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[CS4MO FINAL CULMINATING ACTIVITY

Brief Summary of what you need to do

Each student will write a Java program that generates a coloured fractal.

Due Date and Weighting

Your software is due on the last day of classes. It is worth 10 marks out of 30 for your final evaluation (10% overall).

How to hand in your Software

Store all files related to your software in a single folder. When you are satisfied that you have completed your work to
the best of your ability, copy the folder to I:\In\Nolfi\lcs4mO\Final Culminating Activity\YourName, where YourName
stands for your name.

Evaluation Criteria
The fractal program that you develop will be judged according to the following criteria:
Coding Practices (Style)

(a) The code should be logical, tidy and constructed according to the general guidelines learned throughout the course
(i.e. proper indentation, comments for major blocks of code and abstruse code, meaningful identifier names, etc).
(b) The code should be as short as possible. Duplicate code should be eliminated by using methods and classes.

Difficulty of Coding
More credit will be given for fractals that are difficult to code than for those that are easy to code.
Attractiveness of Fractal

More credit will be given for fractals that are attractive and smoothly coloured than for those that are not.

Degree of Mathematical Complexity
More credit will be given for using fractal algorithms that are mathematically complex than for those that are not.



What on Earth is a Fractal?

A mathematically precise definition of fractals requires knowledge of mathematics that is far beyond the high school
level. Therefore, we shall only consider an intuitive definition, which will allow us to understand the essential ideas
without being encumbered by the complexities of mathematical technicalities.

In a colloquial sense, the term fractal denotes a shape that is recursively constructed or self-similar, that is, a shape that
appears similar at all scales of magnification and is therefore often referred to as “infinitely complex” (definition taken
from Wikipedia).

Classification of Fractals

Fractals can be classified according to their self-similarity. There are three types of self-similarity found in fractals:

e Exact Self-Similarity
This is the strongest type of self-similarity; the fractal appears identical at all scales. Fractals defined by iterated
function systems often display exact self-similarity.

e Quasi-Self-Similarity
This is a loose form of self-similarity; the fractal appears approximately (but not exactly) identical at all scales.
Quasi-self-similar fractals contain small copies of the entire fractal in distorted and degenerate forms. Fractals
defined by recurrence relations are usually quasi-self-similar but not exactly self-similar.

o Statistical Self-Similarity
This is the weakest type of self-similarity; the fractal has numerical or statistical measures that are preserved
across all scales. Random fractals are examples of fractals that are statistically self-similar, but neither exactly nor
quasi-self-similar.

Fractals in Nature

Approximate fractals are easily found in nature. These objects display self-similar structure over an extended, but finite,
scale range. Examples include clouds, snow flakes, mountains, river networks and systems of blood vessels. Trees and
ferns are fractal in nature and can be modelled on a computer using recursive algorithms. The recursive nature is clear in
these examples — a branch from a tree or a frond from a fern is a miniature replica of the whole, not identical, but similar
in nature.

The surface of a mountain can be modelled on a computer using a fractal. Start with a triangle in 3D space and connect
the central points of each side by line segments, resulting in 4 triangles. The central points are then randomly moved up
or down within a defined range. The procedure is repeated, cutting the range in half after each iteration. The recursive
nature of the algorithm guarantees that the whole is statistically similar to each detail.


http://en.wikipedia.org/wiki/Image:Bransleys_fern.png

A Famous Fractal - The Boundary of the Mandelbrot Set
The Geometry of the Mandelbrot Set

A Primer on Complex Numbers

To understand how the Mandelbrot set is generated, it is necessary to have a basic understanding of complex numbers.

Complex numbers are of the form a+bi, where a€R,beR and

i =+/—1 . The real number a is called the real part of a+bi and the
real number b is called the imaginary part of a+bi.

Since i =+/—1, it follows that i* =—1. Due to our intimate familiarity

with the real numbers, which have the property that x* >0 for all
x € R, this at first appears to be a peculiar or even absurd notion.
However, once we become well acquainted with the geometry of
complex numbers, it becomes easier to accept the “reality” that the
square of the imaginary number i actually equals —1.

Complex numbers are plotted by making use of the Cartesian plane.
We only need to become accustomed to a few minor modifications.

e The Cartesian plane is renamed the complex plane.
e The X-axis is renamed the real axis.
e The y-axis is renamed the imaginary axis.

Using this framework, it becomes possible to give a geometric
meaning to multiplication by the imaginary number i:

(-3,2) =-3+2i

J2.3) = 243

-1.0)=-1+0i = —‘1/‘

-2-2)=-2-2i

-7 <

0,1)=0+1i= i
\(1,0};1@ =1

(0-1) = 0-1i =i
(3-2) = 3-2i

L (0-2)=0-3i=-3i

Multiplication by i is equivalent to a counter-clockwise rotation by 90° about the origin.

