UNIT O = INTRODUCTION TO PROGRAMMING THROUGH APP INVENTOR

UNIT 0 - INTRODUCTION TO PROGRAMMING THROUGH APP INVENTOR ..ottt eesseiiiiieeiieeseesieeeneens 1
LEARNING THE ESSENTIAL FEATURES OF APP INVEN T OR L..iiiiiiiiiiiiitiiiiittisiitisisiesesisiisesssaisesssiesssesssiisesesiisesssaiserssiisesess 3
BRIEF DESCRIPTION AND HISTORY OF APP INVENTOR FOR ANDROIDutttttttieiiiitssseestettsisiessseseesssaaissssssessstamiaissssseseesiimisssseseessinsssrees 3
OVERVIEW OF APP INVENTOR ... tttttttittteiitttssietssssesistssssassssssassssssissssssaaessssssssssssessesssstssesasssesssnsesssansssssanssssstnsssssssossssssasssssonsessssssesess 3
HOW 10 A CCESS A DD LN 0T . ttttiii i s ittt et e e st ettt ettt e e e sttt e e e e ettt e e e ettt e e e e ettt s sttt 4 e e ettt e e s e e e e e bbb e e e s eeeannnbennis 3

HOW £0 W OTK Wit A D IV ENEOT ..ttt ettt ittt e e sttt e ettt e sttt e e sttt eae et e e eh e e et e ettt ettt e et e ettt e et e e bt e e e s bbb e e s eaneaesseneneas 3

T O VY P IO ECES PO ...ttt ittt sttt ie sttt e s ittt e s ettt e sttt e set et e e ettt ettt e oot e e ettt e et e ettt e ettt £ et e et s e ee e e snnene e sanes 4

T 0 DS ION PO ...ttt itiiiiittti sttt ee sttt e e ettt ee st e e s st e e et e e st e e eh e e ettt £ et e e e et e e et e et e £ £ttt £ £t e 44t e £ £ ettt s et s s e b e e e e ebneaeannes 4

T 0 BIOCKS B llTOT ..t tiiiiit ittt etttk ettt e e ettt e es et e et e e es e e ettt e e e ettt et e e £ 44ttt e 4 £t £ e et e et e e e b e e e e e bnbaeannes 4
PAINTPOT: CREATING Y OUR F RS T A PP .. ittt ittt ittt e et ettt ettt es sttt eesetttessseetesststeessesseessaseseesseseeessassessssasesessasesesasesssiasseees 5
STEP 1. CREATING THE P AIN T P O T A PP Luttiiiiiiiiiittttitieeiieitttettteseessietteeseesesstas e b e eeeeseeeseassse e e e e e e e teasbe b e e s s oo e e ab bt e s e eeeeeaantbeeeeeesaanasbbnbeeesessanses 5
STEP 2: USING THE COOK/CHEF ANALOGY TO UNDERSTAND THE LOGIC OF THE PAINTPOT APP.....cieiiitiiiiiiiiiiiiieisisiissiessisissssessisisns 5
EXE R CISE L ttttti it ittttte ettt sttt ettt e ettt e et e e e st atbe e e e e e e e e ettt b e e e e e e hmt b e e e e e o4 oA oAbt e e e e e oo oAt b e e s e e e oo Anb b et e e e e e e oA Rnb b b e e e e e Abnn b e e et eeeeatnnbbreeeeetannrrenes 7
CREATING MORE APPS — IMORE E XA M P LS ittt ittt i sttt e st esesst e essesseseste s eesetssessesesssses s e s e sehstsssesanesessissessassersasanens 7
N A RN N G it itttttit i et sttt et e et e ettt ittt et e e e teetst b e e e e e eetes tant b e e e e e e e ettt e e e e e e e e taab e bt b e s e e oo e e nnb b e e e e e o4 nb bt e b e e e e oo A Rb b e e e e s e e At b e e et e e eeeeaennbbereeeesatnrrreeis 7
CREATING MORE APPS — MAKING Y OUR OV VN L L ittt ittiii ittt ittt s s sttt sssttssssissessstessssssasssssstsssssssssesessttssatbsessssisseseiaseesasnens 8
IIN T RODUGCTION L tuttttttttetsttstettsaeseesiasseseesseessssseee s e s e e ea e estbe e e s e e ettt e e s e e et ettt e e e oottt e e 2o ettt e s e 4 e 2ottt e s e oo ettt et s e e e e e eabnbebnasasssnse 8
METHOD 1 — IMPROVE AN EXISTING APP: MOLEMASH EXTREME VERSIONutttuiiiteiiiistteetiaesiesieisssessssssisssssssssssssiossssssesssesssmissseeisesss 8
IMETHOD 2 — CREATE YOUR OWVN A PP S L utttiiiiiiiitttttisiessietitttesseessessssteessasstassse e beeeesseeeas bt et eeee e abt b e e e s e e s e oAt bttt e s s e e et bebssaseeessebsbbesseasss 8
APP INVENTOR MAIN IDEAS — REV IE Y .. oottt iit s s sttt et et ess ettt ssiesesssssessssessessesssssesesssesaassesssstbseesssssersaassessssrenes 9
APP INVENTOR MAIN IDEAS — REV IE WV 2. . oottt iiit s s sttt s s it e ssitesssssssssssastssssasssessassessstssesssssssssseassssssssesssssbeessinses 10
APP INVENTOR MAIN IDEAS — REV I Y 3. it itiiiiitiiiiitiietet ettt s tetttes it tessstesssssssesesassesssessesesassesestesesessssssssessesessosseesassseeesaees 11
USING THE “FOLLOW-THE-MOLE MASH” GAME TO APPRECIATE THE POWER OF VARIABLES............ccoooouvvnn. 13
INTRODUCTION TO LOOPS: LINE DRAWING PROBLEIMS .. ittt e s sesistettiessssisetessssstessieseerresessiasreereseeaas 14
INTRODUGCTION ittt ttttttetteetietsssesetesesssissssseesssatsssesseesssastasssssesssessantssseessesassanssesesesssnnsssssssestannnssssssssssssansssssessesssnnssssseeseessinnnsssesseeass 14

P RO B LEIM 11tttti ittt ittttteee e et i ettt ettt e e e s ettt et eeeeeetaat b e e e e e e e e e e tntb e e e e e e e oo Abn e b e e e e oo e AN E b e e e e e e e AAb b e e e e e e e e AN Annebeeeeeeeennneeeeseestannrebneeeeeeetianbbrreeeesaiante 14

