Dim Seconds As Long, Hours As Long, Days As Long, Minutes As Long

 variables e ust be de a bally ()

'Start r s
Private Sub cmdStartStop_Click()

o top the timer

 If Trim(LCase(cmdStartStop.Caption)) = "start" Then
 tmrStopWatch.Enabled = True
 cmdStartStop.Caption = "Stop"
 Else
 tmrStopWatch.Enabled = False
 cmdStartStop.Caption = "Start"
 End If
End Sub

'Conver a
Private Sub cmdConvert_Click()

t time specified in d:h:m:s to the best d:h:m:s representation

 On Error GoTo ErrorHandler
 'INPUT
 Seconds = Val(txtSeconds.Text)
 Minutes = Val(txtMinutes.Text)
 Hours = Val(txtHours.Text)
 Days = Val(txtDays.Text)
 'PROCESSING: Convert to d:h:m:s and find final value of 'Seconds'
 Days = Days + Seconds \ SecsInDay
 Seconds = Seconds Mod SecsInDay
 Hours = Hours + Seconds \ SecsInHour
 Seconds = Seconds Mod SecsInHour
 Minutes = Minutes + Seconds \ SecsInMin
 Seconds = Seconds Mod SecsInMin
 'Convert to d:h:m and find final value of 'Minutes'
 Days = Days + Minutes \ MinsInDay
 Minutes = Minutes Mod MinsInDay
 Hours = Hours + Minutes \ MinsInHour
 Minutes = Minutes Mod MinsInHour
 'Convert to d:h and find final values of 'Hours' and 'Days'
 Days = Days + Hours \ HoursInDay
 Hours = Hours Mod HoursInDay
 'OUTPUT
 lblTime.Caption = CStr(Days) & " : " & CStr(Hours) & " : " & CStr(Minutes) & _
 " : " & CStr(Seconds)
 Exit Sub
ErrorHandler:
 If Err.Number = 6 Then

 MsgBox "The number you have entered is too large.", vbExclamation, "Oops!"
 Else
 MsgBox "An unexpected error has occurred: " & Err.Description & ". Error Number: " & Err.Number, _
 vbCritical, "What happened?"
 End If

End Sub
Private Sub cmdClose_Click()
 'Generate the "Unload" event (to be intercepted by "Form_Unload")
 Unload Me
End Sub

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-12

' Intercept the unloading of the form to prevent the user from inadvertently quitting.
Private Sub Form_Unload(Cancel As Integer)
 Dim Response As VbMsgBoxResult
 Response = MsgBox("Are you sure you wish to close this program?", _
 vbYesNo + vbDefaultButton2 + vbQuestion, "Leaving so soon?")
 If Response = vbYes Then
 End
 Else
 'Set "Cancel" to any non-zero value to cancel the unloading of the form.
 Cancel = 1
 End If
End Sub

'This s b i
Private Sub tmrStopWatch_Timer()

u s automatically executed every 1000 ms once tmrStopWatch.Enabled is set to "True"

 Dim UpOrDownOne As Integer

 '"UpOrDownOne" equals either 1 or -1 depending on whether "Count Up" or "Count Down" is chosen.
 UpOrDownOne = optCountUp.Value * (-1) + optCountDown.Value * 1
 Seconds = Seconds + UpOrDownOne

 If Seconds = SecsInMin Or Seconds = -1 Then

 Seconds = Seconds Mod SecsInMin - (Seconds = -1) * SecsInMin
 Minutes = Minutes + UpOrDownOne
 If Minutes = MinsInHour Or Minutes = -1 Then

 Minutes = Minutes Mod MinsInHour - (Minutes = -1) * MinsInHour
 Hours = Hours + UpOrDownOne
 If Hours = HoursInDay Or Hours = -1 Then
 Hours = Hours Mod HoursInDay - (Hours = -1) * HoursInDay
 Days = Days + UpOrDownOne
 End If
 End If
 End If

 'OUTPUT
 lblTime.Caption = CStr(Days) & " : " & CStr(Hours) & " : " & CStr(Minutes) _

End Sub

 & " : " & CStr(Seconds)

' Invalid character rejection subroutines.
Private Sub txtSeconds_KeyPress(KeyAscii As Integer)
 If (KeyAscii < vbKey0 Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack _
 And KeyAscii <> CtrlC And KeyAscii <> CtrlX And KeyAscii <> CtrlV Then
 KeyAscii = 0
 End If
End Sub

Private Sub txtMinutes_KeyPress(KeyAscii As Integer)
 (KeyAscii < vbKey0)
 And KeyAscii <> CtrlC And KeyAscii <> CtrlX And KeyAscii <> CtrlV Then

If Or KeyAscii > vbKey9 And KeyAscii <> vbKeyBack _

 KeyAscii = 0
 End If
End Sub

Private Sub txtHours_KeyPress(KeyAscii As Integer)
 If (KeyAscii < vbKey0 Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack _
 And KeyAscii <> CtrlC And KeyAscii <> CtrlX And KeyAscii <> CtrlV Then
 KeyAscii = 0
 End If
End Sub

Private Sub txtDays_KeyPress(KeyAscii As Integer)
 If (KeyAscii < vbKey0 Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack _
 And KeyAscii <> CtrlC And KeyAscii <> CtrlX And KeyAscii <> CtrlV Then
 KeyAscii = 0

End Sub

 End If

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-13

Questions
1. The code for the “tmrStopWatch_Timer” sub procedure is quite compact but it seems a little difficult to understand.

Compare the code in version 1.1 Beta to the following alternative way of writing the code.

Strengths of this Version Weaknesses of this Version
Private Sub tmrStopWatch_Timer()
 If optCountUp.Value = True Then

 Seconds = Seconds + 1
 If Seconds = SecsInMin Then
 Seconds = 0
 Minutes = Minutes + 1
 If Minutes = MinsInHour Then
 Minutes = 0
 Hours = Hours + 1
 If Hours = HoursInDay Then
 Hours = 0
 Days = Days + 1
 End If
 End If
 End If
 Else
 Seconds = Seconds - 1
 If Seconds = -1 Then
 Seconds = 59
 Minutes = Minutes - 1
 If Minutes = -1 Then
 Minutes = 59
 Hours = Hours -1
 If Hours = -1 Then
 Hours = 23
 Days = Days -1
 End If
 End If
 End If
 End If

 'OUTPUT
 lblTime.Caption = CStr(Days) & " : " & _
 CStr(Hours) & " : " & _
 CStr(Minutes) & " : " & CStr(Seconds)
End Sub

Strengths of Version 1.1
Beta

Weaknesses of Version 1.1
Beta

2. Thoroughly test version 1.1 Beta (you will find it in the usual place on the I: drive). Then complete the following table.

Bugs found in Version 1.1 Beta Improvements that are Required for Version 1.1 Final Release

Creating the Final Version of Time Converter
Brief Summary of the Evolution of the Time Converter Program

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-14

Your Assignment
1. Use a word processor to create and complete a table that looks just like the following:

New Concepts Learned while
Developing the Time Converter

Program
Explanations of New Concepts Examples Involving the New

Concepts

(You supply the details.) (You supply the details.) (You supply the details.)

2. Use a word processor to create a list of all the bugs in version 1.1 Beta. Also, include a list of improvements that
should be made to the program.

Bugs (Include the Cause of Each Bug) Improvements to be Made in Version 1.1 Final Release

(You supply the details.) (You supply the details.)

3. Create version “1.1 Final Release” of the “Time Converter” program. Incorporate all the bug fixes and improvements
that you listed in question two.

Version 1.0 Alpha
Numeric Overflow

Problem

Statement of
Problem

Convert a time
specified in

seconds to the
format h:m:s.

We used a specific
example of the
problem to develop
an algorithm. The
algorithm involved
the operators
“Mod” and “\.”

Version 1.0 Beta:“On
Error Goto” was used
to correct the numeric
overflow problem.

Version 1.0 Final:
KeyPress event used to
filter out invalid keys.

Version 1.1Beta
A stop watch was
added to version

1.1 Beta. However,
the stop watch did

not keep time
accurately. In

addition, there were
several other

annoying bugs.

Version 1.1Alpha
The format d:h:m:s
was added as well

as a method of
intercepting the

“X” close button.
Constant identifiers

were introduced.

Version 1.1Final
Your job is to
produce this
version by

correcting the
problems in version

1.1Beta.

Final
Version

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-15

Evaluation Guide for Time Converter 1.1 Final Release
Descriptors Categories Criteria

Level 4 Level 3 Level 2 Level 1 Level 0
Level Average

Understanding of Programming Concepts Extensive Good Moderate Minimal Insufficient Knowledge and
Understanding

(KU) Understanding of the Problem Extensive Good Moderate Minimal Insufficient

Correctness
To what degree is the output correct? Very High High Moderate Minimal Insufficient

Declaration of Variables
To what degree are the variables declared with
appropriate data types?

Very High High Moderate Minimal Insufficient Application
(APP)

Debugging
To what degree has the student employed a logical,
thorough and organized debugging method?

Very High High Moderate Minimal Insufficient

Degree of Improvement over Version 1.1 Beta
To what degree has the student incorporated
significant improvements to Time Converter 1.1
Beta?

Very High High Moderate Minimal Insufficient

Ability to Design and Select Algorithms Independently
To what degree has the student been able to design
and select algorithms without assistance?

Very High High Moderate Minimal Insufficient

Ability to Implement Algorithms Independently
To what degree is the student able to implement
chosen algorithms without assistance?

Very High High Moderate Minimal Insufficient

Thinking,
Inquiry and

Problem
Solving
(TIPS)

Efficiency of Algorithms and Implementation
To what degree does the algorithm use resources
(memory, processor time, etc) efficiently?

Very High High Moderate Minimal Insufficient

Indentation of Code
Insertion of Blank Lines in Strategic Places
(to make code easier to read)

Very Few
or no
Errors

A Few
Minor
Errors

Moderate
Number of

Errors

Large
Number of

Errors

Very Large
Number of

Errors

Comments
• Effectiveness of explaining abstruse (difficult-to-

understand) code
• Effectiveness of introducing major blocks of code
• Avoidance of comments for self-explanatory code

Very High High Moderate Minimal Insufficient

Descriptiveness of Identifier Names
Variables, Constants, Objects, Functions, Subs, etc
Inclusion of Property Names with Object Names
(e.g. ‘txtName.Text’ instead of ‘txtName’ alone)
Clarity of Code
How easy is it to understand, modify and debug the
code?
Adherence to Naming Conventions
(e.g. use “txt” for text boxes, “lbl” for labels, etc.)

Masterful Good Adequate Passable Insufficient

Communication
(COM)

User Interface
To what degree is the user interface well designed,
logical, attractive and user-friendly?

Very High High Moderate Minimal Insufficient

COUNTED LOOPS AND CONDITIONAL LOOPS IN VB

Counted Loop Example Conditional Loop Example

Stir Coffee Until the Sugar has Fully Dissolved Add Three Spoonfuls of Sugar to the Coffee
' The following is not real VB. It is called “pseudo-code” which ' The following is not real VB. It is called “pseudo-code” which
' means false code. It is a mixture of VB and English and is a ' means false code. It is a mixture of VB and English and is a
' useful method for planning the overall structure of your ' useful method for planning the overall structure of your
' programs. ' programs.

For I=1 To 3 Do
 keep stirring add one spoonful of sugar
Loop Until Sugar is Dissolved Next I

Note Note
The number of repetitions of the code in this loop is dependent
upon how long the sugar takes to dissolve. The number of
repetitions is impossible to predict. You, as a programmer, will
not in general be able to determine beforehand the number of
repetitions of a conditional loop.

