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ICS4M0 FINAL CULMINATING ACTIVITY 
Brief Summary of what you need to do 
Each student will write a Java program that generates a coloured fractal. 

Due Date and Weighting 
Your software is due on the last day of classes.  It is worth 10 marks out of 30 for your final evaluation (10% overall). 
How to hand in your Software 
Store all files related to your software in a single folder.  When you are satisfied that you have completed your work to 
the best of your ability, copy the folder to I:\In\Nolfi\Ics4m0\Final Culminating Activity\YourName, where YourName 
stands for your name. 
Evaluation Criteria 
The fractal program that you develop will be judged according to the following criteria: 
Coding Practices (Style) 
(a) The code should be logical, tidy and constructed according to the general guidelines learned throughout the course 

(i.e. proper indentation, comments for major blocks of code and abstruse code, meaningful identifier names, etc). 
(b) The code should be as short as possible.  Duplicate code should be eliminated by using methods and classes. 

Difficulty of Coding 
More credit will be given for fractals that are difficult to code than for those that are easy to code. 

Attractiveness of Fractal 
More credit will be given for fractals that are attractive and smoothly coloured than for those that are not. 

Degree of Mathematical Complexity 
More credit will be given for using fractal algorithms that are mathematically complex than for those that are not. 



What on Earth is a Fractal? 
A mathematically precise definition of fractals requires knowledge of mathematics that is far beyond the high school 
level.  Therefore, we shall only consider an intuitive definition, which will allow us to understand the essential ideas 
without being encumbered by the complexities of mathematical technicalities. 
In a colloquial sense, the term fractal denotes a shape that is recursively constructed or self-similar, that is, a shape that 
appears similar at all scales of magnification and is therefore often referred to as “infinitely complex” (definition taken 
from Wikipedia). 

Classification of Fractals 
Adapted from a Wikipedia article 
Fractals can be classified according to their self-similarity.  There are three types of self-similarity found in fractals: 
• Exact Self-Similarity 

This is the strongest type of self-similarity; the fractal appears identical at all scales.  Fractals defined by iterated 
function systems often display exact self-similarity. 

• Quasi-Self-Similarity 
This is a loose form of self-similarity; the fractal appears approximately (but not exactly) identical at all scales.  
Quasi-self-similar fractals contain small copies of the entire fractal in distorted and degenerate forms.  Fractals 
defined by recurrence relations are usually quasi-self-similar but not exactly self-similar. 

• Statistical Self-Similarity 
This is the weakest type of self-similarity; the fractal has numerical or statistical measures that are preserved  
across all scales.  Random fractals are examples of fractals that are statistically self-similar, but neither exactly nor 
quasi-self-similar. 

Fractals in Nature 
Adapted from a Wikipedia article 

Approximate fractals are easily found in nature.  These objects display self-similar structure over an extended, but finite, 
scale range.  Examples include clouds, snow flakes, mountains, river networks and systems of blood vessels.  Trees and 
ferns are fractal in nature and can be modelled on a computer using recursive algorithms.  The recursive nature is clear in 
these examples — a branch from a tree or a frond from a fern is a miniature replica of the whole, not identical, but similar 
in nature. 

 
A fractal is formed when 
pulling apart two glue-
covered acrylic sheets. 

 
High voltage breakdown within a 

4″ block of acrylic creates a 
fractal Lichtenberg figure. 

 
Fractal branching 

occurs on a microwave-
irradiated DVD 

 
Romanesco broccoli 

showing very fine natural 
fractals  

 
A fractal fern computed 

using an Iterated 
function system 

The surface of a mountain can be modelled on a computer using a fractal.  Start with a triangle in 3D space and connect 
the central points of each side by line segments, resulting in 4 triangles.  The central points are then randomly moved up 
or down within a defined range.  The procedure is repeated, cutting the range in half after each iteration.  The recursive 
nature of the algorithm guarantees that the whole is statistically similar to each detail. 

     

http://en.wikipedia.org/wiki/Image:Bransleys_fern.png


A Famous Fractal - The Boundary of the Mandelbrot Set 
The Geometry of the Mandelbrot Set 

 
The Mandelbrot Set 

Notice the self-similarity at several scales. 

 
A Close-up View of the Boundary 

Self-similarity is evident here at a tiny scale. 