H N T S sttt ittt ettt bttt e et ettt ettt e et ettt bttt e e e e e tatb e bt e e e e s eatme et e e e e e et et e e e e e e e e e mb b b e e e e oo e nne b e e e e e oo oAb b e e e e e oo AAbbeeeeeeee ARt nbbnbeeeseetanbrbereseesianrrnebes 14
X P AN AT ION . ttttttti ettt et ee e s s tast et e e e e ettt bttt e e e e ittt e e ettt e e e ettt e ettt e £ 44 et s e 4 £ 2ottt s s s e ettt e s s e e e e e tanbbebeaeasssanses 14
VIO RE P ROBLEMS ...ttt ttttttttiee sttt tessessss sttt e e e s e ease bt ee e e e e e e ettt e e e s e et e et e e £ oo e ettt e e 2o ettt s e 4o e ettt e e ettt e s s e e et et e s eaeaeaseanbbeeis 15
GENERATING THE PICTURES IN APP INVENTOR .11t tttiitiiiiuutttttiessiesusessesssassssissssssssssssiasssssssssssssiessssssssssstossssssssssssstessssssstesstomisssesssessinsins 16
EXPLANATION OF THE MORE EFFICIENT IMIETHOD . ..t itttttitieiiiittttetsessssssisstsesssessstasssessssssestssbetesseeeseasbebeesseestesssbbebssaesstsnsbenssasasasasses 16
Y PES OF LS ... iiuttttieiitsisttetteeesesstesseeteeee e e s sttt e e s e e oA hbt ittt e e oottt e e e oottt e e 4ottt 4 e 4o 4o bttt e s 4 £ 2ottt e 4 e e ettt e e e e eaeasasnbbbeaaaeans 16
COUNTEA LOOPS (““FOr LOOPS) .ttt ittiiiuttsietsastssstessstsssssssessssshessassssseesehtessseesestesebeseabe s e bt ssae e s e b e e eh e e b e s be s st eesbbeessbbeeabbsssbessnesans 16
CoNditioNA] LOOPS (U NI LOODS™) .t iutiiiuttiittisitissestssestesisttessessastssssessessssseessstesssessehessehesssessbeseas e s sbeesehtssebeesbesabessnbessabessinesans 16
CIRCLE DRAWVING PROBILIEIMS ..t itiiiiiitiiii ittt s ettt et ettt s setettestetetesassetesssasesesseseessassesestasessssa s tesseassesesasseesestesesasssesessssssesasseeesns 17
PROBLEM WITH CURRENT VERSION OF APP INVENTOR L.uttiiiiuutiiiittteeiettsseiesssssssissssessssssssasssssinssssssossssssassssssonssssssssssessassessssssssssssersss 17
THE DEFINITION OF THE “DRAWCIRCLEPOINTBYPOINT” PROCEDURE ... uuuiiiittiiiiitisiiiisetssssissssssasssssonsssssissesssasssssssinsessssnsessssssessssnsens 17
AN EXAMPLE OF A CALL TO THE “DRAWCIRCLEPOINTBYPOINT” PROCEDUREeiiitiiiiiiisiiiteiesiissieseieissssiosessssossessiasssssssnseesassseesans 17
CIRCLE DRAWINGS ..tttttiteitiiutttttteessstastteeteessesssasteete s s e e sttt e e e s e e e s ettt e e e e ettt et e e e e e ettt e e 4ottt e s e o4ttt s s 4 e ettt e e e e e babbebbesaeeasasns 18
MORE LINE/CIRCLE DRAWVING PRA C T ICE .. ittt ittt ittt ittt s ittt s it tbssttests b e sss s sttt es st esstsss st ee st teeshessthtessbssebbssbesiabesaseeeisteas 19
ANALYZING THE MAKEQUIZ APP FROM CHA P TER L0 1 it iutiii ittt ittt is ittt isssistesssistssssitssssssssssssseestsseieserssiissessiistersiaesersssnes 20
K AIMIPLE .ttt ittt ittt e e e e ettt e e e e ettt e e e e oottt e e oottt e e e oo oAt b et e e oo AAe bt s e e oo A b bt b e e e e e eAthb et e e e e e e Anbe e betteeeeettabbbeteasesaiante 22
PROGRAMMING PROBLEMS WHOSE SOLUTIONS REQUIRE THE USE OF COUNTED (“FOR™) OR CONDITIONAL
(“WHILE”) LOOPS....... 23
AL O NNttt ettt ettt e et e bt e e st eht e e bt bt e et b et e bt eht e bt et e e E 4 e oAbt e e oAbt oAt e bt e e bt e eh e et e e besehbesabbesanreeires 23
EUCLID AND THE G ..iiiiiiitiiiiitiiis ittt ts ettt e e s st eesasttsssesetesesesteessssteessseeeses e e s s s st e e s eas e e e e ee st e e et st e ees e s e s eet bt e s aanttessaseeesssssesassses 25
DEFINITION OF Gl DD 1t iiiiiiiutttitiieiiiitttitt e e st e st iet bttt e e e s s tet ittt eeeeeeseseseb e e e e e e e e e tse b e e e e e oo 8 e bb st e e s e o4 bt et s e e s oot et b s s s e e 44 ne b b e s e e eeaa bbb bebsbeaeesssnsns 25

XIS ..ttt ittt sttt et ettt e et et eht e s e bttt e et eeeht e e bt e e bt e e bt e tbe s oAb e s eht e e Rt e eh b e e ehe e e b eeehbe s b b e s ehe s e bt s s ebe e s besanresanresaneeesnes 25

BRUTE FORCE (EXHAUSTIVE SEARCH) ALGORITHM FOR COMPUTING THE GCD OF TWO INTEGERSiiiiutiieiiiiiiesieiiieiaseeiisioseeesiiseeess 25

APP INVENTOR CODE FOR SLOW G CD A LGORITHM &1ttttttiiiitiittttttiessiesssssesssassssisssssssssssisssessssssssssessssssssssssosssssssssesssssiosssesssssssiisreeies 26
QU ST DM .ttt ettt ettt et e ettt e e ettt ettt e et £t £ £t e £ h et e £ At £ 4o At e e oAt e At e e At e e oAbttt e e inbeeeenersesanens 27
DESCRIPTION OF EUCLID’S (FAST) METHOD FOR COMPUTING THE GCD OF TWO INTEGERS......uuuieiitiieiisiiisiisesesssisisisiissiesisssssiseeass 27
K AIMIPLE .ttt ittt e e e ettt e e e ettt e e s oottt e e oottt e e oo oAb b et e e oo oAb bt s e e e Ah b bt b e e e e e Abhe et e e e e e e Abbe e beteeeeeetiabbbeteesasaiabtt 27

Y OUR T ASK utttttttttiiiiuttttteeessaiassteeteeeeeeseateee e e s e e e sast et e e e e e e e o4 bbbt et e e o4 bbbt e e oo oo 8t e e e e oo oAbt e e e e e o444 bbbt e e s e o4t s e e s e e At bbbt e eeeaesebnbbbeasaeinn 27
SOLUTIONS TO SELECTED PROBLEMS REQUIRING LOOPS ... ittt ittt te s et eiitieersasseeisesseeeresssiiesseerrasessiasees 28
U E ST IONS L 1tttttit it iuttttteeeeteittteee e et e e et ettt e e e e ettt e e e e e e e oottt e e e e e ettt e e e oo e At e e e oo 44t b s s oo 484t e e 4444ttt e e e e e bbb et e s e e ee et nbbnbeseeeasnte 31
APP INVENTOR REVIEVY PROBILEIM S L o iuiiiiiitiiii ittt ittt st setetssisssesissssssssstssssas s esssos e s s st teeesessesssthtessesehstsseassessssbbeesaisbesassases 33
APP INVENTOR REVIEVY P RO B LM S 2 . uiiiiiiiiii ittt sttt st sst et ss ittt es it eesss s sseas s e ee st s e s s st te e et easessseh st s sesehsbsssassessstabbeesaisbeeassases 34
APP INVENTOR REV IEVY P RO B LM S 3 i tiiiiiititiiiittiii it ttiessattsssistsestssetsssstssssas s essses s e s s st teesseas et s s ehtessesehstsseessessstbbeesaisbesassases 35

LEARNING THE ESSENTIAL FEATURES OF APP INVENTOR

Brief Description and History of App Inventor for Android
o Allows anyone to create software applications (“apps”) for the Android Operating System

e The Android Operating System is used on several different mobile devices including models made by Samsung,
HTC, LG, Motorola, Sony, Alcatel, Archos, Kyocera, Dell, Xperia, Excite, Asus, Sanyo, Acer and others

e Originally provided by Google and called “Google App Inventor”
e Google terminated support for App Inventor on December 31, 2011 but donated the project to MIT
e Since then, the application has been maintained by MIT (Massachusetts Institute of Technology)

e Now called “MIT App Inventor”

Overview of App Inventor

How to Access App Inventor
e Requires a Google account
e If you already have a Google account, simply use it to log on to App Inventor
e |f you do not have a Google account, create one at https://accounts.google.com/NewAccount
e Once you have a Google account, log on to App Inventor at http://appinventor.mit.edu/
e In addition to having a Google account, the following must also be installed on your computer:

= Java 6 or higher (see http://www.java.com)
= The App Inventor Setup Package (see http://beta.appinventor.mit.edu/learn/setup/)

How to Work with App Inventor

App
Inventor

My Projects
Web Page

e My Projects Web Page
What you usually see when you first log on
Create New Project, Open Existing Project, Delete Projects, Download Project to Local Computer, etc

e Design Web Page
Tools for Designing the User Interface
Palette, Viewer, Components List, Properties List

e Blocks Editor
Java Program that runs in its own Window (i.e. does not run in a Web browser)
Tools for Specifying the Logic (i.e. Behaviour) of the App
In other words, the blocks editor allows the programmer to specify instructions for the app

https://accounts.google.com/NewAccount�
http://appinventor.mit.edu/�
http://www.java.com/�
http://beta.appinventor.mit.edu/learn/setup/�

The MyProjects Page
A,

My

Projects Design Leamn

BETA

Welcome to the App Inventor beta preview release. Be sure to check the list of known

(Debugging) Issues and release notes.

StopFlingingTheBull@gmail.com | Sign out

Projects

MName & Date Created
PaintPot 2012 Sep 2 15:07:32
SoundDroid 2012 Aug 29 15:43:52

The Design Page

g_l‘ l.m My Projects Design Learn (Debugging) Welcome tothe App Inventor beta preview release. Be sure to check the list of known issues and release notes.