In this example, the number of repetitions is exactly three. This
is easy to predict in advance because we know that the initial
value of “I” is 1. After the first repetition, “I” becomes 2, after
the second repetition, “I” becomes 3 and after the third
repetition, the loop halts.

VARIOUS CONDITIONAL LOOP STRUCTURES IN VISUAL BASIC

Repeat Zero or More Times Repeat At Least Once

Do While condition Do Until condition Do Do
 statements statements statements statements

Loop Loop Loop While condition Loop Until condition

COUNTED LOOPS IN VB - “FOR…NEXT” LOOPS
The following program produces a TABLE of SQUARES. The user types in a START value and then clicks the “Show Table”
button. A table of 10 values is printed on the form.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-16

Pr
eger

Me
Fo

 d its square are printed

Ne
End S

The instruction “For I = Start To St eans that the counter variable “I” should have an initial value of “Start”

be increased by 1 and that the loop should continue to repeat the g of

LWAYS DECLARE THE LOOP COUNTER VARIABLE AS A LOCAL VARIABLE!

ivate Sub cmdShow_Click()
Dim I As Integer, Start As Integer, ISquared As Int

Start = Val(txtStart.Text)
.Cls 'Clear the form
r I = Start To Start + 9

 ISquared = I ^ 2
 'I an Print I, ISquared

xt I
 ub

art + 9” m
and a final value of “Start + 9.”
The instruction “Next I” means that the value of “I” should roup
statements enclosed between “For” and “Next.”

A

 “For…Next” (Counted Loop) Exercises
1. Given the variables shown below, describe in words what will happen when each of the program segments below is

executed. Show a trace chart (memory map) for the variables used. (The first one is done for you.) Check your
answers by using Visual Basic and break points!

Size Count Score Sum

11217 10 142 0

X Sum Count

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-17

0 0 10

1 1 11

2 3 12

3 6 13

4 10 14

5 15 15

6 15 15

For N = Count To 0 Step -2
 Sum = Size Mod Count
 Score = Score + Sum
 Size = Size - Sum
Next N
txtNum1.Text = CStr(Score)

For To unt
 Sum = Score Mod N
 um = hen
 Print Score
 End If
 Score = Score + Sum

txtNum2.Text = CStr(Size)

 N = 7 Co

If S 0 T

Next N

For Num = 1 To Count

 Sum = Sum + Num
 Score = Score – Sum

 Print "Odd Score"

 2

 Sum

Print Score

 If Score Mod 2 = 0 Then
 Print "Even Score"
 Else

 End If
Next Num

For To 8 Step X = 0
 Score = Score – 1
 Sum = Score + X
 Print
Next X

2. W m each of the following t
a e form

b o 50

c) Add up all even numbers less than 100

, 121, 144, 169, 196, 225, 256” on the form.

3. the sum from Lower to Upper, where Lower and Upper are variables
 user into text boxes (Lower ≤ Upper). The result should be displayed in a

Values Before
Entering Loop

Values After
Exiting Loop

Output
For To

 Sum = Sum + X

 X = 1 5

unt

1
3

 Count = Count + 1
 Print Sum 6

10 Next X
15 Print Co
15

rite a “For...N
r name 20 times on th

ext” loop to perfor asks:
) Print you

 numbers from 1 t) Add up the

d) Print the sequence of squares, “1, 4, 9, 16, 25, 36, 49, 64, 81, 100

Design and code a program that computes
that store two numbers entered by the
label box.

“DO … WHILE” AND “DO … UNTIL” LOOP STRUCTURES (CONDITIONAL LOOPS)

This Game demonstrates a “Do … Loop Until” loop structure.

Once the “Start” button is clicked, the player keeps entering guesses
Until the entered guess is equal to the secret number.

Questions

1. What is the purpose of the “Randomize” statement?
Why is it used within a “Form_Load” sub
procedure? Why would it be wasteful to include the
“Randomize” statement in the “cmdStart_Click”
sub procedure?

'To try out this program, just load it from the I:drive
'I:\Out\Nolfi\Ics3mo\Do Loop Guessing Game With Multiple Forms

Option Explicit
Private Sub Form_Load()

 Randomize
End Sub
Private Sub cmdStart_Click()
 Dim Guess As Byte, SecretNumber As Byte

2. Why is it possible in this program to declare both
“SecretNumber” and “Guess” as local (procedure
level) variables. Why is it not necessary to use any
global (module level) variables?

 SecretNumber = Int(100 * Rnd + 1)
 lblClue.Caption = ""

 Do 'Beginning of loop
 Guess = Val(InputBox("Enter a Guess", ""))
 If Guess > SecretNumber Then
 lblClue.Caption = "Too High!"
 ElseIf Guess < SecretNumber Then
 lblClue.Caption = "Too Low!"
 End If 3. Why is the “Val” function used in conjunction with

the “InputBox” function? What could go wrong if
“Val” were omitted?

 Loop Until Guess = SecretNumber 'End of loop

 lblClue.Caption = "RIGHT ON!"
End Sub

Here are the various LOOP PATTERNS you can use. The four variations shown below differ in subtle ways.

Do
 [statements]
 [Exit Do]

Do
 [statements]
 [Exit Do]

Do Until condition
 [statements]
 [Exit Do]

Do While condition
 [statements]
 [Exit Do]

 [statements]
Loop Until condition

 [statements]
Loop While condition

 [statements]
Loop

 [statements]
Loop

Question
Explain the subtle differences in the four loop structures shown above.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-18

Examples

Example of Adding Up a List of Numbers using a Flag Variable to Signal the End of the Input

Pseudo-Code
Sum = 0 Initialize sum to 0
Do Begin the loop
 Num = InputBox("Enter a Number","") Get user input
 um =
Loop Until Num = 0

S Sum + Num
Add “Num” to “Sum”

Stop if user enters a ZERO

To use the same method to Average a list, we need to Count the number of inputs.

Sum = 0 Pseudo-Code
NumEntries = 0

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-19

Do
 Num = InputBox("Enter a Number","")
 Sum = Sum + Num
 NumEntries = NumEntries + 1
Loop Until Num = 0

NumEntries = NumEntries – 1
Average = Sum / NumEntries

Initialize Sum and Count to zero

Begin the loop
Set Num to user input
Add Num to Sum
Add 1 to NumEntries

Stop if user enters a ZERO (when Num=0)

Remove zero from the count
Calculate Average

Example of Rolling 2 Dice until the Roll is a Seven

Pseudo-Code Do
Begin the loop Die1 = Int(Rnd * 6) + 1

Roll first die Die2 = Int(Rnd * 6) + 1
Roll second die Roll = Die1 + Die2
Add their values Loop Until Roll = 7

Stop if Roll = 7

Example to find the Smallest Divisor (other than 1) of a Number

Pseudo-Code
Num = InputBox("Enter a Number","")

User enters number SmallestDivisor = 1
Set smallestDivisor to 1

Do
Begin loop SmallestDivisor = SmallestDivisor + 1

 Remainder = Num Mod SmallestDivisor Add 1 to smallestDivisor
Loop Until Remainder = 0 Or SmallestDivisor = Num Set remainder to number mod smallestDivisor

Stop if remainder =0 or smallestDivisor = number If Remainder = 0 Then
 Print SmallestDivisor If remainder =0 Else Print smallestDivisor Print "The number is prime."

Else End If
Print “Number is prime”

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-20

“Do…Loop” (Conditional Loop) Exercises
1. Each of the following loops uses an “InputBox” to get data from the user. In each question, a sample of user data is

given. Create a trace chart (memory map) for each code segment and show the exact output.

User Data: 65, 54, 70, 68, 52, 81, 75, 0

Biggest = 0
Do
 Num = InputBox("Enter a Number","")
 If Num > Biggest Then
 Biggest = Num
 End if
Loop Until Num=0
Print Biggest

User Data: 65, 54, 70, 68, 52, 81, 75, 0

Sum = 0
Do
 Num = InputBox("Enter a Number","")
 Unit = Num Mod 10
 Sum = Sum + Unit
Loop Until Num=0
Print Sum

User Data: 23, 12, 5, 34, 88, 15, 120, 25

Count = 0
Do
 Num = InputBox("Enter a Number","")
 If Num >=15 Then
 Count = Count + 1
 Print Num;
 End If
Loop While Count < 100
Print "****"; Count

User Data: 22, 11, 5, 12, 4, 33, 16, 9, 3

Sum = 0
Do While Sum >= 0
 Num = InputBox("Enter a Number","")
 If Num Mod 2 = 0 Then
 Sum = Sum + Num
 Else
 Sum = Sum – Num
 End If
Loop
Print Sum

2. Write a “Do…Loop” to perform each of the following tasks:

a) Add up the numbers 1 + 2 + 3 + 4 + ... until the Sum > 100.
b) Determine how many numbers 2 +4 + 6 + 8 + ... are needed to give a Sum > 1000.
c) Output all powers of 2 (i.e. 1, 2, 4, 8, 16, 32, …) that are less than 1000000.
d) Output the smallest number (other than 1) that divides evenly into 2701.

3. Design and Code the programs described below.

a) The USER enters numbers using an Input Box. A zero is used to flag the final input. The computer then uses a
Label to show the AVERAGE of the Highest and Lowest numbers that were entered.

b) The USER enters numbers using an Input Box. A zero is used to flag the final input. The computer then uses a
Label Box to state whether the Even or Odd numbers had the largest total.

AN ENHANCED VERSION OF THE DO LOOP GUESSING GAME
Note: you will find a copy of this program in the folder
I:\Out\Nolfi\Ics3m0\Do Loop Guessing Game with Multiple Forms
You are probably accustomed to writing Visual Basic programs with only one form.
The enhanced version of the “do loop guessing game is an example of a program with
two forms (more precisely, “form modules”) and one code module.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-21

'This is an example of a "Code Module ("modCommonCode"). It is used as
'a "storage area" for code that is required by 2 or more "Form Modules."
'Unlik form mo
Option Explicit

e dules, code modules are not associated with any objects.

Public Guess As Integer
Public GiveUp As Boolean, ValidGuess As Boolean

'This program is designed to help you understand the following: Using
'multiple forms, using code modules to store code that is common to
'multiple forms, using "application modal" forms, using the enter
'key t signify
Option Explicit

o the end of input. (This form is "frmGuessingGame")

Const ApplicationModal = 1

Private Sub Form_Load()

 Randomize
 Me.Show
 cmdStart.SetFocus

End Sub

Private Sub cmdStart_Click()

 Dim SecretNumber As Byte

 SecretNumber = Int(100 * Rnd + 1)
 lblClue.Caption = ""

 Do
 'The user's response is obtained from a different form.
 'This prevents the loop from becoming infinite.

 frmEnterGuess.Show (ApplicationModal)

 'The values of "GiveUp," " Guess" and "ValidGuess"
 'are assigned in the form "frmEnterGuess."

 If Not GiveUp And ValidGuess Then
 If Guess > SecretNumber Then
 MsgBox "Too HIGH"
 ElseIf Guess < SecretNumber Then
 MsgBox "Too LOW"
 End If
 End If

 Loop Until Guess = SecretNumber Or GiveUp

 If Guess = SecretNumber Then
 lblClue.Caption = _
 "Right on! You got it! Click START to play again."
 Else
 lblClue.Caption = _
 "You gave up! The secret number is" & _
 Str(SecretNumber) & ". Click START to try again."
 End If

End Sub

Questions

Form Modules

Code Module

1. What is the purpose of the code
stored in the code module
“modCommonCode?”

2. How does an “application
modal” form differ from a non-
modal form?

3. Why is it necessary to use an
application modal form in this
program to receive input from
the user

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-22

e

”

'This form ("frmEnterGuess") is used to obtain a guess from the
'user or to allow the user to give up. It is an "application
'modal"form, which means that the application is suspended until
'the user responds to this form.

