
ADVANCED ALGORITHMS – TABLE OF CONTENTS

ADVANCED ALGORITHMS – TABLE OF CONTENTS ...1
SOLVING A LARGE PROBLEM BY SPLITTING IT INTO SEVERAL SMALLER SUB-PROBLEMS CASE STUDY: THE
DOOMSDAY ALGORITHM ...2

INTRODUCTION TO THE DOOMSDAY ALGORITHM ...2
DESCRIPTION OF THE DOOMSDAY ALGORITHM ...2
EXERCISES ...3
NOW IT’S TIME TO WRITE PSEUDO-CODE! ..4
HOW TO SPLIT THE DOOMSDAY PROBLEM INTO SMALLER SUB-PROBLEMS ..5
FINALLY, IT’S TIME TO WRITE CODE!..5

Code Found in the Code Module (modCommonCode.bas)..5
Code Found in the Form Module (frmDoomsday.frm)...7

SEARCHING TECHNIQUES..9
LINEAR SEARCH...9
BINARY SEARCH ..10
EXAMPLE ...10
IMPORTANT PROGRAMMING EXERCISE..10
IMPORTANT PROGRAMMING EXERCISE..11

SORTING TECHNIQUES ...11
EXERCISE 1 ..11
EXERCISE 2 ..12

ICS 3MO - PREPARING FOR THE FINAL EVALUATION..13
THE FOLLOWING QUESTION IS SIMILAR TO ONE THAT IS ON YOUR FINAL EVALUATION! STUDY IT CAREFULLY!..................................13

Copyright ©, Nick E. Nolfi ICS3MO Advanced Algorithms AA-1

SOLVING A LARGE PROBLEM BY SPLITTING IT INTO SEVERAL SMALLER SUB-PROBLEMS
CASE STUDY: THE DOOMSDAY ALGORITHM

Introduction to the Doomsday Algorithm
Despite the ominous name of this algorithm, it is actually quite harmless. The doomsday algorithm, created by
the eminent mathematician Professor John Horton Conway, is used to compute the day of the week given any
valid Gregorian calendar date. The pictorial description below should help you understand what this means.

The Doomsday Algorithm
Any Gregorian
calendar date

e.g. Feb 27, 1963

The output for the
given example

would be
“Wednesday”

This remarkable algorithm is based on a certain day of the week that Professor Conway decided to call the
doomsday. Conway discovered that the so-called doomsday for any given year always falls on the same day of
the week. For example, the doomsday for 2010 is Sunday. Using this fact and a little bit of modular arithmetic,
Conway’s algorithm cleverly calculates the result. In fact, with a little bit of practice, it is even possible to
perform the algorithm mentally. For more information, use “doomsday algorithm” as a search phrase on
www.google.ca.

Description of the Doomsday Algorithm
1. Calculate the Doomsday for the Century Year

(For example, if the given year were 1978, then the century year would be 1900.)

 If the century year is divisible by 400, the century doomsday is Tuesday.
 If the century year divided by 400 has a remainder of 100, the century doomsday is Sunday.
 If the century year divided by 400 has a remainder of 200, the century doomsday is Friday.
 Otherwise, the century doomsday is Wednesday.

2. Use the Result from Step One to Calculate the Doomsday for the Given Year

 a. Calculate the number of years since the century year. Call this quantity “YSC” (e.g. 1978 – 1900 = 78)
 b. Calculate the “OFFSET” from the century year doomsday:
 Determine the number of “12s” in YSC.
 Add the remainder of the previous step.
 Add the number of “4s” in the remainder from the previous step.
 Finally, determine the remainder upon division by 7.
 c. Calculate the doomsday for the given year by finding the remainder of the sum of YSC and OFFSET upon division
 by 7. (Call this quantity “DY”) Why must this quantity be a whole number ranging from 0 to 6?

The numbers 4, 7 and 12 are used in this step.
What is their significance?

3. Determine the Date of the Doomsday of the Given Month

 a. For all “even” months except for February, the Nth day of the Nth month is doomsday
 b. For all “odd” months except for January,
 The (N + 4)th day of the Nth month is doomsday for the “long” months (31 days).
 The (N − 4)th day of the Nth month is doomsday for the “short” months (30 days).
 c. The last day of February is doomsday for February (28th for non-leap years, 29th for leap years).
 d. January 31 is doomsday for January, except in leap years, when January 32 (really Feb 1) is doomsday.