PaintPot

(Components)

StopFlingingTheBull@gmail.com | Sign out

e e T I]

(Properties)

Basic & T saeent
2 P orizontalinangementt e
) Butte: Dlsp\ay Invisible Components in Viewer a8 [0 white
RedButtor

B Carm Bl @ 5:00pPm im"uau;nn Badgroundimege
¥ ChecBox Components MNone:
o B siuepution
B LT 7 aon
Image: None.
(&) Label SareenCrientation
5| ListPicker Unspeciied »
P the User —
) Texsox Interface
& TinyDB Title

4 PaintPot
Media

VersionCode
Animation]
Sodial VersionName
Sensors 10
R the User
rf Take | Wipe | BigDots | Small 0

LEGO® MINDSTORMSE I nterface
Other stuff
Not ready for prime time Nen-visible components

Old stuff

The Blocks Editor

Paimtot - Screeni

Tuat

Camesa

Fi§5¢

PAINTPOT: CREATING YOUR FIRST APpP

Step 1: Creating the PaintPot App
This part is easy! All you need to do is follow the instructions in the following document:

I\Out\Nolfi\lcs3uO\ch2PaintPot.pdf

If you follow the instructions very carefully, the app should function correctly. In the event that it does not work as
expected, check your blocks carefully to ensure that they are exactly as shown in the above document.

Step 2: Using the Cook/Chef Analogy to Understand the Logic of the PaintPot App

Cook

Follows
Existing
Recipes

Understands
how to Create
New Recipes

An Experienced

You in Step 1

Programmer

Followed Understands
Existing how to Create
Program New Programs

As can easily be appreciated from the above analogy, it is not enough merely to follow existing programs. All
programmers must also be able to develop new software from scratch. To accomplish this, it is obviously very important
to understand programming concepts. A detailed description of the programming concepts used in PaintPot is given

below.

Picture

Programming Concepts

Name of
Variable

Value of
Variable

ke : =)

a small

as number

2

f
2 large

as C number
|

Variable

A variable is a name that is used to represent a value that
is stored in a computer’s main memory (i.e. in the RAM).

Variables are used whenever information needs to be
“remembered” (i.e. “memorized”) for later use.

The concept of variable in computer science is similar but
not identical to the concept of variable in mathematics.

One key difference is that in mathematics, variable names
must have a length of exactly one character. For example,
the variable name “x” is allowed but the variable name
“xavier” is not allowed because it would be interpreted as
“x times a times v times i times e times r.”

In computer science, variable names can contain more
than one character because the multiplication operator (*)
cannot be omitted. Thus, the name “xavier” would be seen
as a single entity and not a series of multiplications.

In most cases, variable names in programming should
contain more than one character because descriptive
names make programs far easier to understand. Notice the
names “dotSize,” “small” and “large.” These names are
far more meaningful than “d,” “s” and “l.”

Picture Programming Concepts
Name of Name of the Event Name of a EhocCOlie)
Component that causes execution || Propertyofa || ® InApp Inventor, a procedure is used to group
(aka Object) of procedure block Component together one or more instructions.
e Each procedure has a unique name.
e Some procedures are executed automatically when a
e _ specific event occurs. These are called event
A" RedSutton.Click handling procedures or just event handlers.
9| set \c : e Other procedures are executed in response to a
DrawingCanvas.Pai specific instruction called a “call” of the procedure.
Mt .
\ Event
e Aneventis an occurrence that takes place while a
Procedure. The instructions within Value of the program is running. Events are used to trigger the
the block are executed when the “PaintColor” execution of specific instructions.
“Click” event occurs on “RedButton.” Property e Examples of events include “Click,” “LongClick,”
“GotFocus,” “LostFocus,” “Dragged” and
“Touched.”
Property
Name of Name of the Event Name of a The Parameters of the
Component || that causes execution Method “DrawingCanvas. Touched” * Every component
(aka Object) of procedure block procedure block. These are hahs. Phropertles,
which store

special variables that are used
to pass information to the e
procedure block. In this characteristics of
example, the parameters x and the component.
y store the co-ordinates of the e Examples of
point that is touched on properties include

information on

when prawingKanvas.Touched

[oEneeRRE /"™ touchedsprite | “DrawingCanvas.” The “Enabled,”
% ean B vaiue I parameter “touchedSprite” is “Height,” “Text”
> used for animations. and “Width.”
DrawingCahvas.DraWCircle i,
Method

e Every component
has Methods, which
are actions that are

. “DrawCircle” method. The

rlolebal yotsize
X The Arguments passed to the
\ values of x and y come from

Procedure Block with Parameters (aka Arguments).
The instructions within the block are executed when the
“Touched” event occurs on “DrawingCanvas.” The
arguments of this procedure block are the variables x, y
and touchedSprite.

the parameters x and y of the
procedure block
“DrawingCanvas.Touched.”
The radius of the circle comes
from the value of “dotSize.”

associated with the
component.

e Examples of
methods include
“Clear,”
“DrawCircle,”
“DrawPoint” and
“DrawLine.”

Exercise
Study the following diagram. Then answer the questions found below the diagram.

when prawingCanvas.Dragged start¥ {'f name 4o iw

starty’ . name

i startY
prew i {f name prevX

prevy {_ name

prevy’
currert name
1 currentX |
currert’y name
r‘:l currenty
d d Sprit .
ragge |:ur|e{':l name draggedSprite |
da call 1{4 |
x1 |, wvalue prevX |

|

1 value

! r': previy

DrawingCanvas.DrawlLine . r: valus
|

currentx
= {',: YANE yrrenty
— J

1. “DrawingCanvas” is the name of a
2. *“Dragged” is the name of a
3. “DrawingCanvas.Dragged” is the name of a
4. “DrawLine” is the name of a
5. “startX” is the name of a . Its purpose is

CREATING MORE APPS — MORE EXAMPLES

For step-by-step instructions on how to create more apps, navigate to the following folder:
I:\4Students\OUT\Nolfi\lCS3UO0\00-Applnventor
You will also find all the resources (e.g. pictures, sounds, etc) that you need in the following folder:

1\4Students\OUT\Nolfi\ICS3UO\00-Applinventor\App Inventor Example Files

Warning!

By following the instructions in the resources listed above, you will be able to create
many impressive and interesting apps. However, you must always keep in mind that the
ultimate objective is to UNDERSTAND PROGRAMMING CONCEPTS. This means
that you must THINK CRITICALLY AS YOU WORK. Once you develop a sufficient

DANGER understanding of the concepts, you will be well on your way to developing your own
apps and more importantly, you will be well on your way to being able to
THINK FOR YOURSELF!

DANGER

CREATING MORE APPS — MAKING YOUR OWNI

Introduction

Now that you have gained experience creating apps by following detailed instructions, it’s time to “cut the umbilical
cord.” It should be obvious to you that to be a genuine software developer, you should be able to create apps without
following detailed instructions. If this seems difficult at first, don’t despair! Just keep the following simple equation in
mind and eventually you’ll develop the instincts that will allow you to create software at will.

Understanding Discipline and
of Concepts Perseverance

Problem

Solving Skills = Great Apps!

+ Creativity + Logic +

Method 1 — Improve an Existing App: MoleMash Extreme Version

By now you should have completed the “MoleMash” app.
(See 1:\4Students\OUT\Nolfi\ICS3U0\00-AppInventor\ch3MoleMash.pdf or
http://www.cs.usfca.edu/~wolber/appinventor/bookSplits/ch3MoleMash.pdf).

Add the following features to the MoleMash app:

1. Levels of Difficulty: “Easy,” “Medium,” “Difficult”
(e.g. the game can be made more challenging by increasing mole speed, decreasing size of the mole picture, etc)

2. A Pleasant Sound is Played when the Mole is Hit

3. The Mole Picture Changes Briefly when the Mole is Hit

4. A Rude Sound is Played when the Mole is Missed

5. The game ends after a certain number of hits and misses, after which the player is either declared a winner or a loser.
6. To begin the game, the player enters his/her name.

7. A *“bonus image” is occasionally displayed for a brief time. Bonus points are awarded for tapping the bonus image.

8. A “penalty image” moves about the canvas in proximity to the mole image. If the player taps the penalty image
instead of the mole, the player loses points.

9. List any other improvements you can think of in the space provided below:

Method 2 — Create your own Apps!