Option Explicit

'The "Activate" event occurs ever
'form becomes the active window.

y time a

Private Sub Form_Activate()

 txtGuess.Text = ""
 txtGuess.SetFocus
End Sub

Private Sub cmdEnterGuess_Click()

 Guess = Val(txtGuess.Text)
 If Guess >= 1 And Guess <= 100 Then
 ValidGuess = True
 Else
 MsgBox _
 "Your guess must be a whole number between 1 and 100.", _

 vbExclamation
 ValidGuess = False
 End If
 GiveUp = False
 txtGuess.Text = ""

.SetFocus

 txtGuess
 Me.Hide
End Sub

Private Sub cmdGiveUp_Click()

 GiveUp =
 Me.Hide

 True

End Sub

'Prevent the user from entering any characters other
'than the digits from 0 to 9. It also allows the pressing of

'the ENTER key to signify the end of the input.
Private Sub txtGuess_KeyPress(KeyAscii As Integer)

 If (KeyAscii < vbKey0 Or KeyAscii > vbKey9) And _
 KeyAscii <> vbKeyBack Then
 KeyAscii = 0
 End If

End Sub

4. What makes it possible to use the
ENTER key to enter the guess
(instead of clicking on the “Enter
Guess” button)?

5. How is the maximum length of th
user’s input limited to three
characters?

6. Why are the digits 0 to 9 and the
BACKSPACE accepted while all
other keys are rejected?

7. What is the difference between the
“Activate” event and the “Load
event?

USING VISUAL BASIC TO PRODUCE STRING ART

The String Art
Algorithm Examples of String Art

String Art Example 1 String Art Example 2 String Art Example 3 A set of N points is read in from a
data file (or are defined from code)
and connected according to the
following algorithm. Note that the
following IS NOT Visual Basic code!
It is pseudo-code! Your job is to
translate the pseudo-code into VB!

Initialize the values of A and B
Set A=1 and B=some value between
1 & N
loop
**join point A to point B
**add 1 to A
**join point B to point A
**add 1 to B
**if B > N
****set B=1
until A = N

By changing the initial value of B (just
before the loop) a different pattern
can be produced.
Exercises
1. How many points are used in string art example 1?

2. How many points are used in string art example 2?

3. How many points are used in string art example 3?

4. Explain the string art algorithm in plain English.

5. Write a VB program that can produce any string art given “N” points and an initial value of “B.” Include a feature that allows the user to change the initial value of “B” and to
select the colours used. Allow the user to select up to three colours.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic GA-23

FRACTALS
Fractal Geometry
Fractal geometry is the branch of mathematics that deals with producing extremely irregular curves or shapes for which
any suitably chosen part is similar in shape to a given larger or smaller part when magnified or reduced to the same size
(this property of fractals is known as self-similarity.). A “picture” or “image” produced by a fractal geometry algorithm is
usually called a fractal. Fractal geometry is closely related to a branch of mathematics known as chaos theory.

The Chaos Game
To gain a basic understanding of fractals, it is helpful to play a game called the chaos game. The game proceeds in its
simplest form as follows. Place three dots at the vertices of any triangle. Colour the top vertex red, the lower left green
and the lower right blue. Then take a die and colour two faces red, two green and two blue.
To play the game, you need a seed, an arbitrary starting point in the plane. Starting with this point, the algorithm begins
with a roll of the die. Then, depending upon which colour comes up, plot a point halfway between the seed and the
appropriate coloured vertex. Repeat this process using the terminal point of the previous move as the seed for the next.
To obtain the best possible results, do not plot the first 15 (or so) points generated by this algorithm! Only begin
plotting after the first 15 points have been generated!

For example, Figure 1 shows the moves associated with rolling red, green, blue and blue in order.

Figure1 Playing the chaos game with rolls of red, green, blue, blue.

People who have never played this game are
always surprised and amazed at the result!
Most expect the algorithm to yield a blur of
points in the middle of the triangle. Some
expect the moving point to fill the whole
triangle. Surprisingly, however, the result is
anything but a random mess. The resulting
picture is one of the most famous of all fractals,
the Sierpinski triangle.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-24

The Sierpinski Triangle
Now to see the Chaos Game in action, run the program “Sierpinski's Triangle.vbp” in the folder “I:\Out\Nolfi\Drawing,
Graphics, Game Program Examples\Sierpinski’s Triangle V1 and V2.”

You must be patient once you click on the “Start” button!

It takes a few minutes for this program to generate Sierpinski’s triangle. However,
it will be well worth the wait! You will be amazed by the figure generated by this
seemingly random and chaotic algorithm!

Assignment (To be handed in)
1. Use the Internet (or whatever other resources that you wish to use) to find algorithms that produce the following

fractals:

a. Sierpinski Triangle (this one is easy because I have already given it to you)
b. Sierpinski Pentagon
c. Sierpinski Hexagon
d. Sierpinski Carpet
e. Koch Snowflakes
f. Any other fractal that is not too difficult to code

Then create a word processor document that gives a brief outline of each algorithm. Include diagrams to supplement
the description of each algorithm.

2. Using a Web browser, load the Java applet with URL http://math.bu.edu/DYSYS/applets/fractalina.html. Experiment
with this applet for a few minutes to familiarize yourself with its various features. Then write a Visual Basic program
that is similar to the “Fractalina” applet. Your program must be able to generate the following fractals:

a. Sierpinski Triangle
b. Sierpinski Pentagon
c. Sierpinski Hexagon
d. Sierpinski Carpet
e. Koch Snowflakes

Note that your program need not have “New Point,” “Kill Point” and “Zoom Out” buttons. However, your program
should allow the user to drag the vertices of the shapes to different locations.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-25

http://math.bu.edu/DYSYS/applets/fractalina.html

EUCLID AND THE GCD

Definition of GCD
By definition, the Greatest Common Divisor (GCD) of two positive integers is the largest integer that divides both
integers exactly.

Brute Force (Slow) Method for Computing the GCD of Two Integers
You have already developed an algorithm for finding the GCD of two integers. Use the provided space to write a pseudo-
code description of your algorithm. (See “Fraction Calculator” in unit 2.)

Description of Euclid’s (Fast) Method for Computing the GCD of Two Integers
Background
More than 2000 years ago, Euclid published an algorithm for finding the GCD of two numbers. His version was strictly
geometric since algebra had not been invented yet, but the algebraic version is described below.
Take any two positive integers a and b, with b smaller than a (i.e. b < a).

Euclid noted that there are integers r (the remainder) and q (the quotient) such that a = qb + r:
If b is divided into a, q is the quotient and r is the remainder.
(For example, if a = 120, b = 25, then 120 = 4(25) + 20, which means that q = 4 and r = 20.)
Any common factor, N, of b and r divides a exactly:
If N divides b, it also divides qb. Since N divides r, it must also divide the sum, qb + r, which is a of course.
(Continuing the above example, N = 5 divides both b = 25 and r = 20. Therefore, N = 5 must also divide
qb + r = 4(25) + 20 = 120 since N = 5 is a common factor of 4(25) and 20.)
Any common factor, M, of a and b divides r exactly:

qbar
M M M

= − qb
M

a
M

r
MSince r = a − qb, . Since and are both integers, then their difference, , must also be an integer.

Therefore, M divides r.
(M=5 divides both a = 120 and b =25. Therefore it must also divide a − qb = 120 − 4(25) = 20)

It follows that the largest N must equal the largest M. In other words, gcd(a,b) = gcd(b,r). Since b is less than a and
r is less than b, we can repeat these steps substituting b for a and r for b until r becomes 0. The final step has
a = qb + 0 and b is the desired GCD.

Summary
The Euclid algorithm can be expressed concisely by the following recursive formula:

gcd(N, M) = gcd(M, N mod M), where M < N.
Note: Please recall that N mod M means the remainder obtained when M is divided by N.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-26

Example
Here is an example of Euclid’s algorithm in action.
Find the GCD of 2322 and 654.

Your Task
1. Use Euclid’s method to calculate gcd(4896, 432)

2. Use the provided space to write a pseudo-code description of the Euclid GCD algorithm. When you are finished, show
the pseudo-code to me. Once I approve of your pseudo-code, you will write a VB function procedure that uses Euclid’s
algorithm to calculate the GCD of two numbers.

Test out the Euclid Algorithm
In the folder I:\Out\Nolfi\Ics3mo\Euclid’s GCD Algorithm you will find two implementations of Euclid’s algorithm. One of them
is just a straight implementation of the algorithm. The other compares Euclid’s algorithm to its slower counterpart from unit 1. Test
both programs thoroughly. List your observations below.

gcd(2322, 654) = gcd(654, 2322 mod 654) = gcd(654, 360)
gcd(654, 360) = gcd(360, 654 mod 360) = gcd(360, 294)
gcd(360, 294) = gcd(294, 360 mod 294) = gcd(294, 66)
gcd(294, 66) = gcd(66, 294 mod 66) = gcd(66, 30)
gcd(66, 30) = gcd(30, 66 mod 30) = gcd(30, 6)
gcd(30, 6) = gcd(6, 30 mod 6) = gcd(6, 0)
gcd(6, 0) = 6 Therefore, gcd(2322,654) = 6.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-27

LEARNING ABOUT ARRAYS AND NESTED LOOPS THROUGH THE
“GENERATING RANDOM INTEGERS WITHOUT REPETITION” PROBLEM

Purpose: To learn about arrays and nested loops
Motivation: The problem of generating random numbers without repetition
Statement of the Problem
Suppose that you wanted to write a program to generate random numbers for a lottery such as Lotto 6/49®. It is simple enough to
write a “For … Next” loop that generates six random integers, but how would you prevent the computer from generating the same
random number two or more times?

A Solution

Consider the following example of generating six random integers between 1 and 49 without repetition. A new random integer is
generated with each iteration of the main loop. Whenever a previously generated integer appears, a new one must be generated to
replace it. Pseudo-code for this algorithm is given below.

3 3 3 3 3 3 3 3 3
 17 17 17 17 17 17 17 17
 3 12 12 12 12 12 12

For I = 1 To 6
 Do
 Generate random integer
 Loop Until random integer has not already been generated
 Set random integer I to the new one just generated
Next I

Why Arrays are Necessary to implement the above Algorithm
An array is a structure that allows you to use a single name to refer to a group of two or more variables. To distinguish
one variable in the group from another, a number, called the index or subscript, is used. Arrays help you to create smaller
and simpler code in many situations, because you can set up loops that deal efficiently with any number of cases.
Carefully study the following code. You can find a copy in the folder
I:\Out\Nolfi\Ics3mo\Space Versus Time\Lotto 649.

Private Sub cmdQuickPick_Click()
 Dim QuickPick(1 To 6) As Byte, RandomPick As

Byte

 Dim I As Byte, J As Byte, Repetition As Boolean
 For I = 1 To 6
 Do

 RandomPick = Int(Rnd * 49 + 1)

 Repetition = False
 For J = 1 To I - 1

 If RandomPick = QuickPick(J) Then

 Repetition = True

 Exit For

 End If

 Next J
 Loop Until Repetition = False
 QuickPick(I) = RandomPick
 Next I

 14 14 14 14 14
 17 43 43 43

A “3” has already been
generated so a new
random integer needs to
be generated to replace it.