 
The Exterior of the Mandelbrot Set Coloured 

using the “Triangle Inequality” Method 

 
The Exterior of the Mandelbrot Set Coloured 

using the “Iterations” Method 

 
The Exterior of the Mandelbrot Set Coloured 

using the “Modulus” Method 
A Primer on Complex Numbers  
To understand how the Mandelbrot set is generated, it is necessary to have a basic understanding of complex numbers.  
Complex numbers are of the form a , where bi+ ,a b∈ ∈\ \  and 

1i = − .  The real number a is called the real part of a bi+  and the 
real number b is called the imaginary part of a bi+ . 

Re 

Im 

Since 1i = − , it follows that .  Due to our intimate familiarity 
with the real numbers, which have the property that  for all 

, this at first appears to be a peculiar or even absurd notion.  
However, once we become well acquainted with the geometry of 
complex numbers, it becomes easier to accept the “reality” that the 
square of the imaginary number i actually equals −1. 

2 1i = −
2 0x ≥

x∈\

Complex numbers are plotted by making use of the Cartesian plane.  
We only need to become accustomed to a few minor modifications. 
• The Cartesian plane is renamed the complex plane. 
• The x-axis is renamed the real axis. 
• The y-axis is renamed the imaginary axis. 
Using this framework, it becomes possible to give a geometric 
meaning to multiplication by the imaginary number i: 

Multiplication by i is equivalent to a counter-clockwise rotation by 90° about the origin. 

Let’s examine how this works by starting at the complex number 1 on the real axis and following the unit circle. 
1i i=  (i.e. (1 ) ,0) (0,1)→

2( ) 1i i i= = −  (i.e. (0 ) ,1) ( 1,0)→ −
1i− = −i  (i.e. ( 1,0) (0, 1)− → − ) 

2( ) ( 1) 1i i i− = − = − − =  (i.e. (0, 1) (1,0)− → ) 



Operations on Complex Numbers 
Addition Subtraction Multiplication Division 
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e.g. 
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The Modulus (Absolute Value) of a Complex Number 
The modulus or absolute value of a complex number is an extremely 
important operation that is used to measure the “size” of a complex number.  
As shown in the diagram to the right, the modulus of a complex number z, 
denoted z , is equal to the distance from the origin to z. 

The following are some formal definitions, including the definition of z . 

 

Im 

Re 

2 26 8 10z = + =  

Definitions 
1. The symbol  is used to denote the set of complex numbers. ^
2. Suppose that , where z∈^ , ,z x iy x y= + ∈ ∈\ \ .  Then Re( )z x=  

denotes the real part of z and  denotes the imaginary part of z. Im( )z y=

3. The modulus or absolute value of  is denoted z x iy= + z  

and is equal to 2 2 2Re( ) Im( )2x y z+ = + z  

The Mandelbrot Sequence 
For any fixed value c , consider the Mandelbrot sequence, which is defined recursively as follows for all ∈^ n∈` : 

2
1

0,  if  1
if  ,  2

n

n n

z n
z z c n+

= =⎧
⎨ = + ≥⎩

. 

For a particular value of c, there are two possibilities. 
1. The value of nz  grows larger and larger indefinitely as n gets larger.  That is, nz  “blows up” to infinity. 
2. There is a constant D such that the value of nz D≤  no matter how large n is made.  In other words, in this case 

the value of nz  remains bounded.  It does not “blow up” to infinity. 

The Mandelbrot set consists of all the values of c∈^  for which the Mandelbrot sequence does not “blow up” to infinity. 

To generate a picture of the Mandelbrot set, the following is done: 
1. If the chosen value of c causes nz  to “blow up” to infinity, then c is not plotted on the complex plane. 
2. If the chosen value of c does not cause nz  to “blow up” to infinity, then c is plotted on the complex plane. 

Formal Definition of the Mandelbrot Set 

If we define the set { }: for all c nS x  according to the value chosen for c, then the Mandelbrot set can be 

defined as the set M, where 

x z n= ∈ = ∈\ `

{ }: sup cM c S= ∈ ≠ ∞^ .  (Note that sup , read “the supremum of A,” is simply the least 
upper bound of A.  In other words,  is the smallest value that is larger than or equal to all the elements of A.) 

