
UNIT 0 – INTRODUCTION TO PROGRAMMING THROUGH APP INVENTOR
UNIT 0 – INTRODUCTION TO PROGRAMMING THROUGH APP INVENTOR .. 1

LEARNING THE ESSENTIAL FEATURES OF APP INVENTOR ... 3

BRIEF DESCRIPTION AND HISTORY OF APP INVENTOR FOR ANDROID .. 3
OVERVIEW OF APP INVENTOR .. 3

How to Access App Inventor... 3
How to Work with App Inventor ... 3
The MyProjects Page ... 4
The Design Page .. 4
The Blocks Editor ... 4

PAINTPOT: CREATING YOUR FIRST APP ... 5

STEP 1: CREATING THE PAINTPOT APP .. 5
STEP 2: USING THE COOK/CHEF ANALOGY TO UNDERSTAND THE LOGIC OF THE PAINTPOT APP .. 5
EXERCISE ... 7

CREATING MORE APPS – MORE EXAMPLES .. 7

WARNING! ... 7

CREATING MORE APPS – MAKING YOUR OWN! .. 8

INTRODUCTION .. 8
METHOD 1 – IMPROVE AN EXISTING APP: MOLEMASH EXTREME VERSION .. 8
METHOD 2 – CREATE YOUR OWN APPS!... 8

APP INVENTOR MAIN IDEAS – REVIEW #1 ... 9

APP INVENTOR MAIN IDEAS – REVIEW #2 ... 10

APP INVENTOR MAIN IDEAS – REVIEW #3 ... 11

USING THE “FOLLOW-THE-MOLE MASH” GAME TO APPRECIATE THE POWER OF VARIABLES 13

INTRODUCTION TO LOOPS: LINE DRAWING PROBLEMS .. 14
INTRODUCTION .. 14
PROBLEM ... 14
HINTS ... 14
EXPLANATION .. 14
MORE PROBLEMS ... 15
GENERATING THE PICTURES IN APP INVENTOR .. 16
EXPLANATION OF THE MORE EFFICIENT METHOD .. 16
TYPES OF LOOPS .. 16

Counted Loops (“For Loops”) ... 16
Conditional Loops (“While Loops”) .. 16

CIRCLE DRAWING PROBLEMS ... 17
PROBLEM WITH CURRENT VERSION OF APP INVENTOR ... 17
THE DEFINITION OF THE “DRAWCIRCLEPOINTBYPOINT” PROCEDURE .. 17
AN EXAMPLE OF A CALL TO THE “DRAWCIRCLEPOINTBYPOINT” PROCEDURE ... 17
CIRCLE DRAWINGS .. 18

MORE LINE/CIRCLE DRAWING PRACTICE ... 19

ANALYZING THE MAKEQUIZ APP FROM CHAPTER 10 ... 20
EXAMPLE ... 22

PROGRAMMING PROBLEMS WHOSE SOLUTIONS REQUIRE THE USE OF COUNTED (“FOR”) OR CONDITIONAL
(“WHILE”) LOOPS 23

Algorithm .. 23

EUCLID AND THE GCD ... 25

DEFINITION OF GCD .. 25
Examples .. 25

BRUTE FORCE (EXHAUSTIVE SEARCH) ALGORITHM FOR COMPUTING THE GCD OF TWO INTEGERS ... 25
APP INVENTOR CODE FOR SLOW GCD ALGORITHM .. 26

Questions .. 27
DESCRIPTION OF EUCLID’S (FAST) METHOD FOR COMPUTING THE GCD OF TWO INTEGERS ... 27
EXAMPLE ... 27
YOUR TASK ... 27

SOLUTIONS TO SELECTED PROBLEMS REQUIRING LOOPS ... 28

QUESTIONS .. 31

APP INVENTOR REVIEW PROBLEMS #1 ... 33

APP INVENTOR REVIEW PROBLEMS #2 ... 34

APP INVENTOR REVIEW PROBLEMS #3 ... 35
NOTE ... 35

LEARNING THE ESSENTIAL FEATURES OF APP INVENTOR

Brief Description and History of App Inventor for Android
• Allows anyone to create software applications (“apps”) for the Android Operating System

• The Android Operating System is used on several different mobile devices including models made by Samsung,
HTC, LG, Motorola, Sony, Alcatel, Archos, Kyocera, Dell, Xperia, Excite, Asus, Sanyo, Acer and others

• Originally provided by Google and called “Google App Inventor”

• Google terminated support for App Inventor on December 31, 2011 but donated the project to MIT

• Since then, the application has been maintained by MIT (Massachusetts Institute of Technology)

• Now called “MIT App Inventor”

Overview of App Inventor

How to Work with App Inventor

• My Projects Web Page
What you usually see when you first log on
Create New Project, Open Existing Project, Delete Projects, Download Project to Local Computer, etc

• Design Web Page
Tools for Designing the User Interface
Palette, Viewer, Components List, Properties List

• Blocks Editor
Java Program that runs in its own Window (i.e. does not run in a Web browser)
Tools for Specifying the Logic (i.e. Behaviour) of the App
In other words, the blocks editor allows the programmer to specify instructions for the app

App
Inventor

My Projects
Web Page

Design Web
Page

Blocks
Editor

How to Access App Inventor
• Requires a Google account
• If you already have a Google account, simply use it to log on to App Inventor
• If you do not have a Google account, create one at https://accounts.google.com/NewAccount
• Once you have a Google account, log on to App Inventor at http://appinventor.mit.edu/
• In addition to having a Google account, the following must also be installed on your computer:
 Java 6 or higher (see http://www.java.com)
 The App Inventor Setup Package (see http://beta.appinventor.mit.edu/learn/setup/)

https://accounts.google.com/NewAccount�
http://appinventor.mit.edu/�
http://www.java.com/�
http://beta.appinventor.mit.edu/learn/setup/�

The MyProjects Page

The Design Page

The Blocks Editor

Used to Select
Components for

the User
Interface

Used to View the
Arrangement of
Components on

the User
Interface

Components
Listed by Name
and Organized
by Hierarchical

Relationship

List of Properties
of the

Component
Selected in the

Components List

PAINTPOT: CREATING YOUR FIRST APP
Step 1: Creating the PaintPot App
This part is easy! All you need to do is follow the instructions in the following document:

I:\Out\Nolfi\Ics3u0\ch2PaintPot.pdf

If you follow the instructions very carefully, the app should function correctly. In the event that it does not work as
expected, check your blocks carefully to ensure that they are exactly as shown in the above document.

Step 2: Using the Cook/Chef Analogy to Understand the Logic of the PaintPot App

As can easily be appreciated from the above analogy, it is not enough merely to follow existing programs. All
programmers must also be able to develop new software from scratch. To accomplish this, it is obviously very important
to understand programming concepts. A detailed description of the programming concepts used in PaintPot is given
below.

Picture Programming Concepts

Variable
• A variable is a name that is used to represent a value that

is stored in a computer’s main memory (i.e. in the RAM).
• Variables are used whenever information needs to be

“remembered” (i.e. “memorized”) for later use.
• The concept of variable in computer science is similar but

not identical to the concept of variable in mathematics.
• One key difference is that in mathematics, variable names

must have a length of exactly one character. For example,
the variable name “x” is allowed but the variable name
“xavier” is not allowed because it would be interpreted as
“x times a times v times i times e times r.”

• In computer science, variable names can contain more
than one character because the multiplication operator (*)
cannot be omitted. Thus, the name “xavier” would be seen
as a single entity and not a series of multiplications.

• In most cases, variable names in programming should
contain more than one character because descriptive
names make programs far easier to understand. Notice the
names “dotSize,” “small” and “large.” These names are
far more meaningful than “d,” “s” and “l.”

Cook
Follows
Existing
Recipes

Chef
Understands

how to Create
New Recipes

You in Step 1

Followed
Existing
Program

An Experienced
Programmer

Understands
how to Create
New Programs

Name of
Variable

Value of
Variable

Picture Programming Concepts

Procedure
• In App Inventor, a procedure is used to group

together one or more instructions.
• Each procedure has a unique name.
• Some procedures are executed automatically when a

specific event occurs. These are called event
handling procedures or just event handlers.

• Other procedures are executed in response to a
specific instruction called a “call” of the procedure.

Event
• An event is an occurrence that takes place while a

program is running. Events are used to trigger the
execution of specific instructions.

• Examples of events include “Click,” “LongClick,”
“GotFocus,” “LostFocus,” “Dragged” and
“Touched.”

Property
• Every component

has Properties,
which store
information on
characteristics of
the component.

• Examples of
properties include
“Enabled,”
“Height,” “Text”
and “Width.”

Method
• Every component

has Methods, which
are actions that are
associated with the
component.

• Examples of
methods include
“Clear,”
“DrawCircle,”
“DrawPoint” and
“DrawLine.”

Procedure Block with Parameters (aka Arguments).
The instructions within the block are executed when the

“Touched” event occurs on “DrawingCanvas.” The
arguments of this procedure block are the variables x, y

and touchedSprite.

Name of
Component
(aka Object)

Name of the Event
that causes execution
of procedure block

Name of a
Method

The Arguments passed to the
“DrawCircle” method. The
values of x and y come from
the parameters x and y of the

procedure block
“DrawingCanvas.Touched.”

The radius of the circle comes
from the value of “dotSize.”

The Parameters of the
“DrawingCanvas.Touched”
procedure block. These are

special variables that are used
to pass information to the
procedure block. In this

example, the parameters x and
y store the co-ordinates of the

point that is touched on
“DrawingCanvas.” The

parameter “touchedSprite” is
used for animations.

Procedure. The instructions within
the block are executed when the

“Click” event occurs on “RedButton.”

Name of
Component
(aka Object)

Name of the Event
that causes execution
of procedure block

Name of a
Property of a
Component

Value of the
“PaintColor”

Property

Exercise
Study the following diagram. Then answer the questions found below the diagram.

1. “DrawingCanvas” is the name of a ___________________________________.

2. “Dragged” is the name of a ___.

3. “DrawingCanvas.Dragged” is the name of a ____________________________.

4. “DrawLine” is the name of a __.

5. “startX” is the name of a ____________________________. Its purpose is ________________________________

___.

CREATING MORE APPS – MORE EXAMPLES
For step-by-step instructions on how to create more apps, navigate to the following folder:

I:\4Students\OUT\Nolfi\ICS3U0\00-AppInventor

You will also find all the resources (e.g. pictures, sounds, etc) that you need in the following folder:

I:\4Students\OUT\Nolfi\ICS3U0\00-AppInventor\App Inventor Example Files

Warning!

By following the instructions in the resources listed above, you will be able to create
many impressive and interesting apps. However, you must always keep in mind that the
ultimate objective is to UNDERSTAND PROGRAMMING CONCEPTS. This means
that you must THINK CRITICALLY AS YOU WORK. Once you develop a sufficient
understanding of the concepts, you will be well on your way to developing your own
apps and more importantly, you will be well on your way to being able to
THINK FOR YOURSELF!