 14

A “17” has already been
generated so a new
random integer needs to
be generated to replace it.

A “14” has already been
generated so a new
random integer needs to
be generated to replace it.

45

QuickPick(1)
“QuickPick” Array

Index Data
1 3
2 17
3 12
4 14
5 43
6 25

QuickPick(2)

QuickPick(3)

QuickPick(4)

QuickPick(5)

QuickPick(6)

Notice that each element (member) of the array has the
same name but a different index (subscript).

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-28

 For I = 0 To 5

 lblQuickPick(I).Caption = QuickPick(I + 1)

 Next I
End Sub

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-29

General Facts about Arrays
• All the elements in an array usually have the same data type.
• Of course, when the data type is Variant, the individual elements may contain different kinds of data (objects, strings,

numbers and so on). You can declare an array of any of the fundamental data types, including user-defined types and
object variables.

• Because Visual Basic allocates space for each index number, avoid declaring an array larger than necessary.
• Arrays have both upper and lower bounds and the elements of the array are contiguous within those bounds.
• In Visual Basic, there are two types of arrays. Fixed-size arrays always remain the same size and dynamic arrays can

be resized at run-time. Dynamic arrays will be discussed later.

Declaring Fixed-Size Arrays
There are three ways to declare a fixed-size array, depending on the scope you want the array to have:
• To create a public array, use the Public statement in the “declarations” section of a module to declare the array.
• To create a module-level array, use the Private or Dim statement in the “declarations” section of a module to declare

the array.
• To create a local array, use the Private or Dim statement in a procedure to declare the array.

Setting Upper and Lower Bounds
When declaring an array, follow the array name by the upper bound in parentheses. The upper bound cannot exceed the
range of a Long data type (−2,147,483,648 to 2,147,483,647). For example, these array declarations can appear in the
“declarations” section of a module:
Dim Counter(14) As Integer '15 elements with indices ranging from 0 to 14.
Dim Sum(20) As Double '21 elements with indices ranging from 0 to 19.

To create a public array, you simply use Public in place of Dim or Private.
Public Counter() As Integer 14
Public Sum(20) As Double

The first declaration creates an array with 15 elements, with subscripts running from 0 to 14. The second creates an array
with 21 elements, with subscripts ranging from 0 to 20. The default lower bound is 0.
To specify a lower bound, provide it explicitly (as a Long data type) using the “To” keyword:
Dim Counter(1 To 15) As Integer
Dim Sum(100 To 120) As String

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-30

WORKING WITH ARRAYS (ARRAY EXERCISES)
1. Given the array Num with the values shown, fill in the remaining parallel arrays based on the code below. The arrays

have been appropriately declared.

Array
Index Num NumDoubled Result Answer Total Num1 Num2 NumMod2 Num3 Num4

25 1

13 2

34 3

16 4

9 5

For Z = 1 To 4 'be careful here For M = 1 To 5 For Y = 1 To 5
 NumMod2(Y) = Num(Y) Mod 2 .Result(Z) = 3*Num(Z) – 1 NumDoubled(M) = 2* Num(M)
Next Y Next Z Next M

Sum = 0
For P = 1 To 5 For X = 1 to 5 For W = 1 To 4 'be careful here
 Answer(P) = Num(P) + Num(P) Sum = Sum + Num(X) Num1(W) = Num(W+1)
Next P Next W Total (X) = Sum

Next X

M =
For D = 1 To 5

 1

For R = 2 To 5 For B = 1 To 4 If Num(D) > 15 Then

Next R

Num2(R) = Num(R-1)
Next B

Num3(B) = Num(B) + Num(B+1) Num4(M) = Num(D)
 =
 End If

M M + 1

Next D

2. Write simple For…Next loops to do the following to the array Num in question 1.

a) Add up the numbers and show the answer in a label box.
b) Find and show the largest number in a label box.
c) Count how many even numbers there are and show the answer in a label box.
d) Add 1 to all the odd numbers in the array.
e) Copy the numbers to a new array in reverse order.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-31

3. For each loop below, draw a diagram of the new array formed and show any output produced. Use the original Age
array for each question.

Age Index

43 1

64 2

 25 3

 78 4

 19 5

X=1
For Cell = 1 To 5 For X = 1 To 5

Do While X < 6
 Age(Cell) = Age(Cell)*2 Age (X) = Age(6-X)

 Age (X) = Age(X)+5
Next Cell Next X

Loop

X = 1 X = 1 X = 4 Answer = Age(X) Mod 2 Do Do Do While Answer <> 0 If Age (X+1) > Age (X) Then
 Num(X)= Age(X) + Age(X+1) Print "Odd";AGE(X) Age(X+1) = Age(X)
 X = X
 Print X; Num(X)

 – 1 End If X = X + 1
 Answer = Age(X) Mod 2 X = X + 1

Loop While X > 1 Loop Until X > 4 Loop

X = 1 X = 1 X = 2
Do Do While X < 5 Do

 Age(X) = Age(X) - Age(X - 1) Age(X)= Age(X) + Age(6-X) Num(X+1) = Age(6 - X)
 X = X + 1 X = X + 1 X = X + 1
Loop Until X = 5 Loop While X < 5 Loop

4. Using the array Age shown in question 3, trace the execution of (i.e. create a memory map for) the following code
segment. In addition, state the purpose of the code segment.
For A = 1 To 5
 Biggest = 0
 For = 1 to 5 B
 If Age(B) > Biggest Then
 Biggest = Age(B)
 Pos = B
 End If
 Next B
 Print Age(Pos)
 Age(Pos) = 0
Next A

5. Write a VB program that can perform each of the following functions.
a) Allow the user to enter a set of marks.
b) Find and display the average, median or mode of the entered marks.
c) Raise or lower one or more marks by a specified percentage.
d) Display a list of the failing marks.
e) Display a list of the passing marks.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-32

SPACE VERSUS TIME: THE ETERNAL CONFLICT IN COMPUTER SCIENCE
Background
The two most important resources that a computer uses are main memory (RAM) and processor time (CPU time). Every competent
programmer wishes to write programs that use as little memory and as little processor time as possible. In other words, software
developers want their programs to be fast and small. Unfortunately, there is a strong tendency for these two resources to offset each
other. Reducing the amount of memory that a program uses tends to make it use more processor time (i.e. run more slowly).
Decreasing the amount of processor time (i.e. increasing the speed) required by an algorithm tends to increase the amount of memory
needed.

Decrease Memory Required Increase Processor Time Required

Increase Memory Required

OR OR Decrease Processor Time Required

Balancing memory
requirements and

processor time can be a
very tricky business!

A Problem that Illustrates the Trade-off between Space and Time
If N represents any positive integer, generate N random integers without repetition.

Two Different Solutions
Solution 1
'Solution 1: Generate random integers without repetition.

Option Explicit

Dim RandomNum() As Integer
Private Sub cmdGenerateRandomNums_Click()

 lblRandomNums.Caption = ""
 Dim NumRandomNums As Integer, I As Integer
 Dim J As Integer, NumToChooseFrom As Integer
 Dim Repetition As Boolean, RandomNumList As String

 NumRandomNums = Val(txtNumsToChoose.Text)
 NumToChooseFrom = Val(txtNumToChooseFrom.Text)
 ReDim RandomNum(1 To NumRandomNums)
 lblRandomNums.Caption = ""
 RandomNumList = ""

 For I = 1 To NumRandomNums

 Do

 Repetition = False
 RandomNum(I) = Int(Rnd * NumToChooseFrom + 1)

 For J = 1 To I - 1

 If RandomNum(I) = RandomNum(J) Then
 Repetition = True
 Exit For
 End If

 Next J

 Loop Until Not Repetition

 RandomNumList = RandomNumList & Str(RandomNum(I))

 Next I

 lblRandomNums.Caption = RandomNumList

End Sub

Questions
1. Briefly explain the algorithm used in solution 1.

2. You will find the source code for solution 1 in the folder
I:\Out\Nolfi\Space Versus Time. Run the program
several times using different values of
“NumRandomNums” and “NumToChooseFrom.” Try
values of NumRandomNums as large as 5000 and
NumToChooseFrom as large as 10000. What do you
observe?

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-33

Solution 2
'Solution 2: Generate random integers without repetition.

Di
Pr ums_Click()

 RandomNum(I) = Int(Rnd * NumToChooseFrom + 1)
 (RandomNum(I))

 AlreadyUsed (RandomNum(I)) = True
 RandomNumList = RandomNumList & Str(RandomNum(I))

 lblRandomNums.Caption = RandomNumList

En

Questions

 for

More Import
1. ? Which uses less memory? Explain.

2. Which solution would you choose?

3. What is the purpose of the ReDim keyword used in both solutions?

1. ain the algorithm used in solution 2. Briefly expl
Option Explicit

Dim RandomNum() As Integer
m AlreadyUsed() As Boolean
ivate Sub cmdGenerateRandomN

 lblRandomNums.Caption = ""
I As Integer Dim NumRandomNums As Integer,

 Dim NumToChooseFrom As Integer
 Dim RandomNumList As String

 NumRandomNums = Val(txtNumsToChoose.Text)
 NumToChooseFrom = Val(txtNumToChooseFrom.Text)
 ReDim RandomNum(1 To NumRandomNums)
 ReDim AlreadyUsed (1 To NumToChooseFrom)
 RandomNumList = ""

 For I = 1 To NumRandomNums

 Do
2. You will find the source code for solution 2 in the folder

I:\Out\Nolfi\Ics3m0\Space Versus Time. Run the
program several times using different values of
“NumRandomNums” and “NumToChooseFrom.” Try
values of NumRandomNums as large as 5000 and
NumToChooseFrom as large as 10000. What do you
observe this time? Compare your observations to those
solution 1.

 Loop Until Not AlreadyUsed

 Next I

d Sub

ant Questions
ster Which solution is fa

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-34

INTRODUCTION TO SUBSTRINGS, CONTROL A ND TRANSLATING OBJECTS

epts that a
e students in this course. The new concepts

' are listed below.
' FINDING SUBSTRINGS OF STRINGS
' This program illustrates how to scan a string character-by-
' character by using a "For...Next" loop and the "Mid" intrinsic
'
' USING CONTROL ARRAYS TO GROUP CONTROLS (Objects)
'

Di
Co

Pr

 Length = Len(Message)

 'Scan the entered string character by character. Fill the
 'control array "lblCharacter" with the individual
 'characters found in "Message."

 ion = 1 To Length
 lblCharacter(Position - 1).Caption = Mid(Message, _

tion,

 'This initializes the chain reaction of the enabling and

e

'This sub procedure causes the element "Index" of the control
'array "lblCharacter" to move 100 units down the form. After 10

e timer for element "Index" is
 element "Index+1" is enabled.

 NumSlides = NumSlides + 1
 lblCharacter(Index).Top = lblCharacter(Index).Top + 100

 If NumSlides = 10 Then

 NumSlides = 0
 lblCharacter(Index).Caption = ""
 lblCharacter(Index).Top = InitialTop
 tmrTranslateCharacter(Index).Enabled = False

 If Index < 11 Then
 tmrTranslateCharacter(Index + 1).Enabled = True
 End If

 End If

RRAYS A

' I have designed this program to illustrate conc
' new to most

re
 of th

function.