A
sup A

In other words, the Mandelbrot set consists of all c∈^  such that the Mandelbrot sequence is bounded.  It can be shown 
that for a chosen value of c , if ∈^ 2nz >  for any n∈` , then sup cS = ∞ .  Therefore, all values  must satisfy c M∈

2nz ≤  for all . n∈`



As usual, a specific example should help to clarify matters.  Suppose that we choose 0.5 0.5c i= + .  The following table, 
constructed using Microsoft Excel, gives the values of  and nz nz  for 1, ,14n = … . 

n nz  nz  
1 0 0 
2 0.5 + 0.5i 0.70711 
3 0.5 + i 1.11803 
4 -0.25 + 1.5i 1.52069 
5 -1.6875 − 0.25i 1.70592 
6 3.28515625 + 1.34375i 3.54935 
7 9.48658752441406 + 9.328857421875i 13.305 
8 3.46776206069622 + 177.498044870794i 177.53192 
9 -31493.0305592448 + 1231.54197170139i 31517.10122 
10 990294278.677464 − 77569977.3995685i 993327669.9 
11 9.74665656987549E+017 − 1.53634209631866E+017i 9.867E+17 
12 9.26369672541763E+035 − 2.99483975733211E+035i 9.73577E+35 
13 7.68470118484163E+071 − 5.5486574506296E+071i 9.47851E+71 
14 2.8267032795879E+143 − 8.52795489702672E+143i 8.9842E+143 

For , we see that the Mandelbrot sequence is not bounded.  After 6 iterations, 0.5 0.5c = + i nz  is already greater than 2 
and by 14 iterations, nz  explodes to a value greater than 1043 googols!  Therefore, 0.5 0.5c i= +  is not in the Mandelbrot 
set and so, it is not plotted on the complex plane. 

Now let’s see if  fares any better than 0.1 0.2c = + i 0.5 0.5c i= + . 

n nz  nz  
1 0 0 
2 0.2 + 0.1i 0.22361 
3 0.23 + 0.14i 0.26926 
4 0.2333 + 0.1644i 0.28541 
5 0.22740153 + 0.17670904i 0.28799 
6 0.220485371028619 + 0.180367812121662i 0.28486 
7 0.216081251188073 + 0.17953692795453i 0.28094 
8 0.214457598615653 + 0.177589128053755i 0.27844 
9 0.2144541632011 + 0.176170675885312i 0.27754 

10 0.214954481072396 + 0.175561069755114i 0.27754 
11 0.215383739719543 + 0.175475277291451i 0.27782 
12 0.215598582395064 + 0.175589042902713i 0.27805 
13 0.21565123674327 + 0.175713497467862i 0.27817 
14 0.215630222716514 + 0.17578566608286i 0.27820 

In this case, after 14 iterations nz  remains very small, which makes it very likely that 0.1 0.2c i= +  is a member of the 
Mandelbrot set.  Since the Mandelbrot sequence appears to be bounded for 0.1 0.2c i= + , then this point is plotted on the 
complex plane. 

Colouring the Exterior of the Mandelbrot Set 
When it comes to colouring, the exterior of the Mandelbrot set is where all the action is!  This is particularly true near the 
boundary of the set.  The points lying outside the boundary of the Mandelbrot set all have something in common; nz  
eventually “blows up” to infinity.  More importantly for these points, however, is that nz  does not always “blow up” to 
infinity at the same rate.  For some points, nz  goes to infinity rather slowly.  For others, nz  approaches infinity very 
rapidly.  We can use this as the basis for colouring (e.g. iterations method). 



The following is a description of just a few colouring methods. 

Iterations Method Modulus Method Exponential Smoothing Method 
The Mandelbrot sequence 
is generated until nz  
exceeds a certain fixed 
value.  The number of 
iterations required to 
exceed this value is then 
used to determine the 
colour of the pixel located 
at c on the complex plane. 

The Mandelbrot 
sequence is generated 
until nz  exceeds a 
certain fixed value.  The 
value of nz  is then 
used to determine the 
colour of the pixel 
located at c on the 
complex plane. 

On a small scale (i.e. high degree of magnification), the 
“iterations” method can lead to colour “banding” due to the 
rather abrupt transition from one colour to another.  To prevent 
this problem, a second sequence is computed at the same time as 
the Mandelbrot sequence is generated: 

1
1

nz
n ns s e +−
+ = +  

The value of ns is used to determine the colour of the pixel 
located at c on the complex plane.  This allows for smoother 
colour transitions on a minute scale. 