4. Determine the Difference between the Given Day of the Month and the Doomsday for the Month

 For instance, if the doomsday is Thursday, December 12, and the given date is December 17, then December 17 must be
 a Monday. The best way to understand this step is to use a calendar.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Algorithms AA-2

http://www.google.ca/

Exercises
Use the Doomsday Algorithm to find the day of the week for each of the following dates.
1. July 1, 1867

(What is the significance of this date?)
2. February 15, 1965

(What is the significance of this date?)
3. December 25, 2012

(What is the significance of this date?)

Copyright ©, Nick E. Nolfi ICS3MO Advanced Algorithms AA-3

Now it’s Time to Write Pseudo-Code!
Now, write pseudo-code for the Doomsday algorithm. To simplify this task, use the following abbreviations:

Y = year entered (1583 − 9999) CY = century year YSC = years since century year OFF =for “offset” in step 2b

DY = doomsday for the given year
(# from 0 to 6)*

DM = doomsday for the given month (# from 1 to 28, 29,
30, 31 or 32**, depending on the length of the month)

DW = day of the week for the
entered date (# from 0 to 6)*

Note: * The integers from 0 to 6 represent the days of the week (0 = Sunday, 1 = Monday, 2 = Tuesday, …, 6 = Saturday).
** Recall that for leap years, DM for January is set to 32. This artificial date is needed to make the algorithm work properly.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Algorithms AA-4

How to Split the Doomsday Problem into Smaller Sub-Problems

The Doomsday Problem

Is a given year a
leap year?

How many days
are in a given

month?

Convert a month
name to a

numeric value.
(e.g. “April” → 4)

The point of this diagram is to help you understand how a large, complicated problem can be broken up into a
few simpler, smaller problems.

Finally, it’s Time to Write Code!
You should not attempt to write code unless you have done an extensive analysis like the one shown above. If
you feel that you now have a good understanding of the doomsday algorithm, you may proceed to study the
code given below.
Code Found in the Code Module (modCommonCode.bas)
Option Explicit
Option Base 1

Public MonthOfYear As Variant, DayOfWeek As Variant

'A sub called "Main" is used to contain the code that should be executed as soon as a VB program is launched.

Public Sub Main()

 'Create an array that stores the months of the year.
 MonthOfYear = Array("January", "February", "March", "April", "May", "June", "July", "August", "September", _
 "October", "November", "December")
 'Create an array that stores the days of the week.
 DayOfWeek = Array("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")
 frmDoomsday.Show

End Sub

“MonthOfYear” is a string array that stores all the months of the year.

1 2 3 4 5 6 7 8 9 10 11 12
MonthOfYear

“January” “February” “March” “April” “May” “June” “July” “August” “September” “October” “November” “December”

Copyright ©, Nick E. Nolfi ICS3MO Advanced Algorithms AA-5

'This function performs the doomsday algorithm on any valid Gregorian Calendar date from 1583 to 9999. The
'Gregorian Calendar was adopted in September 1582. To keep this program as simple as possible, dates in 1582
'are not accepted.

Public Function Doomsday(ByVal Month As Integer, ByVal Day As Integer, _
 ByVal Year As Integer, ByVal DayOfWeek As Variant) As Variant

 Dim CenturyYear As Integer, CenturyDoomsday As Byte, YearDoomsday As Byte, YearsSinceCentury As Byte
 Dim Offset As Byte, MonthDoomsday As Byte

 CenturyYear = Year - Year Mod 100

 If CenturyYear Mod 400 = 0 Then
 CenturyDoomsday = 2 'Tuesday
 ElseIf CenturyYear Mod 400 = 100 Then
 CenturyDoomsday = 0 'Sunday
 ElseIf CenturyYear Mod 400 = 200 Then
 CenturyDoomsday = 5 'Friday
 Else
 CenturyDoomsday = 3 'Wednesday
 End If

 YearsSinceCentury = Year - CenturyYear
 Offset = (YearsSinceCentury \ 12 + YearsSinceCentury Mod 12 + (YearsSinceCentury Mod 12) \ 4) Mod 7
 YearDoomsday = (CenturyDoomsday + Offset) Mod 7

 'Now determine doomsday for given month
 If Month Mod 2 = 0 And Month <> 2 Then 'Even months except Feb
 MonthDoomsday = Month
 ElseIf Month Mod 2 = 1 And Month <> 1 Then 'Odd months except Jan
 If NumDaysInMonth(Month) = 31 Then
 MonthDoomsday = Month + 4 “DayOfWeek” is a string array storing the days of the week.