TRANSLATING OBJECTS

m NumSlides As Byte
nst InitialTop = 960

ivate Sub cmdDone_Click()

 Dim Position As Integer, Length As Integer
 Dim Message As String

 Message = Trim(txtMessage.Text)

 txtMessage.Text = ""

 For Posit

 Posi

1)
Next Position

 'disabling of the timers.
 NumSlides = 0

 tmrTranslateCharacter(0).Enabled = Tru

End Sub

'"slides" down the form, th
'disabled and the timer for

Private Sub tmrTranslateCharacter_Timer(Index As Integer)

End Sub

Answer each of the following questions. You
may need to consult the MSDN help files or even
MSDN online (http://msdn.microsoft.com).
1. Define the term “substring.” Explain how it

applies to the code shown at the left.

scribe the purpose and the syntax of the
intrinsic functions “Left,” “Right” and “Mid.”

3. What causes the “lblCharacter” label boxes to
move down the form? How would you make
an object move across a form? Would it be
possible to cause an object to move diagonally
or along a curve?

4. Explain the concept of a “control array” and describe how programming tasks can be simplified by using control
arrays.

2. De

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-35

LOTS AND LOTS OF EXAMPLES OF STRING PROCESSING
'This program can be found in I:\Out\Nolfi\Ics3m0\String Examples

les.
ng

, AbbreviatedName As String

txtString2.Text)
.Text)

 from right to left.
 "SpacedOut."

To 1 Step -1

osition, 1)
versedString & Character

 SpacedOut

(Name)

n name and the surname.
Space = Position

Do

osition,)

ery end of "Das o "
ns) - 1)

ng2 Then
ng2

abetical.Caption = YourString2 & " " & YourString

me.Caption = AbbreviatedName
End Sub

' Intercept the unloading of the form to prevent the user from accidentally quitting. This sub procedure is
' invoked (called into action) whenever the "Close" button or the "X" (top right hand corner of form) is
'clicked. This happens because both actions generate the "Unload" event.

 Response = MsgBox("Are you sure you wish to close this program?", _
 vbYesNo + vbDefaultButton2, "Leaving so soon?")
 If Response = vbYes Then
 End
 Else
 'Set "Cancel" to any non-zero value to cancel the close.
 Cancel = 1
 End If
End Sub
Private Sub cmdQuit_Click()
 Unload Me 'Generate the "Unload" event.
End Sub

Option Explicit
Private Sub cmdGo_Click()
 'Declaration of local variab
 Dim YourString As String, Character As String, ReversedStri As String, DashPositions As String
 Dim SpacedOut As String, YourString2 As String, Name As String

tion As Long, FirstSpace As Long Dim Posi
 'Variable Initializations

txtString.Text) YourString = Trim(
 YourString2 = Trim(

 Name = Trim(txtName
 ReversedString = ""
 DashPositions = ""
 SpacedOut = ""

 an "YourSt n ra'Sc ri g," cha cter by character,
 ild "Reve e g," "DashPositions" and

Why are these string variables initialized to the null (empty) string?

'Bu rs dStrin

 For Position = Len(YourString)

urString, P Character = Mid(Yo
Re ReversedString =

 If Character = "-" Then
ositions DashPositions = Str(Position) & "," & DashP

 End If

 " " & SpacedOut = Character &

 Next Position

 d ition of the first space in "Name." Then set the va e'Fin the pos
 Position = 1

lu of "AbbreviatedName" accordingly.

 Do While Mid(Name, Position, 1) <> " " And Position <= Len
 Position = Position + 1
 Loop

 'Re
 First

 move any extra spaces between the give

 Position = Position + 1
 Loop Until Mid(Name, Position, 1) <> " "

 AbbreviatedName = Mid(Name, 1, FirstSpace) & Mid(Name,

D Positions = "" Then
 P 1 & "."

 If ash
 DashPositions = "No dashes found."

hP sitions Else 'Remove comma at the v
 DashPositions = Mid(DashPositions, 1, Len(DashPositio

 End If
 'Output
 lblReversed.Caption = ReversedString
 lblDashes.Caption = DashPositions
 lblSpacedOut.Caption = SpacedOut

 If YourString < YourStri
 lblAlphabetical.Caption = YourString & " " & YourStri
 Else

lph lblA
 If End

 lblNa

Private Sub Form_Unload(Cancel As Integer)
 Dim Response As VbMsgBoxResult

What is the purpose of this condition?

W the
length of “YourString” to 1 in steps of −1?

hy does this “For Loop” count down from

Exercise
Modify this program (the code can be found
in the usual folder on the “I” drive) so that a
string is displayed that combines the
characters in an even position in
“YourString”with the characters in an odd
position in “YourString2.” For example, the
strings “Benjamin” and “Gumbley” would
combine to form the string

 “Gemjlmyi.”

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-36

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-37

Exercises

Variable Names Name AccountNumber Word Variable Values “Fabulous Fabrizio” “21574365” “HELP!”

1. Using the above string variables, show the result of each of the following code segments. Note that “A” is a string
variable while B, C, P and X are integer variables.

A = Left(Name, 4)
Print A

A = Right(Word, 3)
Print A

A = Mid(AccountNumber, 3, 4)
Print A

A = Word & Right(Name, 7)
Print A

B = Len(Name)*Len(Word)
Print B

B = Asc(Mid(AccountNumber, 7, 1)) – 48
C = Asc(Mid(AccountNumber, 3, 1)) - 48
Print B + C

For X = 1 To Len(Word)
 A = Mid(Word, X, 1)
 Print A
Next X

For X = Len(Name) To 1 Step -2
 A = Mid(Name, X, 1)
 Print A;
Next X
Print 'Cursor Return

For X = 1 To Len(Word)
 A = Mid(Word, X, 1) & "*"
 Print A;
Next X
Print

For X = 1 To 4 step 2
 A = Mid(Word, X, 2)
 Print A
Next X

P = 1
Do While Mid(Name, P,1) <> " "
 P = P + 1
Loop
Print Mid(Name,13-P,P+1)

P = 1
Do While Mid(Name, P, 1) <> " "
 P = P + 1
Loop
Print Mid(Name, P + 1, P)

2. The string array Book has been loaded as shown. What is the output for each of these loops?

Book
0 Math
1 Hist
2 Geog
3 Engl

a) For X = 0 To 3
 For M = 1 To 4
 A = Mid(Book(X), M, 1)
 Next M
 Print A
 Next X

b) For M = 1 To 4
 A = Mid(Book(M-1), M, 1)
 Print A
 Next M

3. Write code segments to perform the following tasks.
a. Enter a word and display its letters in reverse order. (E.g. “System” would become “metsyS.”)
b. Enter a phone number and then display the positions of the “-” symbol. (E.g. “905-826-1195 would display “4”

and “8.”)
c. Enter two words and display them with the longer WORD first.
d. Enter a word and then display it with a space between each pair of consecutive letters.

(E.g. “Visual” would become “V i s u a l .”)
e. Enter two words and display them in ascending alphabetical order. The words can be in lower or upper case, so

be careful in your testing.
f. Enter a word and then display a solid “square” of “X’s” with dimensions being the size of the WORD.

(E.g. the word “BIG” would produce a 3x3 square as shown below.)

XXX
XXX
XXX

g. Enter a two-word name and then display it in the form given name followed by the first letter of the surname.
(E.g. “Ashley Langlois” would be displayed as “Ashley L.”

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-38

CHARACTER SETS AND STRING MANIPULATION FUNCTIONS
A d U :
Visual Basic uses Unicode to store and manipulate strings. Unicode is a character set in which 2 bytes are used to

Inst n you move strings outside of Visual Basic, you may encounter
differences between Unicode and ANSI/DBCS.

Environm

NSI, DBCS, an nicode Definitions

represent each character. Some other programs, such as the Windows 95 API, use ANSI (American National Standards
itute) or DBCS to store and manipulate strings. Whe

Character Set(s) Used ent

Visual Basic Unicode

32-bit object libraries Unicode

16-bit object l ANSI and DBCS ibraries

Windows NT/200 Unicode 0/XP API

Automation in Windows NT/2000/XP Unicode

Windows 95/98 ANSI and DBCS /Me API

Automation in Windows 95/98/Me Unicode

A nda
A r st u e to
r racter, it is limited 6 character and punctu gh this is adequate for English, it
d ly support many other lan was cal e for Information
Interchange). The ASCII standard us acter, al haracters. The
ANSI character set, which uses eight bits (one byte), includes the ASCII character set (characters 0 to 127) plus an additional 128
characters (characters 128 to 255).

DBCS in Mi at are distributed in most par ort for many different East
Asian l e alph nd Korean. DBCS use nt the ASCII character
set. Som ers g which the
next v hara II ch in length, whereas Japanese,
Korea er Ea e 2 bytes in length.
Unic
Unico ract me that uses 2 bytes (16 bits) for every character. The International Standards Organization
(ISO) def es a number in the range of 0 to 65,535 (216 – 1) for just about every character and symbol in every language (plus some
empty spaces for future growth). On all 32-bit versions of Windows, Unicode is used by the Component Object Model (COM), the

orted by Windows NT/2000/XP. Although both Unicode and DBCS
ha
Exa
Note:

Binary Representation

NSI (American National Sta
popular characte

rd Institute)
onal computers. Beca

s
NSI is the most

ach cha
andard used by pers

ximum of 25
se the ANSI standa

des. Althou
rd uses only a single byt

epresent e
oes not ful

to a ma ation co
guages. Note that originally, ANSI
es seven bits to represent each char

led ASCII (American Standard Cod
lowing for a maximum of 128 (27) c

DBCS (Double-Byte Character System)
 is used
anguag

crosoft Windows systems th
abets, such as Chinese, Japanese a

ts of Asia. It provides supp
s the numbers 0 – 127 to represe

e numb reater than 127 function as lead-byte characters,
cter from a atin character set. In DBCS, ASC

 are not really characters but simply indicators that
alu
n a

e is a c
nd oth

 non-L
st Asian characters ar

aracters are only 1 byte

ode
de i a chas

in
er-encoding sche

basis for OLE and ActiveX technologies. Unicode is fully supp
ve double-byte characters, the schemes are entirely different. (Visit www.unicode.org to find out more.)

mple: Character codes for "A" in ANSI, Unicode, and DBCS
 In Visual Basic, the code “&H” is used to indicate that the number that follows is in hexadecimal form.

Hexadecimal
Representation Character Description

Byte 1 Byte 2 Byte 1 Byte 2

A ANSI Character “A” &H41 01000001

A 00 01000001 00000000 Unicode Character “A” &H41 &H

A DBCS Japanese Wide-Width “A” &H82 &H60 10000010 01100000

A Unicode Wide-Width “A” &H21 &HFF 00100001 11111111

This table shows the AN
DBCS and Unicode
character sets in different

SI,

environments.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-39

Issues Specific to
icode. Because Visual Basic represents all strings internally in Unicode format,

I

When developing a DBCS-enabled application with
Visual Basic, you should consider:
• Differences among Unicode, ANSI, and DBCS.
• DBCS sort orders and string comparison.
• DBCS string manipulation functions.
• DBCS string conversion.
• How to display and print fonts correctly in a DBCS

environment.
• How to process files that include double-byte

characters.
• DBCS identifiers.