CREATING MORE APPS – MAKING YOUR OWN!
Introduction
Now that you have gained experience creating apps by following detailed instructions, it’s time to “cut the umbilical
cord.” It should be obvious to you that to be a genuine software developer, you should be able to create apps without
following detailed instructions. If this seems difficult at first, don’t despair! Just keep the following simple equation in
mind and eventually you’ll develop the instincts that will allow you to create software at will.

Problem
Solving Skills + Creativity + Logic + Understanding

of Concepts + Discipline and
Perseverance = Great Apps!

Method 1 – Improve an Existing App: MoleMash Extreme Version
By now you should have completed the “MoleMash” app.
(See I:\4Students\OUT\Nolfi\ICS3U0\00-AppInventor\ch3MoleMash.pdf or
http://www.cs.usfca.edu/~wolber/appinventor/bookSplits/ch3MoleMash.pdf).

Add the following features to the MoleMash app:

1. Levels of Difficulty: “Easy,” “Medium,” “Difficult”
(e.g. the game can be made more challenging by increasing mole speed, decreasing size of the mole picture, etc)

2. A Pleasant Sound is Played when the Mole is Hit

3. The Mole Picture Changes Briefly when the Mole is Hit

4. A Rude Sound is Played when the Mole is Missed

5. The game ends after a certain number of hits and misses, after which the player is either declared a winner or a loser.

6. To begin the game, the player enters his/her name.

7. A “bonus image” is occasionally displayed for a brief time. Bonus points are awarded for tapping the bonus image.

8. A “penalty image” moves about the canvas in proximity to the mole image. If the player taps the penalty image
instead of the mole, the player loses points.

9. List any other improvements you can think of in the space provided below:

Method 2 – Create your own Apps!
There is no better way to learn about programming than to create your own apps! You are strongly encouraged to unleash
your imagination and explore whatever ideas come to mind!

http://www.cs.usfca.edu/~wolber/appinventor/bookSplits/ch3MoleMash.pdf�

APP INVENTOR MAIN IDEAS – REVIEW #1

1. Identify and Explain Purpose

(a) List all the procedure names in the blocks shown at the left.

(b) List all the component names in the blocks shown at the left.

(c) List all the event names in the blocks shown at the left.

(d) List all the property names in the blocks shown at the left.

(e) Explain the purpose of “Screen1.Initialize.”

(f) Explain the purpose of “Clock1.Timer.”

(g) Explain the purpose of “call MoveMole.”

(h) Explain the purpose of “ResetButton.Click.”

(i) Explain the purpose of “set HitCountsLabel.Text to 0.”

2. Explain Purpose

(a) What are “x,” “y” and “touchedSprite?” What is
their purpose?

(b) Explain the purpose of the “if else” block.

(c) What is the purpose of “set HitCountsLabel.Text to
HitCountsLabel.Text +1?”

3. Explain Concept

In the MoleMash game, the mole picture moves about the canvas in a random fashion. Explain how this is
accomplished.

APP INVENTOR MAIN IDEAS – REVIEW #2

Explain each of the following:

1. Component

2. Property

3. Method

4. Event

5. Procedure

6. Event Handler
(This is a type of procedure)

7. Click Event

8. Initialize Event

9. Timer Event

10. Text Property

11. Variable

12. Call

13. Parameter/Argument

14. ifelse block

15. Image

16. Sprite

17. random integer

18. Canvas

19. Width Property

20. Height Property

21. Co-ordinate System

APP INVENTOR MAIN IDEAS – REVIEW #3

1. The purpose of the Design Page shown below is ___

__.

Use the provided text boxes to state the purpose of each of the four main parts of the Design Page.

2. The purpose of the Blocks Editor Java program shown below is ___

__.

3. The purpose of the emulator window shown at the right is _____________________

__

__

__.

4. Give a step-by-step explanation of how each of the following could be accomplished:

(a) In the MoleMash app, the mole picture changes briefly when the mole is hit.

(b) In the PaintPot app, straight lines can be drawn as well as curves.

(c) In the MoleMash app, a “bonus image” is occasionally displayed for a brief time. The player receives bonus
points for tapping the bonus image.

(d) In the MoleMash app, a “penalty image” moves about the canvas in proximity to the mole image. If the player
taps the penalty image instead of the mole, the player loses points.

USING THE “FOLLOW-THE-MOLE MASH” GAME TO APPRECIATE THE POWER OF VARIABLES

“Follow-the-Mole Mash” is a simple variation of the MoleMash game. As in the original game, the mole’s position
changes randomly at regular intervals. Unlike the original, a second “penalty” sprite follows the mole closely, sometimes
leaving very little of the mole exposed. If the penalty sprite is touched instead of the mole, the “misses” count increases
by two to penalize the player.

• To make it possible for the penalty image to
“follow” the mole, the mole’s co-ordinates must be
known.

• To accomplish this, variables are used to store
(i.e. “remember”) the mole’s co-ordinates.

• In general, variables are used whenever data need
to be saved for later use.

These are called comments. Their purpose is to help people
understand the program. Comments are ignored by the computer.

INTRODUCTION TO LOOPS: LINE DRAWING PROBLEMS
Introduction
Although we most definitely perceive a curve in the picture
at the right, the picture itself was created by drawing a series
of straight lines. No curves were actually drawn! Why then
do we seem to see a curve? The answer to this question has
everything to do with how our brains construct the “reality”
that we “see.” Since every straight line in this diagram is
tangent to the curve that we “see,” our brains take all the
points of tangency and “connect” them, in a sense, to create
the perception of a curve.

Problem
Use App Inventor to create an app that can generate the
diagram at the right.