DayOfWeek
 Else
 MonthDoomsday = Month - 4
 End If
 ElseIf IsLeapYear(Year) Then 'Leap years, Jan and Feb 1 “Sunday”
 If Month = 2 Then 2 “Monday”
 MonthDoomsday = 29 3 “Tuesday”
 Else

4 “Wednesday” MonthDoomsday = 32
 End If 5 “Thursday”
 ElseIf Month = 2 Then 'Non-leap years, Jan and Feb 6 “Friday”
 MonthDoomsday = 28 7 “Saturday” Else
 MonthDoomsday = 31
 End If

 'Finally determine the difference between the given date
 'and doomsday for the month and return the result.
 If Day >= MonthDoomsday Then
 Doomsday = DayOfWeek((YearDoomsday + Day - MonthDoomsday) Mod 7 + 1)
 Else
 Doomsday = DayOfWeek((YearDoomsday + 7 - (MonthDoomsday - Day) Mod 7) Mod 7 + 1)
 End If

End Function

'This unction hethe ve year i a eap yea
Public Function IsLeapYear(ByVal Year As Integer) As Boolean

f determines w r a gi n s l r

 If Year >= 1583 Then 'Gregorian calendar was adopted in Sep 1582
 If Year Mod 4 = 0 Then 'year is divisible by 4
 If Year Mod 100 = 0 Then 'year is divisible by 100
 If Year Mod 400 = 0 Then 'year is divisible by 400
 IsLeapYear = True
 Else
 IsLeapYear = False
 End If
 Else
 IsLeapYear = True
 End If
 Else
 IsLeapYear = False
 End If
 Else
 IsLeapYear = False
 End If

End Function

Copyright ©, Nick E. Nolfi ICS3MO Advanced Algorithms AA-6

'This function determines the number of days in a given month. The year must be specified if the month is
'February. Otherwise, this function will return an incorrect value.

Public Function NumDaysInMonth(ByVal Month As Integer, Optional ByVal Year As Integer) As Byte

 Select Case Month
 Case 1, 3, 5, 7, 8, 10, 12
 NumDaysInMonth = 31
 Case 4, 6, 9, 11
 NumDaysInMonth = 30
 Case 2
 If Not IsLeapYear(Year) Then
 NumDaysInMonth = 28
 Else
 NumDaysInMonth = 29
 End If
 Case Else
 NumDaysInMonth = 0 'Invalid month has been passed
 End Select

End Function

'This function converts the name of a month to a numeric value. For example, "February" would be converted
' to 2 and "December" would be converted to 12.

Public Function ConvMonthToNumber(ByVal Month As String, ByRef MonthName As Variant) As Byte

 Dim I As Byte

 ConvMonthToNumber = 0 'In case invalid month name is passed
 Month = Trim(LCase(Month))

 For I = 1 To 12
 If Month = Trim(LCase(MonthName(I))) Then
 ConvMonthToNumber = I
 Exit Function
 End If
 Next I

End Function

Code Found in the Form Module (frmDoomsday.frm)
Option Explicit

Private Sub Form_Load()

 Dim I As Byte

 'Load months of year into combo box.
 For I = 1 To 12
 cboMonth.AddItem MonthOfYear(I)
 Next I

 'Display today's date.
 cboMonth.Text = MonthOfYear(Month(Date))
 txtDay.Text = Day(Date)
 txtYear.Text = Year(Date)

 'Display current time
 lblTime.Caption = Time

End Sub

'Use the doomsday algorithm to calculate the day of the week
'for th da
Private Sub cmdCalculateDay_Click()

e te entered by the user.

 On Error GoTo ErrorHandler

 Dim YearEntered As Integer, MonthEn r As Integer te ed
 Dim DayEn As Integer, WeekDay As String tered
 Dim Verb As String

 DayEntered = Val(txtDay.Text)
 YearEntered = Val(txtYear.Text)
 MonthEntered = ConvMonthToNumber(Trim(cboMonth.Text), MonthOfYear)

 'Verify that a valid date has been entered. If not, exit the sub.