There is no better way to learn about programming than to create your own apps! You are strongly encouraged to unleash
your imagination and explore whatever ideas come to mind!

http://www.cs.usfca.edu/~wolber/appinventor/bookSplits/ch3MoleMash.pdf�

APP INVENTOR MAIN IDEAS — REVIEW #1

Identify and Explain Purpose

. (a) Listall the procedure names in the blocks shown at the left.
when Il Screent.Initialize |

do I (b) List all the component names in the blocks shown at the left.
“*" MoveMole |
—
4 (c) Listall the event names in the blocks shown at the left.
"‘1"”3"' Clock1.Timer | (d) List all the property names in the blocks shown at the left.
do "
“2 MoveMole (e) Explain the purpose of “Screenl.Initialize.”
—_—

when ResetButton.Click | (f) Explain the purpose of “Clock1.Timer.”
3 :

da
set to C' number
HitCountsLabel. Text | 0

set - C_' —— (9) Explain the purpose of “call MoveMole.”
MissesCountlabel. Text 0
L

(h) Explain the purpose of “ResetButton.Click.”

(i) Explain the purpose of “set HitCountsLabel. Text to 0.”

Explain Purpose

(a) What are “x,” “y” and “touchedSprite?” What is
their purpose?

when Canvas1.Touched * C name
m

-
y ('l name
touched Sprite {I name (o ichedSprite ‘

ifelse test ff value

touchedSprite
then-do

t
i = Cl[f § . [': number
HitCountsLabel.Text |_HitCountsLabel.Text) 1

(b) Explain the purpose of the “if else” block.

Ise-do
. e C[‘:) . [",J number
MissesCountLabel. Text |_MissesCountLabel.Text) 1
|-

e —i.

(c) What is the purpose of “set HitCountsLabel. Text to
HitCountsLabel. Text +1?”

Explain Concept

In the MoleMash game, the mole picture moves about the canvas in a random fashion. Explain how this is
accomplished.

APP INVENTOR MAIN [IDEAS — REVIEW #2

Explain each of the following:

1. Component

2. Property

3. Method

4. Event

5. Procedure

6. Event Handler
(This is a type of procedure)

7. Click Event

8. Initialize Event

9. Timer Event

10. Text Property

11. Variable

12. Call

13. Parameter/Argument

14. ifelse block

15. Image

16. Sprite

17. random integer

18. Canvas

19. Width Property

20. Height Property

21. Co-ordinate System

APP INVENTOR MAIN IDEAS — REVIEW #3

1. The purpose of the Design Page shown below is

TheBull@gmail.com | Sign gut

MyProjects Design Leam (Debugging) Welcome to the App Inventor beta preview release. Be sure to check the list of known |ssues and release noles.

e I
Viewer

G G

s D= A
) BadkgroundCalor
Eloisptey Invisible In Viewer © E:x;?w" O whise

islmﬂuﬂﬂﬂ
LN B =
La DrawingTanvas, f
BEWH £
SoeenCrientation
B raier ftuton Unspectied +
Bw, Saollable
o @
SmallButton Tiie
I Camens PaintPot
VensionCode
1
VersionName
10

HNon-visible components

Oid stuff Camara

Use the provided text boxes to state the purpose of each of the four main parts of the Design Page.

2. The purpose of the Blocks Editor Java program shown below is

- g e

(PRI . | v | e
:

3. The purpose of the emulator window shown at the right is (479 5554:<build> =

4. Give a step-by-step explanation of how each of the following could be accomplished:

(a) Inthe MoleMash app, the mole picture changes briefly when the mole is hit.

(b) In the PaintPot app, straight lines can be drawn as well as curves.

(c) Inthe MoleMash app, a “bonus image” is occasionally displayed for a brief time. The player receives bonus
points for tapping the bonus image.

(d) In the MoleMash app, a “penalty image” moves about the canvas in proximity to the mole image. If the player
taps the penalty image instead of the mole, the player loses points.

USING THE “FOLLOW-THE-MOLE MASH” GAME TO APPRECIATE THE POWER OF V ARIABLES

“Follow-the-Mole Mash” is a simple variation of the MoleMash game. As in the original game, the mole’s position
changes randomly at regular intervals. Unlike the original, a second “penalty” sprite follows the mole closely, sometimes
leaving very little of the mole exposed. If the penalty sprite is touched instead of the mole, the “misses” count increases

by two to penalize the player.

These are called comments. Their purpose is to help people
understand the program. Comments are ignored by the computer.

The variable 'moleX’ stores the
x-co-ordinate of the top-left corner
of the mole sprite.

def

The variable ‘moley” stores the [|
v-co-ordinate of the top-left ‘ ‘
corner of the mole sprite.

as C numhber | def ﬂ as C numhber ‘
moleX i 0 A moleY i 0

—

The touchedSprite’ argument of the 'Canvas{.Touched' event handler has a value of "true” if
ANY =prite on the canvas is touched. Unfortunately, this does not allow us to determine
WHICH =prite was touched. Thus, the canvas, the mole and the penalty sprite must each haw
itz own event handler for the Touched' event. U

= Bl mole.Touched x C name o

¥ name
i

v1|

1l illi
c Sound1.\Vibrate mllllsecsc rurmber 100

—
set
" iz c ~ " ﬁ number
HitCountsLabel. Text 1_1 HitCountsLabel.Text i 1
—
i
If the penalty sprite is touched, the misses count increases by 2. |:‘|

gren Bl David.Touched — x [name

¥ 1 name ﬁ
do
set to r: c =
MissesCountLabel. Text |“,_MissesCountLabel.Text | ik 7 T 2 |
g
—

The MoveSprites procedure is MOT an event handler procedure because its execution is not directly triggered by an event. M
This kind of procedure is executed only if it is CALLED. We shall refer to such procedures as "general procedures.” | ‘

to Ed MoveSprites 3@ f"

d
“ | set glabal ta c call fram f‘: number 0
moleX random integer to ,c c
|'7_Canvas 1.Witdth | - 1 Mole.Witdth |
R ———
set global to C' call from f‘: number 0
moleY random integer ta ’ﬁ ff
|'1_Canvas 1.Height | - " Mole.Height |

e ——eee]
call c labal

* T2 moleX

Mole.MoveTo

call ® C_J

lobal
g moleY

c call from r: number 30
random integer to o number 10 |

c call from r: number 30
random integer " number oo |

+
lobal
q“a moleX
+
7 giobal
,903 moleY

David.MoveTo C

e To make it possible for the penalty image to
“follow” the mole, the mole’s co-ordinates must be
known.

e To accomplish this, variables are used to store
(i.e. “remember”) the mole’s co-ordinates.

e In general, variables are used whenever data need
to be saved for later use.

Mowe the sprites every time the

component ‘Clock1” fires the Timer' event.
The Timer' event is fired at regular

intervals according to the value of the
clock’s Timerinterval property. .

when [Clock1.Timer |

=]
|°a” MoveSprites |

op-Lay}
! o
[
PaIjaNo] "} SEALIEY A uzg

"} A 59583121 [UN3 59551, 3u) ‘payano)

ajdspayanog

o] e TIun0)sassiy
= o JI

51305 0U I paYIN0] 5l SEAUED 3U) J),’| SEAUED, JUSUOCINOD SU) U0 JUaAS P3N0, 3U) SiapUEY JBU} 3npadnid Jajpuey JusA3

apdspayano) e J jou ;] -

=
=
3
=
—
=
= =
: =
iy . =
Wy W
= =
=
o (-
o Sy
w
]
=
=
=
=
[
=
(R
—
@
=
+
oy B
=
]
3
=
=
—_

INTRODUCTION TO LOOPS: LINE DRAWING PROBLEMS

Introduction

Although we most definitely perceive a curve in the picture
at the right, the picture itself was created by drawing a series
of straight lines. No curves were actually drawn! Why then l
do we seem to see a curve? The answer to this question has
everything to do with how our brains construct the “reality”
that we “see.” Since every straight line in this diagram is
tangent to the curve that we “see,” our brains take all the
points of tangency and “connect” them, in a sense, to create
the perception of a curve.

Problem

Use App Inventor to create an app that can generate the
diagram at the right.

Hints

1. Use a “Canvas” component.

2. Inaddition, your app will need to use the “DrawLine”
method of a “Canvas” component.

3. You need to understand the co-ordinate system that is
used for “Canvas” components.

4. There is a definite pattern that governs how the lines are

drawn. Before attempting to create blocks for your app, you must figure out the pattern!

Explanation

The main idea behind reproducing pictures like the one given above is to use the idea of “reverse engineering.” That is,

we try to “take apart” the picture to understand how it was created in the first place.

For convenience, the canvas size is set to 300 pixels by 300 pixels. This not only fits nicely on most cell phone screens
but it also takes advantage of the fact that the number 300 has many divisors (i.e. 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50,

60, 75, 100, 150, 300).