Other colouring methods include decomposition, binary decomposition, orbit traps, direct orbit traps, distance estimator, 
Gaussian integer, gradient, triangle inequality average and lighting. 

Writing a Java Program to Generate the Mandelbrot Set 
The Mandelbrot set lies in a region of the complex plane that is very close to the origin.  Generally, the points in the 
Mandelbrot set and its immediate exterior are plotted for real values ranging from −2.5 to 1.5 and for imaginary values 
ranging from −1.5 to 1.5.  This poses a slight problem when writing computer programs because screen co-ordinates do 
not correspond to the ranges given above.  Therefore, it is necessary to find equations that can translate between screen 
co-ordinates and actual complex plane co-ordinates. 

y 

x 

To render the Mandelbrot set on a computer screen, co-ordinates in the 
range shown at the left must be translated to screen co-ordinates. 

Re 

Im 

The Mandelbrot set lies in this region of the complex plane. 
 

Co-ordinates in the Complex Plane Screen Co-ordinates 
500Re( )

200
xz −

=  300Im( )
200

yz −
=

−
 200Re( ) 500x z= + 200Im( ) 300y z= − +

−2.5 1.5 0 0 
-1.5 0.75 200 150 
-0.5 0 400 300 
0.5 -0.75 600 450 
1.5 -1.5 800 600 

Using the data in the above table we can easily see how the co-ordinates in the complex plane and the screen co-ordinates 
are related.  The relationships are nothing more than the familiar linear variety (i.e. y mx b= + ). 



Creating your own Fractal 
Listed below are some examples of fractals that are appropriate for this final culminating activity.  If you don’t like any of 
these suggestions, you are free to choose any other fractal provided that your program can be completed in the time that is 
remaining.  It would be a good idea to ask me about the appropriateness of your choice before forging ahead. 

Fractal 
Name Description Sample Picture(s) 

Julia Sets 

Julia sets are closely related to the Mandelbrot set.  As with the 
Mandelbrot set, the border of a Julia set is a fractal and its exterior can be 
coloured in a variety of interesting ways.  Unlike the Mandelbrot set, there 
are an infinite number of different Julia sets.  The black and white pictures 
at the right are three examples of different Julia sets.  The fourth picture is 
a coloured version of the third Julia set.  Only points that are just outside 
the Julia set are coloured. 
To generate a Julia set use the following algorithm: 
1. Choose a point in the Mandelbrot set or just outside the Mandelbrot set.  

Call this value c.  (The value chosen for c is known as the index of the 
Julia set.) 

2. Choose z1 in the complex plane in such a way that 12 Re( ) 2z− ≤ ≤  
and . 11.5 Im( ) 1.5z− ≤ ≤

3. Using the value of z1 chosen in step 2 and the value of c chosen in step 
1, generate the resulting Mandelbrot sequence until nz  exceeds 2 or a 
maximum number of iterations is exceeded. 

4. If 2nz ≤ , then colour the pixel corresponding to z1 black.  Otherwise, 
set the colour according to the colouring scheme that you have chosen. 

5. Repeat steps 2 to 4 until all pixels in the range have been coloured.  (It 
is very important to understand that the value of c remains the same 
throughout the entire process.) 

    

    

Fractal 
Mountains 

1. Begin with a triangle in 3-D space. 
2. Find the co-ordinates of the midpoint of each side of the triangle. 
3. Use line segments to connect the midpoints to each other.  This 

produces 4 triangles. 
4. Move each midpoint up or down by a randomly selected amount. 
5. Repeat the same process on each of the four resulting triangles. 
6. Stop when the triangles become “smaller” than some fixed value. 

See page 2

Sierpinski 
Triangle 

If you are interested in this one, do a search on “Sierpinski Triangle” to 
find out more. 

 

Koch 
Snowflake 

Begin with a single line segment and then recursively alter each line 
segment as follows: 

1. Divide the line segment into three segments of equal length. 
2. Draw an equilateral triangle that has the middle segment from step 1 as 

its base. 
3. Remove the line segment that is the base of the triangle from step 2. 

 
The Koch Curve 

 
The first four iterations of the Koch 

Snowflake 
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