 If YearEntered < 1583 Or YearEntered > 9999 Or MonthEntered < 1 Or MonthEntered > 12 Or DayEntered < 0 Or _
 DayEntered > NumDaysInMonth(MonthEntered, YearEntered) Then

 MsgBox "There is a problem with one or more of the values that you have entered." _

What is the purpose of “chr(10)?”

 & Chr(10) & "The year must be between 1583 and 9999." & Chr(10) _
 & "In addition, please check the month and day that you have" _
 & Chr(10) & "entered to ensure that the values are valid.", _
 vbExclamation, "Please check the date carefully!"
 Exit Sub

 End If 'Code continues on the next page.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Algorithms AA-7

 'Decide if the date entered is past, present or future.

 If YearEntered < Year(Date) Then
 Verb = " was a "
 ElseIf YearEntered > Year(Date) Then
 Verb = " will be a "
 ElseIf MonthEntered < Month(Date) Then
 Verb = " was a "
 ElseIf MonthEntered > Month(Date) Then
 Verb = " will be a "
 ElseIf DayEntered < Day(Date) Then
 Verb = " was a "
 ElseIf DayEntered > Day(Date) Then
 Verb = " will be a "
 Else
 Verb = " is a "
 End If

 'Now call the "Doomsday" function to calculate the day of
 'the week on which the given date fell/falls/will fall.

 WeekDay = Doomsday(MonthEntered, DayEntered, YearEntered, DayOfWeek)

 lblDayOfWeek.Caption = Trim(cboMonth.Text) & Str(DayEntered) _
 & "," & Str(YearEntered) & Verb & WeekDay & "."

 Exit Sub

ErrorHandler:
 MsgBox Err.Description

End Sub

'Allow nly re
Private Sub txtDay_KeyPress(KeyAscii As Integer)

o numeric values to be ente d in the text boxes storing the day and year entered by the user.

 If (KeyAscii < vbKey0 Or KeyAscii > vbKey9) And _
 KeyAscii <> vbKeyBack Then
 KeyAscii = 0
 End If

End Sub

Private Sub txtYear_KeyPress(KeyAscii As Integer)

 If (KeyAscii < vbKey0 Or KeyAscii > vbKey9) And _
 KeyAscii <> vbKeyBack Then
 KeyAscii = 0
 End If

End Sub

'Update clo
Private Sub tmrUpdateTime_Timer()

 ck if necessary

 If CStr(Time) <> lblTime.Caption Then
 lblTime.Caption = Time
 End If

End Sub

Copyright ©, Nick E. Nolfi ICS3MO Advanced Algorithms AA-8

SEARCHING TECHNIQUES
Linear Search
(Note that this linear search example VB program can be found in I:\Out\Nolfi\Ics3m0\Searching and Sorting\Linear Search.)
Consider the following Visual Basic program that uses a function procedure to perform a linear search (sequential search)
of an array of n elements. For the sake of simplicity, the array to be searched is filled with random integers from 1 to 100.

Dim SomeArray(1 To 20) As Integer

Private Sub Form_Load()

 Dim I As Integer

 Randomize

 'Store random integers between 1 and 20 in the array.

 For I = 1 To 20
 SomeArray(I) = Int(Rnd*20+1)
 Next I

End Sub

Private Sub cmdClose_Click()

 End

End Sub

Private Sub cmdSearch_Click()

 Dim Location As Integer mComparisons As Integer, Nu
 Dim WhatToSearchFor As Byte, AvgNumComparisons As Single

 WhatToSearchFor = Val(txtSearchFor.Text)

 If WhatToSearchFor < 1 Or WhatToSearchFor > 20 Then
 MsgBox "Enter a value between 1 and 20", vbExclamation, "Oops!"
 Exit Sub
 End If

 Location = LinearSearch(SomeArray(),WhatToSearchFor, 20)

 If Location <> 0 Then
 NumComparisons = Location
 lblFoundAt.Caption = "Found at location:" & Str(Location) & _
 & Chr(10) "Number of Comparisons Required:"
 & Str(NumComparisons)
 Else
 NumComparisons = 20
 lblFoundAt.Caption = "Not found"
 End If