Tip
Developing a DBCS-enabled application is goo ctice,
whether or not the application is run in a locale where
DBCS is used. This approach will help yo op a
flexible, portable, and truly international application. None
of the DBCS-enabling features in Visual Basic will interfere

 your application in environments
using exclusively single-byte character sets (SBCS). Also,

on will not increase because both
D e Unicode internal

For limitations on using DBCS for access and shortcut keys,

S characters, on a character basis. These functions have an ANSI/DBCS
de version, as shown in the following table. Use the appropriate functions,

Function Description

the Double-Byte Character Set (DBCS)
DBCS is a different character set from Un
both ANSI characters and DBCS characters are converted to Unicode and Unicode characters are converted to ANS
characters or DBCS characters automatically whenever the conversion is needed. You can also convert between Unicode
and ANSI/DBCS characters manually. For more information about conversion among different character sets, see
“DBCS String Manipulation Functions” below.

d pra

u devel

with the behaviour of

the size of your applicati
BCS and SBCS us ly.

For More Information

• DBCS-enabled events.
• How to call Windows APIs.

see “Designing an International-Aware User Interface” in
the MSDN collection.

DBCS String Manipulation Functions
Although a double-byte character consists of a lead byte and a trail byte and requires two consecutive storage bytes, it
must be treated as a single unit in any operation involving characters and strings. Several string manipulation functions
properly handle all strings, including DBC
version and a binary version and/or Unico
depending on the purpose of string manipulation. The “B” versions of the functions in the following table are intended
especially for use with strings of binary data. The “W” versions are intended for use with Unicode strings.

Function Description

Asc Returns the ANSI or DBCS character code for the
first character of a string. InStr Returns the first occurrence of one string within

another.

AscB Returns the value of the first byte in the given string
containing binary data. InStrB Returns the first occurrence of a byte in a binary

string.

AscW Returns the Unicode character code for the first Left,
character of a string. Right right or left sides of a string.

Returns a specified number of characters from the

Chr Returns a string containing a specific ANSI or
haracter code.

LeftB,
RightB

ied number of bytes from the left or
nary string.

Returns a specif
right side of a biDBCS c

ChrB Returns a binary string containing a specific byte. Len urns the the strin ber of
racters.

Ret
cha

length of g in num

ChrW Returns a string cont
character code. Len Returns the length of the string m er of bytes. aining a specific Unicode B in nu b

Input Returns a specified number of ANSI or DBCS
rs fro InputB Retur fied num frns a speci ber of bytes om a file.

characte m a file.

Mid Returns a specified number of characters from a Mid Returns the specified number of bytes from a binary
stringB string. .

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-40

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-41

The functions without a “B” or “W” in this table correctly handle DBCS and ANSI characters. In addition to the functions above, the

 you handle string data because these functions can properly handle ANSI
s
T and L
y ble or get the characters f
U o ata, d
st g
T A
(C a

String function handles DBCS characters. This means that all these functions consider a DBCS character as one character even if that
character consists of 2 bytes.
The behaviour of these functions is different when they are handling SBCS and DBCS characters. For instance, the Mid function is
used in Visual Basic to return a specified number of characters from a string. In locales using DBCS, the number of characters and the
number of bytes are not necessarily the same. Mid would only return the number of characters, not bytes.
In most cases, use the character-based functions when
trings, DBCS strings and Unicode strings.
he byte-based string manipulation functions, such as LenB
ou store the characters to a String varia

eftB, are provided to handle the string data as binary data. When
rom a String variable, Visual Basic automatically converts between
use the Byte array instead of the String variable and the byte-basenic de and ANSI characters. When you handle the binary d

rin manipulation functions.
he NSI Character Set

ar cters 0 – 127 Originally Called “ASCII” Character Set)h

0 null char 24 ctrl-X 48 0 72 H 96 ` 120 x 144 € 168 ¨ 192 À 216 Ø 240 ð

1 ctrl-A 25 ctrl-Y 49 1 73 I 97 a 121 y 145 € 169 © 193 Á 217 Ù 241 ñ

2 ctrl-B 26 ctrl-Z 50 2 74 J 98 b 122 z 146 € 170 ª 194 Â 218 Ú 242 ò

3 ctrl-C 27 ESC 51 3 75 K 99 c 123 { 147 € 171 « 195 Ã 219 Û 243 ó

4 ctrl-D 28 � 52 4 76 L 100 d 124 | 148 € 172 ¬ 196 Ä 220 Ü 244 ô

5 ctrl-E 29 � 53 5 77 M 101 e 125 } 149 € 173 - 197 Å 221 Ý 245 õ

6 ctrl-F 30 � 54 6 78 N 102 f 126 ~ 150 € 174 ® 198 Æ 222 Þ 246 ö

7 ctrl-G 31 � 55 7 79 O 103 g 127 � 151 € 175 ¯ 199 Ç 223 ß 247 ÷

8 ctrl-H
(backspace) 32 space 56 8 80 P 104 h 128 € 152 € 176 ° 200 È 224 à 248 ø

9 ctrl-I
(TAB) 33 ! 57 9 81 Q 105 i 129 € 153 € 177 ± 201 É 225 á 249 ù

10 (l
ctr

i
l-J

nefeed) 34 " 58 : 82 R 106 j 130 € 154 € 178 ² 202 Ê 226 â 250 ú

11 ctrl-K 35 # 59 ; 83 S 107 k 131 € 155 € 179 ³ 203 Ë 227 ã 251 û

12 ctrl-L 36 $ 60 < 84 T 108 l 132 € 156 € 180 ´ 204 Ì 228 ä 252 ü

13 ctr
(E

l-M
NTER) 37 % 61 = 85 U 109 m 133 € 157 € 181 µ 205 Í 229 å 253 ý

14 ctrl-N 38 & 62 > 86 V 110 n 134 € 158 € 182 ¶ 206 Î 230 æ 254 þ

15 ctrl-O 39 ' 63 ? 87 W 111 o 135 € 159 € 183 · 207 Ï 231 ç 255 ÿ

16 ctrl-P 40 (64 @ 88 X 112 p 136 € 160 space 184 ¸ 208 Ð 232 è

17 ctrl-Q 41) 65 A 89 Y 113 q 137 € 161 ¡ 185 ¹ 209 Ñ 233 é

18 ctrl-R 42 * 66 B 90 Z 114 r 138 € 162 ¢ 186 º 210 Ò 234 ê

19 ctrl-S 43 + 67 C 91 [115 s 139 € 163 £ 187 » 211 Ó 235 ë

20 ctrl-T 44 , 68 D 92 \ 116 t 140 € 164 ¤ 188 ¼ 212 Ô 236 ì

21 ctrl-U 45 - 69 E 93] 117 u 141 € 165 ¥ 189 ½ 213 Õ 237 í

22 ctrl-V 46 . 70 F 94 ^ 118 v 142 € 166 ¦ 190 ¾ 214 Ö 238 î

23 ctrl-W 47 / 71 G 95 _ 119 w 143 € 167 § 191 ¿ 215 × 239 ï

�€, These characters are not supported by Mic indows.rosoft W

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-42

Key Code Constants in Visual Basic

Constant Value Description Constant Value Description Constant Value Description

vbKeyA 65 A key vbKey0 48 0 key vbKeyF1 0x70 F1 key

vbKeyB 66 B key vbKey1 49 1 key vbKeyF2 0x71 F2 key

vbKeyC 67 C key vbKey2 50 2 key vbKeyF3 0x72 F3 key

vbKeyD 68 D key vbKey3 51 3 key vbKeyF4 0x73 F4 key

vbKeyE 69 E key vbKey4 52 4 key vbKeyF5 0x74 F5 key

vbKeyF 70 F key vbKey5 53 5 key vbKeyF6 0x75 F6 key

vbKeyG 71 G key vbKey6 54 6 key vbKeyF7 0x76 F7 key

vbKeyH H key 72 vbKey 55 7 7 key vbKeyF8 F8 key 0x77

vbK I Iey 73 key vbKey 5 k8 6 8 ey vbKey x7 F9 keyF9 0 8

vbK J Jey 74 key vbKey 5 k9 7 9 ey vbKey 0 x7 F kF1 0 9 10 ey

vbKeyK K key 75 vbKey u 0 ef seLB tton x1 L t mou vbKey x7 F kF11 0 A 11 ey

vbK L L key ey 76 vbKey u 0 ig ouRB tton x2 R ht m se vbKey 2 x7 F kF1 0 B 12 ey

vbKeyM M key 77 vbKey nc 0 A L Ca el x3 C NCE key vbKey 7 F kF13 0x C 13 ey

vbKeyN 78 N key vbKeyMButton 0x4 Middle mouse vbKeyF14 0x7D F14 key

vbKeyO O79 key vbKey ck 0 A PA Ba x8 B CKS CE vbKey 5 x7 F kF1 0 E 15 ey

vbKeyP 80 P key vbKeyTab 0x9 TAB key vbKeyF16 0x7F F16 key

vbKeyQ Q key 81 vbKey a 0 L keCle r xC C EAR y vbKey d x2 E En 0 3 ND key

vbKey R key R 82 vbKey etu 0xD eyR rn ENTER k vbKeyHome 0x24 HOME key

vbKey S key S 83 vbKey 0x10 Shift SHIFT key vbKeyL LEFT eft 0x25

vbK T key eyT 84 vbKey nt 0 T eyCo rol x11 C RL k vbKey x2 UUp 0 6 P

vbKey U key U 85 vbKeyMenu 0x12 MENU key vbKeyRight 0x27 RIGHT

vbKey V key V 86 vbKeyPause 0x13 PAUSE key vbKeyD wn 0x28 DOWN o

vbK W key eyW 87 vbKey pi 0 A OC Ca tal x14 C PS L K vbKey lec x2 S ESe t 0 9 EL CT

vbKeyX X key 88 vbKey ca 0 SC Es pe x1B E key vbKey int x2 PRT SCR Pr 0 A

vbK Y key eyY 89 vbKey ac 0 PA A Sp e x20 S CEB R vbKey ec x2 EXECUTE Ex ute 0 B

vbK Z key eyZ 90 v y ge 0 A p bKe Pa Up x21 P GE U vbKey ap x2 SNAP HOTSn shot 0 C S

 v y ge n 0 A ow bKe Pa Dow x22 P GE D n vbKey er x2 INSERT Ins t 0 D

 vbKeyDelete 0x2E DELETE

 vbKey p x2 HELP ey Hel 0 F k

 vbKey m x9 Num Lock Nu lock 0 0

Constant Value Description T
ke

h V consta
y at name

nam correspond lsewher e k
e.g. vbKeyReturn → ENTER key near SHIFT key

 Separat ENTER key on numeric keypad

is table lists the
pad. Notice th

B key code
 the constant

nts for th
s are diff

e numeric
erent from the vbKeyNumpad0 0x60 0 key

es of ing keys e e on th eyboard.
vbKeyNumpad1 0x61 1 key

vbKeyNumpad2 0x62 2 key vbKey or →

vbKeyNumpad3 0x63 3 key

vbKeyNumpa 0x 4 key d4 64

vbKeyNumpa 0x 5 key d5 65

vbKeyNumpa 0x 6 key d6 66

vbKeyNumpa 0x 7 key d7 67

vbKeyNumpa 0x 8 key d8 68

No some of de value ri rdinary
decimal (base 10) values while others are written as hexadecimal
(ba values. Th al val p by the
“0x” x. The “0x” s used in C o e
hex al numbe that “&H e asic
not r hexadec .
Details on the hexadecimal system will be given in class.

tice that the key co s are w tten as o

se 16) e hexadecim ues are receded
 prefi

adecim
 prefix i

rs. Recall
/C++ t

” is th
 denot

Visual B
ation fo imal numbers

vbKeyNumpa 0x 9 key 69 d9

ltipl 0x MULT.6A SIGN (*) y vbKeyMu

 0x PLUS S6B IGN (+) vbKeyAdd

vbKeySeparat 0x ENTER6C key or

rac 0x MINUS6D SIGN t vbKeySubt

vbKeyDecima 0x DECIM6E AL POINT l

vbKeyDivide 0x6F DIVISION SIGN (/)

Exercises
 code constant names ad l nu ues? xa y is it

better to use the key code constant name “vbKeyBack” instead of the actual ANSI code “8?”)

ly cribe the rities a es amo c anda BCS n

3 in y using t code e repre tio eren How y characters can be
represented using

 8- code?