0_ 30 60 90 120130 180 210 240 270 300 Start End X
—t—
(0,0) | (0,300) 1 7
P «(015) | (15,300)
60
g0 = (0,30) | (30,300)
h.
120 (0,45) | (45,300) té"
«(0,60) | (60,300) [hi%
150 A A {%@
sos M
S
210 (0.1) | (I1.300) ‘i‘hﬁ*‘x
o | FERRN
240 . " .‘.‘\“‘.__.
5 y .““*\%ﬁ-
270 = (0,285) | (285,300) ====%\
300 ot b Iy (0,300) | (300,300) A& DN

\l/ Bv completing a table of values and using a grid to sketch a few of the lines in

¥ the diagram, we are able to determine a pattern. For each line in the diagram,
the yv-co-ordinate of the "start" point is equal to the x-co-ordinate of the "end"
point. In addition, we observe that the x-co-ordinate of the "start” point is
always equal to (0 and the y-co-ordinate of the "end" point is always equal to300 .

More Problems

Use graph paper and a table of values to determine the pattern that is used to create each picture. Then create an App
Inventor app that displays each picture successively at regular intervals. For an extra challenge, create the app in such a
way that the picture that is displayed at any given time is selected randomly.

1. 2. 3.
4, 5 6.
7 8. 9
10. 11.
O
13. 14.
[
]

Generating the Pictures in App Inventor

yi = value

Method 1- Easy to Understand but Tedious Method 2 — Harder to Understand but much more Efficient
‘I"e" DrawButton.Click | when DrawButton.Click |
— A -
0 call %1 r: number da e
r}—n forrange wariable rj name
vl o~ numhber 0 v
DrawingCanvas.DrawlLine . rJ number 0 start |, number '\
¥2 . number 300 J end L number 300V
p— C
call %1 r: number 0V S .fl number 15
p—
y1 [number 15 do call » r: — _|
DrawingCanvas.DrawLine - rJ number 157] 0

y2 [, number

3

i
|

DrawingCanvas.DrawlLine -

" value

DrawingCanvas.DrawLine -

call el rf number 0 y
y2 number
\al e number 30V o~ 3["]

~ number

<]

0 e

y2 [, number

30

I

Explanation of the more Efficient Method

0 The “for range” block is an example of what computer scientists

¥1 . number , call counted loops. Counted loops are used to repeat one or more
DrawingCanvas.DrawlLine o instructions a set number of times. The following explains the
details of the “for range” loop shown above:

g A

call %1 number

i

nurmber

1 5

¥2 |, number

30
— e The call to the “DrawLine” method is shown only once

BUT it is repeated exactly twenty-one times by the “for” loop.
e The variable “y” is called a loop counter variable. Its value is
changed automatically after every repetition.
e The amount by which the loop counter’s value changes is
specified by the “step.” In the above example, the value of “y”
increases by 15 after each repetition because the value of “step”

is 15.
The remaining seventeen blocks have been omitted | o The value of “y” ranges from 0 to 300 because the “start” and
to save space. “end” values are set respectively to 0 and 300. This explains

the name of the block in App Inventor (i.e. “for range”™).

e Thus *“y” takes on the values 0, 15, 30, 45, ..., 270, 285, 300,
after which the loop terminates (i.e. stops repeating).

Types of Loops

Counted Loops (“For Loops™)

These are used when the number of repetitions is known at design-time (i.e. while the program is being designed) or can
be calculated at run-time (i.e. when the program is running). Whether looping continues or terminates is based on a
count. The number of repetitions of such loops is always predictable.

Analogy: Add three teaspoons of sugar to the coffee. Repeat the act of adding one teaspoon of sugar three times.

Conditional Loops (“While Loops™)

These are used when the number of repetitions is not known at design-time and cannot be calculated at run-time.
Whether looping continues or terminates is based on whether a certain condition is true or false. The number of
repetitions of such loops is generally not predictable.

Analogy: Keep stirring the coffee until the sugar dissolves. Repeat the act of stirring once until the sugar dissolves.

CIRCLE DRAWING PROBLEMS

Problem with Current Version of App Inventor

The current version of App Inventor only provides a procedure for drawing filled circles. To draw only the outline of a
circle without filling its interior, we are forced to create our own procedure. The procedure described below can draw
unfilled circles but it does so at an excruciatingly slow speed. Nonetheless, it is better than nothing!

The Definition of the “drawCirclePointByPoint” Procedure

t2 drawCirclePointByPoint 39

Cl "AME yCentre
arg | name chmrE

¢ Although this procedure works, it
T84 MM radius executes very, very slowly! When
arg t!l name o areeStep ‘ we use Visual Bas_ic_later in the
- course we’ll create similar programs
w0 [~ e that execute much faster.
for range wariable [, name degrees

start | number 0

end [number 3607

=P 1 value degreeStep |

call o Cﬁ

call degrees fu value ‘
N radius | ff1 cos 1 degrees

+
E: U yCentre J

+
f1 value yCentre ‘

DrawingCanvas.DrawPoint o

i

call degrees fu value ‘
U radius | f‘,; sin 1 degrees

[

— —————————

An Example of a Call to the “drawCirclePointByPoint” Procedure

call wCertre c nurmber
100

|

yCentre number

, 100
drawCirclePointByPoint T C i1

50

degree Step number

i

e

The following is the circle produced by this call. Reduce the value of “degreeStep” to decrease the “gaps” in the circle.

Screen

Circle Drawings
Use App Inventor to create each of the pictures shown below. Keep in mind the following important points:

e Use a table of values to determine the pattern(s) in each picture.
e Distinguish between the information that remains constant and the variable information.

o If two or more values are variable, determine how the variable values are related to each other. Then express
each variable value in terms of a single variable name. There is no need to use more than one variable name.

1. 2. 3.

Q0800 0000)

13.

MORE LINE/CIRCLE DRAWING PRACTICE

Use App Inventor to create apps that draw the following pictures.

e
P F

N A AL AN AL AL AL AL AL A

AN

ANALYZING THE MAKEQUIZ APP FROM CHAPTER 10
1. Study the App Inventor blocks on the next page. Then complete the following table.

A. Variable B. Component C. Property D. Method E. Event F. General Procedure (Built-in)
G. Argument H. Event Handler Procedure I. General Procedure (Defined by Programmer)

Name What is it?

answer A. I

answerlndex

displayQAs

Click

QuestionText

AnswerText

Text

Initialize

GotValue

TinyWebDB1

StoreValue

GetValue

QuestionsAnswersLabel

SubmitButton

Click

SubmitButton.Click

tagFromWebDB

valueFromWebDB

Screenl

Initialize

Screenl.Initialize

make a list

add items to list

TinyWebDB1.GotValue

guestion

length of list

QuestionList

e e I e e I I e I e e A e e I e e e R B o R o e
v/ I0I0 00
m mimmimjmmm;m)m;m/m.@m;m/m\m;mjmj§m;mjm;:.m,m;mj3m,jm,j§.m;j:m,]m
nmmmmm MMM mmmymmy my mym m T T
e e o e e e e e S B i e o e e o L e e e e ISR I = =y = iy e o e o R e e

AP AP AP AP AP APAP AP AP AP APAPAPAPARPIPAPAPAP AR ARE P AP AP PP
OO0 IO0I0I0I0 0000000000000 0I0I00I00]0]0

AnswerList

Take uger input fram 172 text
boxes and appenc into the lists,

foreacn can only walk 'thrcugf'l one |st (QuastionList) 50 we
‘use an Indax (answerindex) o 2imultaneously walk through
AnswerlLisi

. Gat ﬂ'l ANSWET COT """-":Iaiila_
A" loeach queston.

._

on l
8n |ncrament answerhidex sa
we'll get the correct one on
nand iteration.

|Gall the procedure fo display the
updated lists.

lear the input form of the question
and answer Just procassad.

)

4

Copy the lIst varable
(data Inic the database.

5 Show question-answal pairs with
color in-batween and with ane

Check If the data returnad is a list.
The first time e app is run it wont
~ be as there Is not yet any questons
. and angwers In the database.

YOu Know both I'Sts Nave armives
11om the datadase when they are cf
‘equal lengths-- don't iry o display
them before that. Remamber,
‘Gotvalue wil be rriggered wice.

2. Most universities in North America use a grading system known as the GPA (grade point average) system. It is
summarized in the table given below.

Percentage Grade Grade Point Score Example

850 — 100% 4.0 Subject g Gr?fofeo'”t
80% — 84% 3.7 Math 690 3.0
7% — 79% 33 at 0 :

74% — 76% 3.0 Computer 0

70% — 73% 2.7 Science 84% 37
67% — 69% 2.3 Chemistry 63% 1.7
64% — 66% 2.0 - .