 NumSearches = NumSearches + 1
 TotalComparisons = TotalComparisons + NumComparisons

 lblNumSearches.Caption = "Number of Searches Performed:" & _
 Str(NumSearches)
 lblAvgComp.Caption = "Average # of Comparisons per Search:" & _
 Str(Round(TotalComparisons / NumSearches, 2))

 'Highlight value in text box
 txtSearchFor.SelStart = 0
 txtSearchFor.SelLength = Len(txtSearchFor.Text)

End Sub

' This function performs a linear search of the array passed to the
' array parameter "A" for the value passed to the parameter "Item."
' If the item is found, its location within the array is returned.
' Otherwise, zero is returned. It is assumed in this function that
' the array is declared with indices running from 1 to "N."

Function LinearSearch(A() As Integer, ByVal Item As Integer, _
 ByVal N As Integer) As Integer
 Dim I As Integer

 For I = 1 To N

 If A(I) = Item Then
 LinearSearch = I
 Exit Function
 End If

 Next I

 LinearSearch = 0 'Return 0 if required value was not found

End Function

Index Data
1 3
2 12
3 14
4 1
5 1
6 6
7 11
8 19
9 17
10 20
11 5
12 7
13 12
14 2

The “linear search”
method starts
looking for the
required element at
the very “top” of the
array (i.e. at the first
element).

Then each element is
examined in turn
until either the
required value is
found or the end of
the list is reached.

If the required value
is found, its index is
returned. Otherwise,
zero is returned to
signal that the
required value was
not found in the
array.

14 15

19 16

17 8
18 18
19 7
20 9

Questions
1. State one advantage and one

disadvantage of linear search.

2. To what kinds of applications is linear
search well suited?

3. Rewrite the “LinearSearch” function
above in such a way that it can search an
array of strings. In addition, the
rewritten function should also be able to
deal with array indices running from
“Low” to “High” (as opposed to indices
running from 1 to N).

Copyright ©, Nick E. Nolfi ICS3MO Advanced Algorithms AA-9

Binary Search
While linear search is easy to program and is reasonably fast when used to search small arrays, it is excruciatingly slow if used to
search an array with a large number of elements. For instance, consider an array of one million strings. On average, the linear search
requires 500000 comparisons before a required value is found. In the worst case, one million comparisons are needed. Obviously,
this method wastes a great deal of CPU time. Fortunately, there are much faster algorithms that can be used to search very large data
sets. Binary search, for instance, can find any value in an array of 1000000 elements using 10 or fewer comparisons. In order for
binary search to work, however, the array must be sorted.
Example
Suppose that the following sorted array is being searched for the value “80.” Unlike the linear search, the binary search begins at the
middle of the array as shown below.

Index Data
1 6
2 14
3 14
4 21
5 29
6 36
7 42
8 43
9 56
10 56
11 63
12 69
13 71
14 76
15 77
16 80
17 85
18 89
19 97
20 100

Index Data
1 6

Step 2 Step 1

The search begins at the
middle of the array. The
value being sought is “80”
and the value stored at the
middle of the array is “56.”
Since 80 > 56, the first half
of the list is ignored and the
search continues at the
middle of the second half
of the array.

2 14
3 14
4 21
5 29
6 36
7 42
8 43
9 56
10 56
11 63
12 69
13 71
14 76

The search continues at the
middle of the second half
of the array, where “77” is
stored. Since 80 > 77, the
first half of the second half
of the array is ignored and
the search continues at the
lowest quarter of the array.

15 77
16 80
17 85
18 89
19 97
20 100

Index Data

1 6
2 14
3 14
4 21
5 29
6 36
7 42
8 43
9 56
10 56
11 63
12 69
13 71
14 76
15 77
16 80
17 85
18 89
19 97
20 100

Index Data
1 6
2 14
3 14
4 21
5 29
6 36
7 42
8 43
9 56
10 56
11 63
12 69
13 71
14 76

Step 3 Step 4

The search ends at element
16 of the array, where the
required value is found.
Notice that half the
elements remaining are
eliminated after each
comparison, which means
that no more than four
comparisons are required to
search 20 elements.