Hints
1. Use a “Canvas” component.
2. In addition, your app will need to use the “DrawLine”

method of a “Canvas” component.
3. You need to understand the co-ordinate system that is

used for “Canvas” components.
4. There is a definite pattern that governs how the lines are

drawn. Before attempting to create blocks for your app, you must figure out the pattern!

Explanation
The main idea behind reproducing pictures like the one given above is to use the idea of “reverse engineering.” That is,
we try to “take apart” the picture to understand how it was created in the first place.

For convenience, the canvas size is set to 300 pixels by 300 pixels. This not only fits nicely on most cell phone screens
but it also takes advantage of the fact that the number 300 has many divisors (i.e. 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50,
60, 75, 100, 150, 300).

More Problems
Use graph paper and a table of values to determine the pattern that is used to create each picture. Then create an App
Inventor app that displays each picture successively at regular intervals. For an extra challenge, create the app in such a
way that the picture that is displayed at any given time is selected randomly.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Generating the Pictures in App Inventor

Method 1- Easy to Understand but Tedious Method 2 – Harder to Understand but much more Efficient

.

.

.
The remaining seventeen blocks have been omitted
to save space.

Explanation of the more Efficient Method
The “for range” block is an example of what computer scientists
call counted loops. Counted loops are used to repeat one or more
instructions a set number of times. The following explains the
details of the “for range” loop shown above:

• The call to the “DrawLine” method is shown only once
BUT it is repeated exactly twenty-one times by the “for” loop.

• The variable “y” is called a loop counter variable. Its value is
changed automatically after every repetition.

• The amount by which the loop counter’s value changes is
specified by the “step.” In the above example, the value of “y”
increases by 15 after each repetition because the value of “step”
is 15.

• The value of “y” ranges from 0 to 300 because the “start” and
“end” values are set respectively to 0 and 300. This explains
the name of the block in App Inventor (i.e. “for range”).

• Thus “y” takes on the values 0, 15, 30, 45, …, 270, 285, 300,
after which the loop terminates (i.e. stops repeating).

Types of Loops

Counted Loops (“For Loops”)
These are used when the number of repetitions is known at design-time (i.e. while the program is being designed) or can
be calculated at run-time (i.e. when the program is running). Whether looping continues or terminates is based on a
count. The number of repetitions of such loops is always predictable.
Analogy: Add three teaspoons of sugar to the coffee. Repeat the act of adding one teaspoon of sugar three times.

Conditional Loops (“While Loops”)
These are used when the number of repetitions is not known at design-time and cannot be calculated at run-time.
Whether looping continues or terminates is based on whether a certain condition is true or false. The number of
repetitions of such loops is generally not predictable.
Analogy: Keep stirring the coffee until the sugar dissolves. Repeat the act of stirring once until the sugar dissolves.

CIRCLE DRAWING PROBLEMS
Problem with Current Version of App Inventor
The current version of App Inventor only provides a procedure for drawing filled circles. To draw only the outline of a
circle without filling its interior, we are forced to create our own procedure. The procedure described below can draw
unfilled circles but it does so at an excruciatingly slow speed. Nonetheless, it is better than nothing!

The Definition of the “drawCirclePointByPoint” Procedure

An Example of a Call to the “drawCirclePointByPoint” Procedure

The following is the circle produced by this call. Reduce the value of “degreeStep” to decrease the “gaps” in the circle.

Although this procedure works, it
executes very, very slowly! When

we use Visual Basic later in the
course we’ll create similar programs

that execute much faster.

Circle Drawings
Use App Inventor to create each of the pictures shown below. Keep in mind the following important points:

• Use a table of values to determine the pattern(s) in each picture.
• Distinguish between the information that remains constant and the variable information.
• If two or more values are variable, determine how the variable values are related to each other. Then express

each variable value in terms of a single variable name. There is no need to use more than one variable name.
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

MORE LINE/CIRCLE DRAWING PRACTICE

Use App Inventor to create apps that draw the following pictures.

ANALYZING THE MAKEQUIZ APP FROM CHAPTER 10
1. Study the App Inventor blocks on the next page. Then complete the following table.

A. Variable B. Component C. Property D. Method E. Event F. General Procedure (Built-in)

G. Argument H. Event Handler Procedure I. General Procedure (Defined by Programmer)

Name What is it?

answer A. B. C. D. E. F. G. H. I.

answerIndex A. B. C. D. E. F. G. H. I.

displayQAs A. B. C. D. E. F. G. H. I.

Click A. B. C. D. E. F. G. H. I.

QuestionText A. B. C. D. E. F. G. H. I.

AnswerText A. B. C. D. E. F. G. H. I.

Text A. B. C. D. E. F. G. H. I.

Initialize A. B. C. D. E. F. G. H. I.

GotValue A. B. C. D. E. F. G. H. I.

TinyWebDB1 A. B. C. D. E. F. G. H. I.

StoreValue A. B. C. D. E. F. G. H. I.

GetValue A. B. C. D. E. F. G. H. I.

QuestionsAnswersLabel A. B. C. D. E. F. G. H. I.

SubmitButton A. B. C. D. E. F. G. H. I.

Click A. B. C. D. E. F. G. H. I.

SubmitButton.Click A. B. C. D. E. F. G. H. I.

tagFromWebDB A. B. C. D. E. F. G. H. I.

valueFromWebDB A. B. C. D. E. F. G. H. I.

Screen1 A. B. C. D. E. F. G. H. I.

Initialize A. B. C. D. E. F. G. H. I.