60% — 63% 1.7 PhyS|CS 45% 0.

57% — 59% 1.3 English 49% 0.0
54% — 56% 1.0

50% — 53% 0.7 3.0+3.7+1.7+0.0+0.0

0% — 49% 0.0 GPA= c =1.68 < 60%

76+84+63+45+4
Percent Average= 6+8 653 5+49 =63.4%

Create an App Inventor app that allows the user to enter up to five percentage grades. After the user clicks “Submit,”
the app displays the user’s G.P.A. as well as his/her percentage average.

Copyright ©, Nick E. Nolfi 1CS3U0 Introduction to Programming through App Inventor IPAI-22

PROGRAMMING PROBLEMS WHOSE SOLUTIONS REQUIRE THE USE OF
COUNTED ("FOR”) OR CONDITIONAL (“WHILE”) LOOPS

Algorithm

e An algorithm is a systematic procedure (finite series of steps) by which a problem is solved. Long division is an
example.

The steps of a particular algorithm remain the same whether you solve a problem by hand or by computer.

In cooking/baking/mixing drinks etc, algorithms are called recipes.

Algorithms have been worked out for a wide range of problems.

For many problems, there exist many different algorithms.

For some problems, there are no known efficient algorithms (i.e. too slow and/or require too much memory).
e.g. What are the prime factors of a given number?

e Some problems cannot be solved by a computer (i.e. no algorithm exists that can be implemented on a computer).

Complete the following table. Then write App Inventor programs to solve each problem.
e Please note that the “For” looping structure exists only as a convenience! For situations in which the number of

repetitions is known beforehand, “For” loops allow for easier coding. However, any loop logic, including situations

in which the number of repetitions is known beforehand, can be expressed using a conditional loop!

e Finally, you will solve many of the problems given below using what is known as an exhaustive search or a brute-
force search algorithm. An algorithm that employs an exhaustive search systematically checks all possible
candidates for the solution to see which of them, if any, satisfies the statement of the problem. Exhaustive search is
guaranteed to find a solution if one exists. However, when the number of possible candidates is very large, brute-
force methods are excruciatingly slow. Shortly, we’ll be investigating a better solution to (g) to help us understand
the limitations of brute-force algorithms.

PO PElE a counted loop? Explain.

Can you write a solution that only requires

(a) Write a program to calculate the sum of all positive even integers | Yes/ No (Circle One)
less than or equal to 1000. Why?

(b) Write a program to calculate the sum of all positive odd integers | Yes/ No (Circle One)
until the sum exceeds 1000. Why?

(c) Write a program to calculate the product of all positive integers Yes / No (Circle One)
divisible by 5 and less than or equal to 645. (What happens if Why?
you try a value greater than or equal to 6507?)

(d) Write a program to calculate the product of all positive integers Yes / No (Circle One)
divisible by 5 while the product is less than or equal to 1000000. | \why?

(e) An integer is called prime if it has exactly two divisors, one and Yes / No (Circle One)
itself. The following is a list of the first 10 prime numbers: Why?
2,3,5,7,11, 13,17, 19, 23, 29

Write a program that determines whether a given number is
prime. (Exhaustive Search)

Copyright ©, Nick E. Nolfi 1CS3U0 Introduction to Programming through App Inventor IPAI-23

Programming Problem

Can you write a solution that only requires
a counted loop? Explain.

(F) A proper divisor of an integer is any integer that divides evenly
into the integer, except for the number itself. For example, the
proper divisors of 12 are 1, 2, 3, 4 and 6. A number is called
perfect if the sum of its proper divisors is equal to the number
itself. Two examples of perfect numbers are 6 and 28 because 6
=1+2+3and28=1+2+4+7+14.

Write a program that determines whether a given number is
perfect. (Exhaustive Search)

Yes / No (Circle One)
Why?

(g) Write a program that finds the greatest common divisor of any
two integers. For example, the greatest common divisor (GCD)
of 24 and 40 is 8. (Exhaustive Search)

Yes / No (Circle One)
Why?

(h) Write a program that finds the least common multiple of any two
integers. For example, the least common multiple (LCM) of 24
and 40 is 120. (Exhaustive Search)

Yes / No (Circle One)
Why?

(i) The numbers 220 and 284 are called an amicable pair because
the sum of the proper divisors of 220 is 284 and the sum of the
proper divisors of 284 is 220. Write a program that finds all
amicable pairs within the range of an Integer variable.
(Exhaustive Search)

Yes / No (Circle One)
Why?

(J) Horses cost $10, pigs cost $3 and rabbits cost only $0.50. A
farmer buys 100 animals for $100. How many of each animal did
he buy? Write a program to search for the solution to this
problem. (Exhaustive Search)

Yes / No (Circle One)
Why?

Copyright ©, Nick E. Nolfi 1CS3U0 Introduction to Programming through App Inventor IPAI-24

Definition of GCD

EucLiD AND THE GCD

By definition, the Greatest Common Divisor (gcd) of two positive integers is the largest integer that divides both integers

exactly.

Examples

e gcd (8,12) =4 because 4 is the largest integer that divides into both 8 and 12
e gcd(14,42) =14 because 14 is the largest integer that divides into both 14 and 42
° gcd(9, 28) =1 because 1 is the largest integer that divides into both 9 and 28

Brute Force (Exhaustive Search) Algorithm for Computing the GCD of Two Integers

The most obvious method for computing the GCD of two integers is repeatedly and systematically to divide both integers
by possible divisors until the greatest common divisor is found. This is illustrated below.

e a, b: These variables store the two integers for which the GCD must be found. The values of these two

variables remain the same throughout the execution of the code.

o y: This variable stores the values of all the integers that we try to divide into both a and b. The value of this
variable is controlled by a “For” loop.

e gcd: This variable stores the greatest common divisor found so far. Before entering the loop, it is initialized to
1 because 1 divides into every number. If no other common divisor is found by the code in the “For” loop, the value
of ‘gcd’ remains at 1 (see the second table).

a
Values Before
Entering Loop ~ 8

Values After

8
8
8
8
8
8
8
Exiting Loop\‘ 8

o]

Values Before_,
Entering Loop

O 0Ol OVl ool v O v

Values After_-

Exiting Loop

Copyright ©, Nick E. Nolfi

b

12
12
12
12
12
12
12
12
12

28
28
28
28
28
28
28
28
28

<

Olo| N |~ WIN|

©C O N OO g b W|IN VvV

=
o

Remainder obtained when Remainder obtained when
“a’ is divided by “y’ “b” is divided by “y’
? ?

0 0
2 0
0 0
3 2
2 0
1 5
0 4
1 3
Remainder obtained when Remainder obtained when
“a’ is divided by “y’ “b” is divided by “y”’
? ?

1 0
0 1
1 0
4 3
3 4
2 0
1 4
0 1
1 3

1CS3U0 Introduction to Programming through App Inventor

gcd

Ol I NG I N N NG R N I ORI N

gcd

RPlRr RlRr R[RRIR PR

IPAI-25

App Inventor Code for Slow GCD Algorithm

The following is a Sub that calculates and displays the GCD of two integers entered by a user. Study the code and then
answer the questions on the next page.

Copyright ©, Nick E. Nolfi 1CS3U0 Introduction to Programming through App Inventor IPAI-26

Questions
1. Explain the purpose of the “If” statement that immediately precedes the “For” loop.

2. Why does the search for common divisors end at the smaller of “a” and “b?”

Description of Euclid’s (Fast) Method for Computing the GCD of Two Integers

Background
More than 2000 years ago, Euclid published an algorithm for finding the GCD of two numbers. His version was strictly
geometric since algebra had not been invented yet, but the algebraic version is described below.

Summary
The Euclid algorithm can be expressed concisely by the following recursive formula:

gcd(a, b) = gcd(b, a mod b)

Note: a mod b means the remainder obtained when a is divided by b.

Example
Here is an example of Euclid’s algorithm in action.
Find the GCD of 2322 and 654. Essentially, the Euclid algorithm
gcd(2322, 654) = ged(654, 2322 mod 654) = ged(654, 360) 2:22 6:4 performs the following two steps:
ged(654, 360) = gcd(360, 654 mod 360) = gcd(360, 294) 654 360 1. The value of ‘b’ is copied to ‘a.’
gcd(360, 294) = gcd(294, 360 mod 294) = gcd(294, 66) 260 204 2. The value of ‘b’ changes to the
ged(294, 66) = ged(66, 294 mod 66) = ged(66, 30) 2o value of ‘a mod b” (the original
gcd(66, 30) = ged(30, 66 mod 30) = ged(30, 6) 9 66 value of ‘a’ must be used, i.e. the
gcd(30, 6) = ged(6, 30 mod 6) = ged(6, 0) 66 S0 value of ‘a’ before step 1 was
gcd(6, 0) = 6 30 6 carried out).
Therefore, gcd(2322,654) = 6. 6 0 This process continues until the
value of ‘b’ is zero.
Your Task
1. Use Euclid’s method to 2. How many repetitions would be required by the “slow GCD” algorithm to compute
calculate gcd(4896, 830). gcd(4896, 830)?
a b

3. Try to write App Inventor code to implement the Euclid GCD algorithm. Test your
code thoroughly and debug if necessary.