6- code?

2- code?

urs also rep ed as b plain a ur co e e r
sixteen million colours.

1. Why it is better to use VB key inste of the actua merical val (For e mple, wh

2. Brief icode. des simila nd differenc ng the haracter st rds ANSI, D and U

. Expla wh an n-bi allows for th senta n of 2n diff t characters. man

a. an bit

b. a 1 bit

c. a 3 bit

4. Colo are resent it patterns. Ex why 24-bit colo de allows for th repres ntation of ove

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-43

CREDIT CARD VALIDATION ASSIGNMENT
Introduction
Assignment created by Mr. Dobias

All it cards contain an e bedded pattern of digits. These digits are called
 as the vide y way to check if any particular credit card number is

num ill design and write a program that determines
it card (structurally) valid.

it Card Number Validity:
 Prefix

major cred m
“check digits,” y pro an eas

erically valid. In this assign
whether a cred

ment, you w
 number is numerically

Rules for Cred
1. Length and

Credit Type Card Valid Length Valid Prefix
Visa 13 or 16 4

Master Card 16 51-55
A mex 15 34 or 37

Discover 16 6011

All valid credit card n ers m respective length and prefix.

2. meric Formula

Further, a credit card num m
 from

 “check” digits mu n the following way:
 each alternate digit by

e produc ore than a single digit (i.e. greater than 9), add the two digits to obtain a single digit.
• The sum of all digits mod 10 must be equal to 0 (i.e. when the sum must be divisible by 10).

Exa
Suppose you are testing the following Visa number: 4947152680730

Clearly the number has the correct prefix (4) and a correct length (13).

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

umb ust have their

 Internal Nu

ber
 right to left.

ust be validated as follows:
• Add all digits
• Alternate st be adjusted i

o Multiply
o If th

 2.
t is m

Initially, this may seem difficult, but the method is quite simple.

mple

1. Length and Prefix

2. Internal Numeric Formula
We will add the digits from right to left (0,3,7,… to …7,4,9,4), multiplying and adjusting alternate “check” digits:

st1
0 3*2

=6
7 0*2

=0
8 6*2

=12
1+2
=3

2 5*2
=10
1+0
=1

1 7*2
=14
1+4
=5

4 9*2
=18
1+8
=9

4

Th refore we have: Sum = 0+6+7+0+8+3+2+1+1+5+4+9+4 = 50 e

Now we must determine if the sum is divisible by 10 (sum mod 10 is equal to 0).

50 mod 10 = 0.

Therefore, the credit card number is valid, since it meets all conditions.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-44

Program Plan
ou wish, plan program

• Check prefix.
ternal numeric formula (see above).

out credit card validity (“Credit Card Valid” or “Credit Card Invalid”).
• Allow the user to tes

Additional Notes
• Please note that this met etermine if a numbe real, only valid.

• You are expected to follow programming naming conventions (variable names, indentation, code

 types you will use.

t card number. The output should be a determination (true or

H .

• Y ur
p

e number invalid.

e stuck, make use of online and offline documentation and resources.

llows the user to generate valid credit card numbers.

You may, if y your as follows:

Step 1: Capture User Input
• What is the credit card type?
• What is the credit card number?
Step 2: Determine Number Validity
• Check length.

• Calculate and check the sum with the in
Step 3: Display the Result
• Output a message ab

t another number.

hod ot d does n r is

 standard
documentation).

• Think carefully of which data

• The input for the program is a credit card type and a credi
f lidity. alse) of credit card’s numerical va

• INT: think before you start programming. Do simple things first

ou are also expected to provide a set of test cases (sample inputs with corresponding sample outputs) for yo
ll inputs). rogram that shows program correctness (i.e. that your program produced correct outputs for a

• If the user input is anything but a valid number, your program should consider th

• If you’r

Additional Challenge for Extra Credit
Include a feature that a

Remember…

“Remember, whether you say you can do something or you say you
can’t, yo

on
u’re right.”

Anth y Robbins

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-45

Practice Exercises
 credit card numbers are valid based on the prefix, length, and

80730 valid?

a: Sum = 6+7+8+3+2+1+1+5+4+9+4 = 50.
 0 (correct)

er is VALID.

ARD number 5358390378156038 valid?

is

2. many ways

3. Individually, come up with your own valid numb

1. Working in groups of 2-3, determine which of these
internal numeric formula:
a) Is VISA number 49471526

Check Prefix: 4 (correct)
Check Length: 13 (correct)
Check Internal Numeric Formul
50 mod 10 =
This numb

b) Is DISCOVER number 601195145328714 valid?
Check Prefix:
Check Length:
Check Internal Numeric Formula:
This number is

c) Is MASTERC
Check Prefix:
Check Length:
Check Internal Numeric Formula:
This number

d) Is AMEX number 375627815798423 valid?
Check Prefix:
Check Length:
Check Internal Numeric Formula:
This number is

In your groups, change the invalid numbers above (by changing their digit or digits) into valid ones. How
are there to do this?

er (from scratch).

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-46

Evaluation Guide for Credit Card Validator Program
Descriptors Categories Criteria Level Average

Level 4 Level 3 Level 2 Level 1 Level 0

Understanding of Programming Concepts Extensive Good Moderate Minimal Insufficient Knowledge
and

Understanding
(KU ate Minimal Insufficient

) m Extensive Good ModerUnderstanding of the Proble

Correctness
To what degree is the output correct? Very High High Moderate Minimal Insufficient

Run-time Error Handling
le is the software?

Highly
Stable Stable Moderately

Stable
Somewhat
Unstable

Very
Unstable How stab

Declaration of Variables
eclared with Very High High Moderate Minimal Insufficient To what degree are the variables d

ata types? appropriate d

Unnecessary Duplication of Code
To what degree has the student avoided unnecessary Very
duplication of code?

 High High Moderate Minimal Insufficient

Application
(APP

ployed a logical,
 organized debugging method?

Very High High Moderate Minimal Insufficient

)

Debugging
To what degree has the student em
thorough and

Algorithm Design and Selection
To what degree has the student used approaches such

pecific example of the problem to gain
 solved?

Very High High Moderate Minimal Insufficient as solving a s
insight into the problem that needs to be

Ability to Des
To what degr

ign and Select Algorithms Independently
ee has the student been able to design

and select algorithms without assistance?
Very High High Moderate Minimal Insufficient

Ability to Implement Algorithms Independently
To what degree is the student able to implement
chosen algorithms without assistance?

Very High High Moderate Minimal Insufficient

Thinking,
Inquiry and

Problem
Solving
(T

Efficiency of Algorithms and Implementation
To what degree does the algorithm use resources
(memory, processor time, etc) efficiently?

Very High High Moderate Minimal Insufficient

IPS)

Indentation of Code
Insertion of Blank Lines in Strategic Places
(to make code easier to read)

Very Few
or no
Errors

A Few
Minor
Errors

Moderate
Number of

Errors

Large
Number of

Errors

Very Large
Number of

Errors

Comments
• Effectiveness of explaining abstruse (difficult-to-

• Avoidance of comments for self-explanatory code

High Moderate Minimal Insufficient understand) code
• Effectiveness of introducing major blocks of code

Very High

Descriptiveness of Identifier Names
Variables, Constants, Objects, Functions, Subs, etc
Inclusion of Property Names with Object Names
(e.g. ‘txtName.Text’ instead of ‘txtName’ alone)
Clarity of Code
How easy is it to understand, modify and debug the
code?
Adherence to Naming Conventions
(e.g. use “txt” for text boxes, “lbl” for labels, etc.)

Masterful Good Adequate Passable Insufficient

Communication
(COM)

User Interface
To what degree is the user interface well designed,
logical, attractive and user-friendly?

Very High High Moderate Minimal Insufficient

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-47

NOTES ON DEBUGGING TO HELP YOU WITH YOUR CREDIT CARD VALIDATOR PROGRAM

nt” statements, bre “Debug” menu in VB when y rify whether your program
working correctly!

1
 '

Private Sub Command1_Click()

 Dim N Integer, te '

 Number = Val(Text1.Text) 'Line 3
 Sum = 'L

 'Adds up numbers 1 to number-1
X '

 S 'Line 6
 'Printing loop counter and the running sum
 P '
 Next 'Line 8

 Text1.Text = CStr(Sum) 'Line 9

End Sub

Example 2
Private S 'Line 10

 Dim c ng 'Line 11
 Dim S 'Line 12

= 'Line 13
um 'Line 14

 lc
 r X 'Line 15

 Sum = Sum + Val(Mid(ccNum, X, 1)) 'Line 16
 'Printing loop counter and the running sum
 P 'Line 17
 Next 'Line 18

 Messa of the digits is " & u ". 'Line 19
 MsgBo 'Line 20

End Sub 'Line 21

Questions
1. What is the purpose of the Option Explicit statem ne ow el reduce the am unt of

time need
2. On line 3, ring value stored in the “Text” property of the text box to a

numeric v tion, will the code still work? Why is it a bad idea to leave out the “Val”
.

3. In line 9, meric value stored in the “Sum” variable to a string value. If you
omit the “ Why is it a bad i

4. Will the c on is omitted? Why is it a bad idea to omit the “Val” function?
5. Explain w use of “Print” statements can be very helpful in the debugging process.
6. What oth used in the development of VB programs?
7. Explore the “Debug” menu in VB. Explain how all the options in this menu (“Step Into”, “Step Out,” “Step Over,”

“Run to Cursor,” “Add Watch,” “Edit Watch,” “Quick Watch,” “Toggle Breakpoint,” “Clear All Breakpoints,” “Set
Next Stat you p ms.

Use “Pri akpoints and the ou need to ve is

Example
Option Explicit Line 1

umber As Integer, Sum As X As In ger Line 2

 0 ine 4

 For

 = 1 To Number – 1

um = Sum + X

 Line 5

rint X, Sum
X

 Line 7

ub Command1_Click()

cNum As String, Message As Stri

um As Integer, X As Integer

 Sum
 ccN

 'Ca
Fo

 0
 = Trim(Text1.Text)

ulates sum of all the digits
 = 1 To Len(ccNum)

rint X, Sum
X

ge = "The sum CStr(S m) &

"
 x Message

ent on li 1? H does it h p you to o
ed to debug your programs?
 the “Val” function is used to convert the st
alue. If you omit the “Val” func

function
the “CStr” function is used to convert the nu
CStr” function, will the code still work? dea to leave out the “CStr” function.
ode on line 16 still work if the “Val” functi
hy the

er methods of debugging have you already

ement,” “Show Next Statement”) can help to debug rogra

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-48

ASSIGNMENT ON TWO-DIMENSIONAL ARRAYS (OPTIONAL TOPIC)
Data Encryption using the Vigenère Cipher
Throughout history, espionage has always been widely practiced by governments and other organizations. To aid the cause of spies,

nd other the military a
a data encryp

groups, algorithms like the Vigenère cipher have been, and are continuing to be created. The Vigenère cipher is
 France. It created

pean nations.
 necessary to use methods of enciphering text to prevent the myriad new nations from
m nsidered t nère cipher was finally

e South”)

inal
abetic because it involves several Caesar Shifts. A Caesar shift is a substitution

d by a

much m re diff . It consists
s a esar s t of ze arac row is a

e thi row i hift of two characters an o on.

tion algorithm that was published in 1586 by Blaise de Vigenère from the court of Henry III of was
during a very turbulent period in European history to address the phenomenon of a rapidly growing number of new Euro
Many European governments felt that it was
obtaining sensitive information. Used for al ost 300 years and co virtually unbreakable, he Vige
broken, in 1863, by a Prussian major named Kasiski. Since the Vigenère cipher was used by the Confederate army (“Th
during the American Civil War, Kasiski’s discovery ultimately helped to give the upper hand to the Union army (“The North”).