Screen1.Initialize A. B. C. D. E. F. G. H. I.

make a list A. B. C. D. E. F. G. H. I.

add items to list A. B. C. D. E. F. G. H. I.

TinyWebDB1.GotValue A. B. C. D. E. F. G. H. I.

question A. B. C. D. E. F. G. H. I.

length of list A. B. C. D. E. F. G. H. I.

QuestionList A. B. C. D. E. F. G. H. I.

AnswerList A. B. C. D. E. F. G. H. I.

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-22

2. Most universities in North America use a grading system known as the GPA (grade point average) system. It is
summarized in the table given below.

Percentage Grade Grade Point Score

85% − 100% 4.0
80% − 84% 3.7
77% − 79% 3.3
74% − 76% 3.0
70% − 73% 2.7
67% − 69% 2.3
64% − 66% 2.0
60% − 63% 1.7
57% − 59% 1.3
54% − 56% 1.0
50% − 53% 0.7
0% − 49% 0.0

Create an App Inventor app that allows the user to enter up to five percentage grades. After the user clicks “Submit,”
the app displays the user’s G.P.A. as well as his/her percentage average.

Example

Subject Percentage
Mark

Grade Point
Score

Math 76% 3.0

Computer
Science 84% 3.7

Chemistry 63% 1.7

Physics 45% 0.

English 49% 0.0

GPA=
3.0 3.7 1.7 0.0 0.0 1.68 60%

5
+ + + +

= <

Percent Average=
76 84 63 45 49 63.4%

5
+ + + +

=

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-23

PROGRAMMING PROBLEMS WHOSE SOLUTIONS REQUIRE THE USE OF
COUNTED (“FOR”) OR CONDITIONAL (“WHILE”) LOOPS

Algorithm
• An algorithm is a systematic procedure (finite series of steps) by which a problem is solved. Long division is an

example.
• The steps of a particular algorithm remain the same whether you solve a problem by hand or by computer.
• In cooking/baking/mixing drinks etc, algorithms are called recipes.
• Algorithms have been worked out for a wide range of problems.
• For many problems, there exist many different algorithms.
• For some problems, there are no known efficient algorithms (i.e. too slow and/or require too much memory).

e.g. What are the prime factors of a given number?
• Some problems cannot be solved by a computer (i.e. no algorithm exists that can be implemented on a computer).

Complete the following table. Then write App Inventor programs to solve each problem.
• Please note that the “For” looping structure exists only as a convenience! For situations in which the number of

repetitions is known beforehand, “For” loops allow for easier coding. However, any loop logic, including situations
in which the number of repetitions is known beforehand, can be expressed using a conditional loop!

• Finally, you will solve many of the problems given below using what is known as an exhaustive search or a brute-
force search algorithm. An algorithm that employs an exhaustive search systematically checks all possible
candidates for the solution to see which of them, if any, satisfies the statement of the problem. Exhaustive search is
guaranteed to find a solution if one exists. However, when the number of possible candidates is very large, brute-
force methods are excruciatingly slow. Shortly, we’ll be investigating a better solution to (g) to help us understand
the limitations of brute-force algorithms.

Programming Problem Can you write a solution that only requires
a counted loop? Explain.

(a) Write a program to calculate the sum of all positive even integers
less than or equal to 1000.

Yes / No (Circle One)
Why?

(b) Write a program to calculate the sum of all positive odd integers
until the sum exceeds 1000.

Yes / No (Circle One)
Why?

(c) Write a program to calculate the product of all positive integers
divisible by 5 and less than or equal to 645. (What happens if
you try a value greater than or equal to 650?)

Yes / No (Circle One)
Why?

(d) Write a program to calculate the product of all positive integers
divisible by 5 while the product is less than or equal to 1000000.

Yes / No (Circle One)
Why?

(e) An integer is called prime if it has exactly two divisors, one and
itself. The following is a list of the first 10 prime numbers:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Write a program that determines whether a given number is
prime. (Exhaustive Search)

Yes / No (Circle One)
Why?

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-24

Programming Problem Can you write a solution that only requires
a counted loop? Explain.

(f) A proper divisor of an integer is any integer that divides evenly
into the integer, except for the number itself. For example, the
proper divisors of 12 are 1, 2, 3, 4 and 6. A number is called
perfect if the sum of its proper divisors is equal to the number
itself. Two examples of perfect numbers are 6 and 28 because 6
= 1 + 2 +3 and 28 = 1 + 2 + 4 + 7 + 14.

Write a program that determines whether a given number is
perfect. (Exhaustive Search)

Yes / No (Circle One)
Why?

(g) Write a program that finds the greatest common divisor of any
two integers. For example, the greatest common divisor (GCD)
of 24 and 40 is 8. (Exhaustive Search)

Yes / No (Circle One)
Why?

(h) Write a program that finds the least common multiple of any two
integers. For example, the least common multiple (LCM) of 24
and 40 is 120. (Exhaustive Search)

Yes / No (Circle One)
Why?

(i) The numbers 220 and 284 are called an amicable pair because
the sum of the proper divisors of 220 is 284 and the sum of the
proper divisors of 284 is 220. Write a program that finds all
amicable pairs within the range of an Integer variable.
(Exhaustive Search)

Yes / No (Circle One)
Why?

(j) Horses cost $10, pigs cost $3 and rabbits cost only $0.50. A
farmer buys 100 animals for $100. How many of each animal did
he buy? Write a program to search for the solution to this
problem. (Exhaustive Search)

Yes / No (Circle One)
Why?

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-25

EUCLID AND THE GCD
Definition of GCD
By definition, the Greatest Common Divisor (gcd) of two positive integers is the largest integer that divides both integers
exactly.