Copyright ©, Nick E. Nolfi 1CS3U0 Introduction to Programming through App Inventor IPAI-27

SOLUTIONS TO SELECTED PROBLEMS REQUIRING LOOPS

Problem App Inventor Solution Notes
- i sum
Values of variables > 0
Whe” ProblemAButton.Click | before entermg |00p 2 2
dao —
set global f number ‘ 4 6
fu-rrange e Values of variables 6 12
S— after each repetition 8 20
of the loop
. end number
(@) Write a program 1000))
to calculate the St=p |y number 998 | 249500
sum of all E {fr; e e 1000 | 250500
positive even sum l , sum | i
integers less than L -— / - | 250500
or equal to 1000. o to [ca ot 1% 50 405e0008100= |1 Think of this algorithm as the
OutputLabel.Text make text "' rd alobal gy “cash register algorithm.”
et Values are successively
iy : added to the total until the
it vais | (0 08 £ el Fr
after exiting loo '

g 1oop be used because the number
of repetitions is known at
design-time.

: This problem is very similar
For a “while” loop, to the previous one. It also
the changes in the makes use of the cash
when ProblemBButton.Click | value of the loop register algorithm.
o = counter variable
set global sum to r: number 0 must be handIEd by X Sum
the programmer. -1 0
set glabal to ff number K 1 1
3 4
while test rj labal - numhber - 5 9
_ [4 77" sum | <= 1000
(b) Write a program e / 7 16
to CaICUIate the b = {fr: global = r:: numhber
sum of all I{., :]]
positive odd setalobal L iobal (0 global ‘ 61 961
integers until the sum]'| T sum | T x 63 1024
sum exceeds o e
1000. = w0 ca ot 0ot e | =
ot rJ' p— However, this time a “for”
o X
| loop cannot be used because
OutputLabel.Text make text =" (e _ the number of repetitions is
tet [groval not known at design-time.
For this reason, a “while”
=4 loop must be used. The

instructions within the body
of the loop are repeated as
long as the sum remains

smaller than or equal to 1000.

Copyright ©, Nick E. Nolfi

1CS3U0 Introduction to Programming through App Inventor

IPAI-28

Problem

App Inventor Solution

Notes

whe
-

du

" GedBruteFer et oblemGHuUN an Chick I

et glabal
a ' AlextBox.Text

wat glabal

n * C BT extBow. Taxt

For this example, suppose that
a=12 and b=20. Then ‘smaller’
has a value of 12.

text

text

lobal
2 a

y gcd
(g) Writea = 1
program that 2 2
finds the
3 2
greatest
common 4 4
divisor of any 5 4
two integers. 6 4
For example, Gl 7 4
the greatest M LR TR 8 4
common Oy] o | 4
divisor Comee [7 e g |
(GCD) of 24 : 10 4
and 40 is 8. 11 4
(Exhaustive 12 4
Search) | _ 4
" pedi@
[T The final value of the variable
Wl o “gcd” turns out to be
Ot L iabol Teat moketea " Lo FE g gcd(12, 20). Therefore,
e ged(12, 20) = 4.
P Elakal gcd
f—
The following table shows how
anen Serucidstton Ciek | gcd(2322, 654) is computed by
W setaeral o € pokBoscText the Euclidean algorithm.
T Notice that the number of steps
“,"—JMI required to calculate the ged is
while te=t [I N e significantly smaller than for
The e = — ‘ : ‘I the brute force algorithm.
Euclidean N, - -
GCD set glabal ta C_‘ global b 2 2
algorithm is 2 2322 654
much more e =] féw 654 360
efficient than . modie [atevar 360 294
the brute I R 294 66
force set to {f call text {: text ged(
. C'—I 66 30
algorithm =< L ATextBox.Text
given above. i | B 30 6
OutputLabel.Text maketext '~ 7 BTextBox.Text | 0
tet {:f text 0

The search ends when b=0.
The value of ‘a’ is the gcd. In
this example, gcd(2322,654)=6.

Copyright ©, Nick E. Nolfi

1CS3U0 Introduction to Programming through App Inventor

IPAI-29

Problem

App Inventor Solution

(h) Horses cost
$10, pigs cost
$3and
rabbits cost
only $0.50.

A farmer
buys 100
animals for
$100. How
many of each
animal did he
buy? Write a
program to
search for the
solution to
this problem.
(Exhaustive
Search)

when HorsesPigsRabbitsProblemJButton.Click |

The outer loop controls the value

il L) T of the ‘horses’ variable. With each
w repetition of the outer loop, the
answerFound false . y
- 0 value of ‘horses’ increases by 1.
CiL o 4 2% answerFound
. v The values of these variables
set global a number
le—*‘ N must be reset before the
T inner loop is executed.
while sest (7 test cfd glabal - {2 number
D BN | The inner loop controls the value
- of the ‘pigs’ variable. With each
N _“J_—r“l repetition of the inner loop, the
set glabal to [o g -
s L o0 |- L e |+ Lo e ||| VAIUE OF *pigs’” increases by 1.
set global to 'r:rl
- r’lr“ T rorees | <7 B 0]| ¢ F"rﬂ wor e | | \ . F"r'T
ifelse test »l‘“" glabal cost | not=v [‘I number 100 ‘
then-do - (13 th
meu - F’lg st o | vw O omber | ‘ The part that is “cut off
| H.
calculates the cost of the rabbits:
Fet\;‘ow answerFound © {: true o« . .
rabbits x 0.50
~—
it ==t Ef not C alobal answerFound
v favn fflrj T rreen |+ O | When one loop is contained
—— within another, we say that
— the loops are nested.
- to [ca tent et The farmer bought P
text [global N
text [choose test C‘Fu wlabal oo | . [fl number | ‘
then-do r’
then-return C text | cas
else-do
slsersum [otet o
fod) =% $10.00 each),
text [, global e
text [choose test r:lrju okl | N r',’l number | ‘
then-do FJ
then-raturn C text B
else-do
OutputLabel. Text make text
El= =
e [e (43.00 each) and
text [global rabhits
text [, choose test r:|r'1| global rabhits | = f;ll number 1 | ‘
then-do F‘J
then-return [: tetbits
else-do
slseretum [et o
et ff] 1= (40,50 each). Altogether, he/she purchased exactly 100 animals and the total cost was exactly $
text [f call number f: alobal ooy
format as decimal ... (7 \umber 2 |
text C text
tent
—

Copyright ©, Nick E. Nolfi

1CS3U0 Introduction to Programming through App Inventor

IPAI-30

First Repetition of Outer Loop
Inner Loop Repeats 17 Times

Second Repetition of Outer Loop

Inner Loop Repeats 13 Times

horses pigs rabbits cost
2 1 97 $71.50
2 2 96 $74.00
2 3 95 $76.50
2 4 94 $79.00
2 5 93 $81.50
2 6 92 $84.00
2 7 91 $86.50
2 8 90 $89.00
2 9 89 $91.50
2 10 88 $94.00
2 11 87 $96.50
2 12 86 $99.00
2 13 85 $101.50
Fourth Repetition of Outer Loop
Inner Loop Repeats 5 Times
horses pigs rabbits cost
4 1 95 $90.50
4 2 94 $93.00
4 3 93 $95.50
4 4 92 $98.00
4 5 91 $100.50

horses pigs rabbits cost
1 1 98 $62.00
1 2 97 $64.50
1 3 96 $67.00
1 4 95 $69.50
1 5 94 $72.00
1 6 93 $74.50
1 7 92 $77.00
1 8 91 $79.50
1 9 90 $82.00
1 10 89 $84.50
1 11 88 $87.00
1 12 87 $89.50
1 13 86 $92.00
1 14 85 $94.50
1 15 84 $97.00
1 16 83 $99.50
1 17 82 $102.00
Third Repetition of Outer Loop
Inner Loop Repeats 9 Times

horses pigs rabbits cost

3 1 96 $81.00

3 2 95 $83.50

3 3 94 $86.00

3 4 93 $88.50

3 5 92 $91.00

3 6 91 $93.50

3 7 90 $96.00

3 8 89 $98.50

3 9 88 $101.00
Fifth Repetition of Outer Loop

Inner Loop Repeats 1 Time
horses pigs rabbits cost
5 1 94 $100.00
Questions

1. What is the purpose of the variable ‘temp’ in the Euclidean GCD program? What would go wrong without this

variable?