The search continues at the
middle of the lowest
quarter of the array, where
“85” is stored. Since
80 < 85, the second half of
the lowest quarter of the
array is ignored and the
search continues.

15 77
16 80
17 85

89 18

97 19

20 100

Copyright ©, Nick E. Nolfi ICS3MO Advanced Algorithms AA-10

Important Programming Exercise
Load the linear search VB program from I:\Out\Nolfi\Ics3m0\Searching and Sorting\Linear Search. Modify it in such
a way that the search is performed using the binary search algorithm. You simply need to write a new function that
performs a binary search. In addition, you need a function that will sort the array. To solve this problem, look ahead to
the next section and choose any of the given sorting methods.

SORTING TECHNIQUES
Exercise 1
Load “Sorting Methods.vbp” from I:\Out\Nolfi\Ics3m0\Searching and Sorting\Sorting Methods Demo. Carefully
study the demo of each method of sorting. If necessary, repeat the demos several times until you feel that you understand
all the sorting methods. Then complete the following table.

1. Use diagrams to explain the “Bubble
Sort.” Why is version 2 superior to
version 1?

2. Use diagrams to explain the “Exchange
Sort.”

3. Use diagrams to explain the “Insertion
Sort.”

Copyright ©, Nick E. Nolfi ICS3MO Advanced Algorithms AA-11

Exercise 2
Study the code in all modules in “Sorting Methods.vbp.” You will notice that the code module “modSortingSubs.bas”
contains four subs that perform the four different sorting algorithms. Each of these subs contains a great deal of code that
is only needed for the sorting demos. Rewrite each sub without the code needed to make the demos work.

Copyright ©, Nick E. Nolfi ICS3MO Advanced Algorithms AA-12

ICS 3MO - PREPARING FOR THE FINAL EVALUATION
The following question is similar to one that is on your final evaluation! Study it carefully!
In class, we studied the “Bubble Sort” algorithm for sorting an array of n elements. Presented below is an algorithm called
“Exchange Sort,” a simple sorting method similar to the bubble sort.

6
4
7
3
2

4
6
7
3
2

4
6
7
3
2

3
6
7
4
2

2
6
7
4
3

2
6
7
4
3

2
4
7
6
3

2
3
7
6
4

2
3
6
7
4

2
3

Description of the Exchange Sort
Algorithm

One of the simplest methods to
sort an array is called an
“Exchange Sort.”
The first element of an array is
compared to elements 2, … , n.
Every time an element is found
that is less than element 1, it is
exchanged with element 1.

4
7
6

2
3
4
6
7

a. Use the following tables to show the exact steps required to sort the given array using an exchange sort. Note that you
may not necessarily need to use all the provided tables.

69
57
32
44
51
12

This process is then repeated with
element 2. It is compared to
elements 3, … , n. Every time an
element is found that is less than
element 2, it is exchanged with it.

Similarly, this process continues
with elements 3, 4, 5 and so on.

Pseudo-Code for the Exchange
Sort

Note: This pseudo-code assumes
that the array has n elements with
indices (subscripts) ranging from 1
to n.

For I = 1 to n
 Compare element I to element J, for all
 values of J ranging from I+1 to n.

 If element J is < element I then
 swap (exchange) elements I and J.

Next I

Specific Example

b. Now write VB code for the exchange sort. Use the pseudo-code above as a guide. (Hint: You will need a nested loop).

Copyright ©, Nick E. Nolfi ICS3MO Advanced Algorithms AA-13

	Advanced Algorithms – Table of Contents
	 Solving a Large Problem by Splitting it into Several Smaller Sub-problems Case Study: The Doomsday Algorithm
	Introduction to the Doomsday Algorithm
	Description of the Doomsday Algorithm
	 Exercises
	 Now it’s Time to Write Pseudo-Code!
	 How to Split the Doomsday Problem into Smaller Sub-Problems
	Finally, it’s Time to Write Code!
	Code Found in the Code Module (modCommonCode.bas)
	Code Found in the Form Module (frmDoomsday.frm)

	 Searching Techniques
	Linear Search
	 Binary Search
	Example
	 Important Programming Exercise

	Sorting Techniques
	Exercise 1
	 Exercise 2

	 ICS 3MO - Preparing for the Final Evaluation
	The following question is similar to one that is on your final evaluation! Study it carefully!