Examples
• ()gcd 8,12 4= because 4 is the largest integer that divides into both 8 and 12

• ()gcd 14,42 14= because 14 is the largest integer that divides into both 14 and 42

• ()gcd 9,28 1= because 1 is the largest integer that divides into both 9 and 28

Brute Force (Exhaustive Search) Algorithm for Computing the GCD of Two Integers
The most obvious method for computing the GCD of two integers is repeatedly and systematically to divide both integers
by possible divisors until the greatest common divisor is found. This is illustrated below.
• a, b: These variables store the two integers for which the GCD must be found. The values of these two

variables remain the same throughout the execution of the code.
• y: This variable stores the values of all the integers that we try to divide into both a and b. The value of this

variable is controlled by a “For” loop.
• gcd: This variable stores the greatest common divisor found so far. Before entering the loop, it is initialized to

1 because 1 divides into every number. If no other common divisor is found by the code in the “For” loop, the value
of ‘gcd’ remains at 1 (see the second table).

a b y Remainder obtained when
‘a’ is divided by ‘y’

Remainder obtained when
‘b’ is divided by ‘y’ gcd

8 12 ? ? ? 1

8 12 2 0 0 2

8 12 3 2 0 2

8 12 4 0 0 4

8 12 5 3 2 4

8 12 6 2 0 4

8 12 7 1 5 4

8 12 8 0 4 4

8 12 9 1 3 4

a b y Remainder obtained when
‘a’ is divided by ‘y’

Remainder obtained when
‘b’ is divided by ‘y’ gcd

9 28 ? ? ? 1

9 28 2 1 0 1

9 28 3 0 1 1

9 28 4 1 0 1

9 28 5 4 3 1

9 28 6 3 4 1

9 28 7 2 0 1

9 28 8 1 4 1

9 28 9 0 1 1

9 28 10 1 3 1

Values Before
Entering Loop

Values After
Exiting Loop

Values Before
Entering Loop

Values After
Exiting Loop

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-26

App Inventor Code for Slow GCD Algorithm
The following is a Sub that calculates and displays the GCD of two integers entered by a user. Study the code and then
answer the questions on the next page.

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-27

Questions
1. Explain the purpose of the “If” statement that immediately precedes the “For” loop.

2. Why does the search for common divisors end at the smaller of “a” and “b?”

Description of Euclid’s (Fast) Method for Computing the GCD of Two Integers
Background
More than 2000 years ago, Euclid published an algorithm for finding the GCD of two numbers. His version was strictly
geometric since algebra had not been invented yet, but the algebraic version is described below.
Summary
The Euclid algorithm can be expressed concisely by the following recursive formula:

gcd(a, b) = gcd(b, a mod b)

Note: a mod b means the remainder obtained when a is divided by b.

Example
Here is an example of Euclid’s algorithm in action.

Find the GCD of 2322 and 654.
gcd(2322, 654) = gcd(654, 2322 mod 654) = gcd(654, 360)
gcd(654, 360) = gcd(360, 654 mod 360) = gcd(360, 294)
gcd(360, 294) = gcd(294, 360 mod 294) = gcd(294, 66)
gcd(294, 66) = gcd(66, 294 mod 66) = gcd(66, 30)
gcd(66, 30) = gcd(30, 66 mod 30) = gcd(30, 6)
gcd(30, 6) = gcd(6, 30 mod 6) = gcd(6, 0)
gcd(6, 0) = 6

Therefore, gcd(2322,654) = 6.

Your Task

1. Use Euclid’s method to
calculate gcd(4896, 830).

a b

2. How many repetitions would be required by the “slow GCD” algorithm to compute
gcd(4896, 830)?

3. Try to write App Inventor code to implement the Euclid GCD algorithm. Test your
code thoroughly and debug if necessary.

Essentially, the Euclid algorithm
performs the following two steps:

1. The value of ‘b’ is copied to ‘a.’
2. The value of ‘b’ changes to the

value of ‘a mod b” (the original
value of ‘a’ must be used, i.e. the
value of ‘a’ before step 1 was
carried out).

This process continues until the
value of ‘b’ is zero.

a b

2322 654

654 360

360 294

294 66

66 30

30 6

6 0

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-28

SOLUTIONS TO SELECTED PROBLEMS REQUIRING LOOPS

Problem App Inventor Solution Notes

(a) Write a program
to calculate the
sum of all
positive even
integers less than
or equal to 1000.

i sum
− 0

2 2
4 6
6 12
8 20
.
.
.

.

.

.

998 249500
1000 250500

− 250500

Think of this algorithm as the
“cash register algorithm.”
Values are successively
added to the total until the
final total is obtained. For
this problem, a “for” loop can
be used because the number
of repetitions is known at
design-time.

(b) Write a program
to calculate the
sum of all
positive odd
integers until the
sum exceeds
1000.

This problem is very similar
to the previous one. It also
makes use of the cash
register algorithm.

x sum
−1 0
1 1
3 4
5 9
7 16
.
.
.

.

.

.

61 961
63 1024
− 1024

However, this time a “for”
loop cannot be used because
the number of repetitions is
not known at design-time.
For this reason, a “while”
loop must be used. The
instructions within the body
of the loop are repeated as
long as the sum remains
smaller than or equal to 1000.

Values of variables
before entering loop

Values of variables
after exiting loop

{Values of variables
after each repetition

of the loop

For a “while” loop,
the changes in the
value of the loop
counter variable
must be handled by
the programmer.