2. Explain how the brute force GCD program could be made more efficient. Would these gains of efficiency make a
significant difference when computing the GCD of very large numbers?

3. What is a loop counter variable? Explain how loop counters are handled in both “for” and “while” loops.

In the “Horses, Pigs, Rabbits” program, what will go wrong if the values of the variables ‘pigs’ and ‘cost’ are not reset
just before the inner loop is executed?

5. What is the purpose of the “format as decimal” procedure? (See the “Horses, Pigs, Rabbits” program.)

Copyright ©, Nick E. Nolfi

1CS3U0 Introduction to Programming through App Inventor

IPAI-31

6. Inthe “Horses, Pigs, Rabbits” program, a “Choose” block is used. Explain the general purpose of this block. What is
the specific purpose of this block in the “Horses, Pigs, Rabbits” program?

7. What is the purpose of the ‘AnswerFound’ variable in the “Horses, Pigs, Rabbits” program? How does this variable
differ from variables that store numeric values?

8. Who was George Boole? What contributions did he make to mathematics? Given what you have learned about
George Boole, explain why it is appropriate to call the variable ‘AnswerFound’ (see question 7) a Boolean variable.

9. The following small portion of the “Horses, Pigs, Rabbits” program contains the instruction that increases the value of
the variable ‘horses’ by 1. Why is this instruction placed within an “if” block? What would go wrong if it were not
placed within an “if” block?

.__,,_1
if test lobal
E‘J not {:; - answerFound
then-d
TEES | cet global ta CT rjb—
horses ij " horses | * 4 ™™ 4
g
.__’_J-

10. Write an App Inventor program that uses the Sieve of Eratosthenes algorithm to generate a list of all prime numbers
less than 400.

Please note! You will need to do some research to solve this problem! For starters, visit the following Web page:

http://www.hbmeyer.de/eratosiv.htm

Copyright ©, Nick E. Nolfi 1CS3U0 Introduction to Programming through App Inventor IPAI-32

http://www.hbmeyer.de/eratosiv.htm�

APP INVENTOR REVIEW PROBLEMS #l

1. Give a step-by-step explanation of how the Th !
following could be accomplished: Qo n?l Stupendous SPLIT Personaliti® 40

A variation of the MoleMash game replaces the B:::’ Room 224,. Period 411.:?:;5!’
picture of the mole with pictures of members of a Rhyme with the Splii
the Split Personalities. Each time a picture of o
one of the splitters is tapped, the member’s
favourite rap line is heard over the speakers and
displayed in a label. Otherwise, if the user taps VouTube
the screen without hitting any of the moving Junkie
images, Mr. T’s picture appears, and the line “I

pity the fool” is played over the speakers.

Pohpa

Rabd Cricket

JiveMan 4 -

| pity the fool who
messes with the
splitters!

2. Create an App Inventor program that calculates the sum of the squares of the positive integers from 1 to
100. (i.e. 1° +2°+3° +---+100%)

3. Create an App Inventor program that calculates the sum of the squares of the positive odd integers from 1
t0 999. (i.e. 1° +3° +5° +---999%)

4. Create an App Inventor program that calculates the sum of the squares of the positive integers until the sum
exceeds 100,000,000. (i.e. 1* +2* +3° +---, until the sum exceeds 100 million.)

5. Create an App Inventor program that can add, subtract multiply or divide two fractions.

Copyright ©, Nick E. Nolfi 1CS3U0 Introduction to Programming through App Inventor IPAI-33

APP INVENTOR REVIEW PROBLEMS #2

1. Give a step-by-step explanation of how the Th !
following could be accomplished: Qo 1:1 Stupendous SPLIT Personaliti® 40

-~ © to Room 224, Period 4 Day "’
A variation of the MoleMash game replaces the Bu. m >, F'erio - tors!
picture of the mole with pictures of members of St a Rhyme with the SpHtter"_

the Split Personalities.

e Each time a picture of one of the splitters is
tapped, the picture disappears but reappears

exactly one minute later. YouTube
Junkie

- Popa
Rabid P Cricket
e If the user is fast enough to make all the JiveMan 4

pictures disappear before any of them

reappear, the game ends and the user wins.

e If any of the pictures are still in motion after
five minutes of play, the game ends and the
user loses the game. In this case, Mr. T’s
picture appears and the line, “I told you not to mess with the splitters!” is played over the speakers.

| pity the fool who
messes with the
splitters!

2. Create an App Inventor program that calculates the sum of the cubes of the positive integers from 1 to 100.
(ie. P+2°+3%+.--+100%)

3. Create an App Inventor program that calculates the sum of the cubes of the positive odd integers from 1 to
99. (i.e. P+3*+5°+...99%)

4. Create an App Inventor program that calculates the sum of the cubes of the positive integers until the sum
exceeds 100,000,000. (i.e. 1® +2° +3°+---, until the sum exceeds 100 million.)

5. Create an App Inventor program that can convert a percentage mark to the equivalent grade point score.
(See page 22 for details.)

Copyright ©, Nick E. Nolfi 1CS3U0 Introduction to Programming through App Inventor IPAI-34

APP INVENTOR REVIEW PROBLEMS #3

Write an App Inventor program that can produce string art. Examples of string art are shown below:

The following is a pseudocode description of an algorithm for producing string art:

Initialize the values of A and B Pseudocode
Set A=1 Statements outlining the operation of a computer program,
Set B=some value between 1 and N written in something similar to computer language but in a
more understandable format.
loop
join point A to point . .
add 1to A “Points” Referred to in Pseudocode
join point B to point A e The points are equally spaced along the perimeter of a shape
add 1to B such as an octagon.
ifB>N e The points are numbered 1, 2, 3, ..., N where N represents the
set B=1 total number of points
while A<N
In this picture, there are 64 equally
spaced points along the perimeter of
an octagon. The picture is formed
by joining points to other points.
Note

e The prefix “pseudo” means “false.”
e Other words beginning with this prefix:
pseudonym, pseudoscience, pseudohistorical

Copyright ©, Nick E. Nolfi 1CS3U0 Introduction to Programming through App Inventor IPAI-35

	Unit 0 – Introduction to Programming through App Inventor
	Learning the Essential Features of App Inventor
	Brief Description and History of App Inventor for Android
	Overview of App Inventor
	The MyProjects Page
	The Design Page
	The Blocks Editor

	How to Access App Inventor
	How to Work with App Inventor
	PaintPot: Creating your First App
	Step 1: Creating the PaintPot App
	Step 2: Using the Cook/Chef Analogy to Understand the Logic of the PaintPot App
	Exercise

	Creating More Apps – More Examples
	Creating More Apps – Making your OWN!
	Introduction
	Method 1 – Improve an Existing App: MoleMash Extreme Version
	Method 2 – Create your own Apps!

	App Inventor Main Ideas – Review #1
	App Inventor Main Ideas – Review #2
	App Inventor Main Ideas – Review #3
	Using the “Follow-the-Mole Mash” Game to Appreciate the Power of Variables
	Introduction to Loops: Line Drawing Problems
	Introduction
	Problem
	Hints
	Explanation
	More Problems
	Generating the Pictures in App Inventor
	Types of Loops
	Counted Loops (“For Loops”)
	Conditional Loops (“While Loops”)

	Circle Drawing Problems
	Problem with Current Version of App Inventor
	The Definition of the “drawCirclePointByPoint” Procedure
	An Example of a Call to the “drawCirclePointByPoint” Procedure
	Circle Drawings

	More Line/Circle Drawing Practice
	Analyzing the MakeQuiz App from Chapter 10
	Example
	Programming Problems whose Solutions Require the use of Counted (“For”) or Conditional (“While”) Loops
	Algorithm

	Euclid and the GCD
	Definition of GCD
	Examples

	Brute Force (Exhaustive Search) Algorithm for Computing the GCD of Two Integers
	App Inventor Code for Slow GCD Algorithm
	Questions

	Description of Euclid’s (Fast) Method for Computing the GCD of Two Integers
	Example
	Your Task

	Solutions to Selected Problems Requiring Loops
	Questions

	App Inventor Review Problems #1
	App Inventor Review Problems #2
	App Inventor Review Problems #3
	Note