The Vigenère cipher is an example of a Polyalphabetic Substitution Cipher. It is a substitution cipher because letters in the orig
text are replaced by other letters. It is called polyalph
cipher that involves a simple transposition of letters. For instance, in a Caesar shift of three characters, an “A” would be replace

 an E,” a “C d e replaced by an F” and o on. Caesar shi s are no l ciphers“D,” a “B” would be replaced by “ ” woul b “ s ft t very usefu
because they are extremely easy t bre ère is o icult to breako ak. However, the Vigen , being polyalphabetic,

e th the first row of e table own be w iof multiple Caesar shifts. Notic at th sh lo Ca hif ro ch ters, the second
Caesar shift of one character, th rd s a Caesar s d s

 Plaintext
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B Z A B C D E F G H I J K L M N O P Q R S T U V W X Y
C Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
D X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
E W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
F V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
G U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
H T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
I S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
J R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
K Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
L P Q R S T U V W X Y Z E J L M N OA B C D F G H I K
M O P Q R S T U V W X Y Z A B C E F G H J D I K L M N
N N O V C H J K L MP Q R S T U W X Y Z A B D E F G I
O M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
P L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
Q K L M N O P Q R S T U V W X Y Z A B E G H I J C D F
R J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
S I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
T H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
U G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
V F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
W E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
X D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
Y C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

K
E

Y
W

O
R

D

Z B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
 Example
To use the Vigenère cipher to encode a message, a secret keyword is needed. To ensure secrecy, the keyword should be known only to the sender

d the recipient of the message. an

 character in the plaintext with the
 Complete the third row below to

Suppose that the keyword is JAMES and that the message is “FABRIZIO USES FORGED NOTES.” The keyword should be placed below the
plaintext as many times as necessary (as shown below). Then the encoded message is generated by replacing each
character found at the intersection of the plaintext letter column and the keyword letter row (in the above table).
generate the enciphered message (ciphertext).

Plaintext F A B R I Z I O U S E S F O R G E D N O T E S
Keyword J A M E S J A M E S J A M E S J A M E S J A M

C iphertext W A P

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-49

Write a program s encipher
utput by your

 There are several security issues to consider when developing this program. As

5. Do some research to find out the names of the encryption alg nowadays for making secure transactions on the Internet.

 to implement the Vigenère cipher. Your program should be able to decipher (decode, decrypt) as well a
t). d by ur program should be read (input) from a data file and the ciphertext o(encode, encryp The plaintext processe yo

program should be written to (stored in) a data file.
the development proceeds, you will become aware of them.

Questions
1. Define the terms cipher, encipher, decipher, cryptography, encrypt, decrypt, encode, decode, keyword, Caesar shift,

polyalphabetic, plaintext, ciphertext.

2. When was the Vigenère cipher broken and by whom? Which army fell partly because of the other side having learned how to
“crack the code?”

3. Is the Vigenère cipher suitable for modern data encryption applications?

4. Do you think that it is possible to create an unbreakable data encryption algorithm?

orithms used

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-50

USING VISUAL BASIC TO PRODUCE STRING ART
The String Art Algorithm
A set of N points is read in from a data file (or are defined from code) and connected according to the following
algorithm. Note that the following IS NOT Visual Basic code! It is pseudo-code! Your job is to translate the pseudo-

B!

Set A=1 and B=some value between 1 & N
loop

**add 1 to A
**join point B to point A

**if B > N

Examples of String Art

code into V
'Initialize the values of A and B

**join point A to point B

**add 1 to B

****set B=1
until A = N

By changing the initial value of B (just before the loop) a different pattern can be produced.

Exercises
6. How many points are used in string art example 1?

7. How many points are used in string art example 2?

8. How many points are used in string art example 3?

9. Explain the string art algorithm in plain English.

10. Write a VB program that can produce any string art given “N” points and an initial value of “B.” Include a
feature that allows the user to change the initial value of “B” and to select the colours used. Allow the user to select up
to three colours.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-51

FRACTALS
Fractal Geometry
Fractal geometry is the branch of mathematics that deals with producing extremely irregular curves or shapes for
any suitably chosen part is similar in shape to a given larger or smaller part when magnified or reduced to the same size
(this property o

 which

f fractals is known as self-similarity.). A “picture” or “image” produced by a fractal geometry algorithm is
usually called a fractal. Fractal geometr mathematics known as chaos theory.

The Chaos Game
To gain a basic understanding of fractals, it is helpful chaos game. The game proceeds in its
simplest form as follows. Place three do ngle. Colour the top vertex red, the lower left green
and the lower right blue. Then take a die o faces red, two green and two blue.
To play the game, you need a seed, an ar plane. Starting with this point, the algorithm begins
with a roll of the die. Then, depending u comes up, plot a point halfway between the seed and the
appropriate coloured vertex. Repeat this process using the terminal point of the previous move as the seed for the next.
To obtain the best possible results, do n t 15 (or so) points generated by this algorithm! Only begin
plotting after the first 15 points have been generated!

rder.

y is closely related to a branch of

to play a game called the
ts at the vertices of any tria
 and colour tw
bitrary starting point in the
pon which colour

ot plot the firs

For example, Figure 1 shows the moves associated with rolling red, green, blue and blue in o

Figure1 Playing the chaos game with rolls of red, green, blue, blue.

People who have never played this game are
always surprised and amazed at the result!
Most expect the algorithm to yield a blur of
points in the middle of the triangle. Some
expect the moving point to fill the whole
triangle. Surprisingly, however, the result is
anything but a random mess. The resulting
picture is one of the most famous of all fractals,
the Sierpinski triangle.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-52

The Sierpinski Triangle
 in action, run the program “Sierpinski's Triangle.vbp” in the folder “I:\Out\Nolfi\Drawing,

rogram Examples\Sierpinski’s Triangle V1 and V2.”
Now to see the Chaos Game
Graphics, Game P

You must be patient once you click on the “Start” button!

It takes a few minutes for this program to generate Sierpinski’s triangle. However
it will be well worth the wait! You will be amazed by the figure generated by thi
seemingly random and chaotic algorithm!

,
s

3. Use the Internet (or whatever other resources that y ithms that produce the following
fractals:

g. Sierpinski Triangle (this one is easy beca u)
h. Sierpinski Pentagon
i. Sierpinski Hexagon
j. Sierpinski Carpet
k. Koch Snowflakes

Then create a word processor doc s to supplement

4. Using a Web browser, load the Java applet with URL http://math.bu.edu/DYSYS/applets/fractalina.html. Experiment
with this applet for a few minutes to familiarize yourself with its various features. Then write a Visual Basic program
that is similar to the “Fractalina” applet. Your program must be able to generate the following fractals:

f. Sierpinski Triangle
g. Sierpinski Pentagon
h. Sierpinski Hexagon
i. Sierpinski Carpet
j. Koch Snowflakes

Note that your program need not have “New Point,” “Kill Point” and
should allow the user to drag the vertices of the shapes to different lo

Assignment (To be handed in)
ou wish to use) to find algor

use I have already given it to yo

ument that gives a brief outline of each algorithm. Include diagram
 the description of each algorithm.

 “Zoom Out” buttons. However, your program
cations.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Visual Basic AVB-53

	Table of Contents – Advanced Visual Basic
	 Review of Important Programming Concepts
	Overview
	 Excerpt from Wikipedia Article on CamelCase
	 Review Questions

	 Run-Time Error Handling
	Two Different Methods of Correcting the Bugs in Time Converter 1.0 Alpha
	The Code for Version 1.0 Beta
	 The Code for Version 1.0 Final Release

	 Time Converter Version 1.1 Alpha
	Questions

	 Time Converter Version 1.1 Beta
	 Questions

	 Creating the Final Version of Time Converter
	Brief Summary of the Evolution of the Time Converter Program
	Your Assignment
	 Evaluation Guide for Time Converter 1.1 Final Release

	 Counted Loops and Conditional Loops in VB
	 Conditional Loop Example
	Counted Loop Example
	 Various Conditional Loop Structures in Visual Basic

	Counted Loops in VB - “For…Next” Loops
	 “For…Next” (Counted Loop) Exercises

	“Do … While” and “Do … Until” Loop structures (Conditional Loops)
	Question
	 Examples
	 “Do…Loop” (Conditional Loop) Exercises

	 An Enhanced Version of the Do Loop Guessing Game
	Questions

	
	Using Visual Basic to Produce String Art
	The String Art Algorithm
	Examples of String Art
	String Art Example 1
	String Art Example 2
	String Art Example 3

	Exercises

	Fractals
	Fractal Geometry
	The Chaos Game
	 The Sierpinski Triangle
	Assignment (To be handed in)

	 Euclid and the GCD
	Definition of GCD
	Brute Force (Slow) Method for Computing the GCD of Two Integers
	Description of Euclid’s (Fast) Method for Computing the GCD of Two Integers
	Example
	Your Task
	Test out the Euclid Algorithm

	 Learning about Arrays and Nested Loops through the “Generating Random Integers without Repetition” Problem
	A Solution
	Why Arrays are Necessary to implement the above Algorithm
	 General Facts about Arrays
	Declaring Fixed-Size Arrays
	Setting Upper and Lower Bounds

	 Working with Arrays (Array Exercises)
	 Space versus Time: The Eternal Conflict in Computer Science
	Background
	A Problem that Illustrates the Trade-off between Space and Time
	Two Different Solutions
	Solution 1
	Questions

	
	Solution 2
	Questions

	More Important Questions

	 Introduction to Substrings, Control Arrays and Translating Objects
	 Lots and Lots of Examples of String Processing
	 Character Sets and String Manipulation Functions
	ANSI, DBCS, and Unicode: Definitions
	Environment
	Character Set(s) Used

	ANSI (American National Standards Institute)
	DBCS (Double-Byte Character System)
	Unicode
	Example: Character codes for "A" in ANSI, Unicode, and DBCS
	 Issues Specific to the Double-Byte Character Set (DBCS)
	DBCS String Manipulation Functions
	The ANSI Character Set
	 Key Code Constants in Visual Basic
	Exercises

	 Credit Card Validation Assignment
	Introduction
	Rules for Credit Card Number Validity:
	Example
	 Program Plan
	Additional Notes
	Additional Challenge for Extra Credit
	 Practice Exercises
	 Evaluation Guide for Credit Card Validator Program

	 Notes on Debugging to Help you with your Credit Card Validator Program
	Example 1
	Example 2
	Questions

	 Assignment on Two-Dimensional Arrays (Optional Topic)
	Data Encryption using the Vigenère Cipher
	Questions

	 Using Visual Basic to Produce String Art
	The String Art Algorithm
	Examples of String Art
	Exercises

	 Fractals
	Fractal Geometry
	The Chaos Game
	 The Sierpinski Triangle
	Assignment (To be handed in)