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-29

Problem App Inventor Solution Notes

(g) Write a
program that
finds the
greatest
common
divisor of any
two integers.
For example,
the greatest
common
divisor
(GCD) of 24
and 40 is 8.
(Exhaustive
Search)

For this example, suppose that
a=12 and b=20. Then ‘smaller’
has a value of 12.

y gcd
- 1

2 2

3 2

4 4

5 4
6 4
7 4

8 4

9 4

10 4

11 4

12 4

− 4

The final value of the variable
“gcd” turns out to be
gcd(12, 20). Therefore,
gcd(12, 20) = 4.

The
Euclidean
GCD
algorithm is
much more
efficient than
the brute
force
algorithm
given above.

The following table shows how
gcd(2322, 654) is computed by
the Euclidean algorithm.
Notice that the number of steps
required to calculate the gcd is
significantly smaller than for
the brute force algorithm.

a b

2322 654

654 360

360 294

294 66

66 30

30 6

6 0

6 0

The search ends when b=0.
The value of ‘a’ is the gcd. In
this example, gcd(2322,654)=6.

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-30

Problem App Inventor Solution

(h) Horses cost
$10, pigs cost
$3 and
rabbits cost
only $0.50.
A farmer
buys 100
animals for
$100. How
many of each
animal did he
buy? Write a
program to
search for the
solution to
this problem.
(Exhaustive
Search)

The outer loop controls the value
of the ‘horses’ variable. With each
repetition of the outer loop, the
value of ‘horses’ increases by 1.

The inner loop controls the value
of the ‘pigs’ variable. With each
repetition of the inner loop, the
value of ‘pigs’ increases by 1.

The values of these variables
must be reset before the
inner loop is executed.

The part that is “cut off”
calculates the cost of the rabbits:

“rabbits × 0.50”

When one loop is contained
within another, we say that
the loops are nested.

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-31

First Repetition of Outer Loop
Inner Loop Repeats 17 Times

 Second Repetition of Outer Loop
Inner Loop Repeats 13 Times

horses pigs rabbits cost horses pigs rabbits cost
1 1 98

$62.00 2 1 97 $71.50

1 2 97

$64.50 2 2 96 $74.00
1 3 96

$67.00 2 3 95 $76.50

1 4 95

$69.50 2 4 94 $79.00
1 5 94

$72.00 2 5 93 $81.50

1 6 93

$74.50 2 6 92 $84.00
1 7 92

$77.00 2 7 91 $86.50

1 8 91

$79.50 2 8 90 $89.00
1 9 90

$82.00 2 9 89 $91.50

1 10 89

$84.50 2 10 88 $94.00
1 11 88

$87.00 2 11 87 $96.50

1 12 87

$89.50 2 12 86 $99.00
1 13 86

$92.00 2 13 85 $101.50

1 14 85

$94.50
1 15 84

$97.00

1 16 83

$99.50
1 17 82 $102.00

Third Repetition of Outer Loop
Inner Loop Repeats 9 Times

 Fourth Repetition of Outer Loop
Inner Loop Repeats 5 Times

horses pigs rabbits

cost horses pigs rabbits cost
3 1 96 $81.00 4 1 95 $90.50
3 2 95

$83.50 4 2 94 $93.00

3 3 94

$86.00 4 3 93 $95.50
3 4 93

$88.50 4 4 92 $98.00

3 5 92

$91.00 4 5 91 $100.50
3 6 91

$93.50

3 7 90

$96.00
3 8 89

$98.50

3 9 88

$101.00

Fifth Repetition of Outer Loop
Inner Loop Repeats 1 Time

horses pigs rabbits

cost
5 1 94

$100.00

Questions
1. What is the purpose of the variable ‘temp’ in the Euclidean GCD program? What would go wrong without this

variable?
2. Explain how the brute force GCD program could be made more efficient. Would these gains of efficiency make a

significant difference when computing the GCD of very large numbers?
3. What is a loop counter variable? Explain how loop counters are handled in both “for” and “while” loops.
4. In the “Horses, Pigs, Rabbits” program, what will go wrong if the values of the variables ‘pigs’ and ‘cost’ are not reset

just before the inner loop is executed?
5. What is the purpose of the “format as decimal” procedure? (See the “Horses, Pigs, Rabbits” program.)

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-32

6. In the “Horses, Pigs, Rabbits” program, a “Choose” block is used. Explain the general purpose of this block. What is
the specific purpose of this block in the “Horses, Pigs, Rabbits” program?

7. What is the purpose of the ‘AnswerFound’ variable in the “Horses, Pigs, Rabbits” program? How does this variable
differ from variables that store numeric values?

8. Who was George Boole? What contributions did he make to mathematics? Given what you have learned about
George Boole, explain why it is appropriate to call the variable ‘AnswerFound’ (see question 7) a Boolean variable.

9. The following small portion of the “Horses, Pigs, Rabbits” program contains the instruction that increases the value of
the variable ‘horses’ by 1. Why is this instruction placed within an “if” block? What would go wrong if it were not
placed within an “if” block?

10. Write an App Inventor program that uses the Sieve of Eratosthenes algorithm to generate a list of all prime numbers
less than 400.

Please note! You will need to do some research to solve this problem! For starters, visit the following Web page:

http://www.hbmeyer.de/eratosiv.htm

http://www.hbmeyer.de/eratosiv.htm�

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-33

APP INVENTOR REVIEW PROBLEMS #1

1. Give a step-by-step explanation of how the
following could be accomplished:

A variation of the MoleMash game replaces the
picture of the mole with pictures of members of
the Split Personalities. Each time a picture of
one of the splitters is tapped, the member’s
favourite rap line is heard over the speakers and
displayed in a label. Otherwise, if the user taps
the screen without hitting any of the moving
images, Mr. T’s picture appears, and the line “I
pity the fool” is played over the speakers.

2. Create an App Inventor program that calculates the sum of the squares of the positive integers from 1 to
100. (i.e. 2 2 2 21 2 3 100+ + + +)

3. Create an App Inventor program that calculates the sum of the squares of the positive odd integers from 1
to 999. (i.e. 2 2 2 21 3 5 999+ + +)

4. Create an App Inventor program that calculates the sum of the squares of the positive integers until the sum
exceeds 100,000,000. (i.e. 2 2 21 2 3+ + + , until the sum exceeds 100 million.)

5. Create an App Inventor program that can add, subtract multiply or divide two fractions.

Jazzy
Street

YouTube
Junkie

Mono
Tune

SPLIT

Poppa
Cricket Rabid

JiveMan
Addy
Manic

I pity the fool who
messes with the

splitters!

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-34

APP INVENTOR REVIEW PROBLEMS #2

1. Give a step-by-step explanation of how the
following could be accomplished:

A variation of the MoleMash game replaces the
picture of the mole with pictures of members of
the Split Personalities.

• Each time a picture of one of the splitters is
tapped, the picture disappears but reappears
exactly one minute later.

• If the user is fast enough to make all the
pictures disappear before any of them
reappear, the game ends and the user wins.

• If any of the pictures are still in motion after
five minutes of play, the game ends and the
user loses the game. In this case, Mr. T’s
picture appears and the line, “I told you not to mess with the splitters!” is played over the speakers.

2. Create an App Inventor program that calculates the sum of the cubes of the positive integers from 1 to 100.
(i.e. 3 3 3 31 2 3 100+ + + +)

3. Create an App Inventor program that calculates the sum of the cubes of the positive odd integers from 1 to
99. (i.e. 3 3 3 31 3 5 99+ + +)

4. Create an App Inventor program that calculates the sum of the cubes of the positive integers until the sum
exceeds 100,000,000. (i.e. 3 3 31 2 3+ + + , until the sum exceeds 100 million.)

5. Create an App Inventor program that can convert a percentage mark to the equivalent grade point score.
(See page 22 for details.)

Jazzy
Street

YouTube
Junkie

Mono
Tune

SPLIT

Poppa
Cricket Rabid

JiveMan
Addy
Manic

I pity the fool who
messes with the

splitters!

Copyright ©, Nick E. Nolfi ICS3U0 Introduction to Programming through App Inventor IPAI-35

APP INVENTOR REVIEW PROBLEMS #3
Write an App Inventor program that can produce string art. Examples of string art are shown below:

The following is a pseudocode description of an algorithm for producing string art:

Initialize the values of A and B
Set A=1
Set B=some value between 1 and N
loop
**join point A to point B
**add 1 to A
**join point B to point A
**add 1 to B
**if B > N
****set B=1
while A < N

Note
• The prefix “pseudo” means “false.”
• Other words beginning with this prefix:

pseudonym, pseudoscience, pseudohistorical

Pseudocode
Statements outlining the operation of a computer program,
written in something similar to computer language but in a
more understandable format.

“Points” Referred to in Pseudocode
• The points are equally spaced along the perimeter of a shape

such as an octagon.
• The points are numbered 1, 2, 3, …, N where N represents the

total number of points

In this picture, there are 64 equally
spaced points along the perimeter of
an octagon. The picture is formed
by joining points to other points.

	Unit 0 – Introduction to Programming through App Inventor
	Learning the Essential Features of App Inventor
	Brief Description and History of App Inventor for Android
	Overview of App Inventor
	The MyProjects Page
	The Design Page
	The Blocks Editor

	How to Access App Inventor
	How to Work with App Inventor
	PaintPot: Creating your First App
	Step 1: Creating the PaintPot App
	Step 2: Using the Cook/Chef Analogy to Understand the Logic of the PaintPot App
	Exercise

	Creating More Apps – More Examples
	Creating More Apps – Making your OWN!
	Introduction
	Method 1 – Improve an Existing App: MoleMash Extreme Version
	Method 2 – Create your own Apps!

	App Inventor Main Ideas – Review #1
	App Inventor Main Ideas – Review #2
	App Inventor Main Ideas – Review #3
	Using the “Follow-the-Mole Mash” Game to Appreciate the Power of Variables
	Introduction to Loops: Line Drawing Problems
	Introduction
	Problem
	Hints
	Explanation
	More Problems
	Generating the Pictures in App Inventor
	Types of Loops
	Counted Loops (“For Loops”)
	Conditional Loops (“While Loops”)

	Circle Drawing Problems
	Problem with Current Version of App Inventor
	The Definition of the “drawCirclePointByPoint” Procedure
	An Example of a Call to the “drawCirclePointByPoint” Procedure
	Circle Drawings

	More Line/Circle Drawing Practice
	Analyzing the MakeQuiz App from Chapter 10
	Example
	Programming Problems whose Solutions Require the use of Counted (“For”) or Conditional (“While”) Loops
	Algorithm

	Euclid and the GCD
	Definition of GCD
	Examples

	Brute Force (Exhaustive Search) Algorithm for Computing the GCD of Two Integers
	App Inventor Code for Slow GCD Algorithm
	Questions

	Description of Euclid’s (Fast) Method for Computing the GCD of Two Integers
	Example
	Your Task

	Solutions to Selected Problems Requiring Loops
	Questions

	App Inventor Review Problems #1
	App Inventor Review Problems #2
	App Inventor Review Problems #3
	Note