Let’s examine how this works by starting at the complex number 1 on the real axis and following the unit circle.

li=i (i.e. (1,0) > (0,1))

i(i)=i*=-1 (i.e. (0,1) > (~1,0))
~li=—i (ie. (-1,0)—>(0,-1))
—i(i)=-i* =—(-1) =1 (i.e. (0,-1)— (1,0))




Operations on Complex Numbers

Addition Subtraction Multiplication Division

(a+bi)+(c+di) (a+bi)—(c+di) (a+bi)(c+di) a+bi
=(@+c)+(b+d)i =@-c)+(b-dji = ac + adi + bci + bdi? c+di
eg. eg. — (ac—bd) + (ad +bo)i :(“bfj(c—d!j

(2=30)+(=5-1) (2-3i)—(=5-1) e.g. c+di )\ c—di
=Q+ 5N+ (B3+(=1)i =C=E)+ (B - (2-3i)(=5-i) _(ac+ bdz + (bzc —ad)i
— 34 =7-2i = 2(=5)+2(~i) = 3i(=5) - 3i(~i) ¢ +d

=-13+13i
The Modulus (Absolute Value) of a Complex Number
The modulus or absolute value of a complex number is an extremely al 7=6+8i
important operation that is used to measure the “size” of a complex number.
As shown in the diagram to the right, the modulus of a complex number z, +
denoted |z|, is equal to the distance from the origin to . 7 2
ol |z| =6~ +8° =10

The following are some formal definitions, including the definition of |Z| . \

Definitions i

1. The symbol C is used to denote the set of complex numbers. 8

2. Suppose thatz € C, where z=x+1y,xeR,yeR. Then Re(z) =X 1

denotes the real part of zand Im(z) =y denotes the imaginary part of z.
3. The modulus or absolute value of z=x+iy is denoted || T
and is equal to \/X2 +y? = \/Re(z)2 +Im(z)? T
4 : : - : —

The Mandelbrot Sequence
For any fixed value ¢ e C, consider the Mandelbrot sequence, which is defined recursively as follows for all ne N :
z,=0,if n=1
2., =22+cC, ifn=2

For a particular value of ¢, there are two possibilities.

1. The value of |Zn| grows larger and larger indefinitely as n gets larger. That is, “blows up” to infinity.

Z,

2. There is a constant D such that the value of |Zn < D no matter how large n is made. In other words, in this case

the value of |Zn| remains bounded. It does not “blow up” to infinity.
The Mandelbrot set consists of all the values of ¢ € C for which the Mandelbrot sequence does not “blow up” to infinity.
To generate a picture of the Mandelbrot set, the following is done:
1. Ifthe chosen value of C causes |Zn| to “blow up” to infinity, then c is not plotted on the complex plane.

2. If the chosen value of ¢ does not cause |Zn| to “blow up” to infinity, then c is plotted on the complex plane.

Formal Definition of the Mandelbrot Set
If we define the set S, = {X eR:x= |zn |for allne N} according to the value chosen for c, then the Mandelbrot set can be

defined as the set M, where M = {C e C:supS, # oo} . (Note that sup A, read “the supremum of A,” is simply the least
upper bound of A. In other words, sup A is the smallest value that is larger than or equal to all the elements of A.)

In other words, the Mandelbrot set consists of all ¢ € C such that the Mandelbrot sequence is bounded. It can be shown
that for a chosen value of ceC, if |Zn| >2 forany neN, then supS, =oo. Therefore, all values ce M must satisfy

|z,|<2 forall neN.



As usual, a specific example should help to clarify matters. Suppose that we choose ¢ =0.5+0.5i. The following table,
constructed using Microsoft Excel, gives the values of z, and |Zn| for n=1,...,14.

n Z, |z,

1 0 0
2 0.5 +0.51 0.70711
3 0.5+i 1.11803
4 -0.25 + 1.51 1.52069
5 -1.6875 — 0.251 1.70592
6 3.28515625 + 1.343751 3.54935
7 9.48658752441406 + 9.328857421875i1 13.305
8 3.46776206069622 + 177.4980448707941 177.53192
9 -31493.0305592448 + 1231.54197170139i1 31517.10122
10 990294278.677464 — 77569977.39956851 993327669.9
11 9.74665656987549E+017 — 1.53634209631866E+017i 9.867E+17
12 9.26369672541763E+035 — 2.99483975733211E+0351 | 9.73577E+35
13 7.68470118484163E+071 — 5.5486574506296E+0711 | 9.47851E+71
14 2.8267032795879E+143 — 8.52795489702672E+143i | 8.9842E+143

For ¢=0.5+0.5i, we see that the Mandelbrot sequence is not bounded. After 6 iterations, Zn| is already greater than 2

and by 14 iterations, Zn| explodes to a value greater than 10* googols! Therefore, ¢=0.5+0.5i is not in the Mandelbrot

set and so, it is not plotted on the complex plane.

Now let’s see if ¢=0.1+0.2i fares any better than ¢ =0.5+0.5i .

: 2 u
1 0 0
2 0.2+0.11 0.22361
3 0.23 +0.141 0.26926
4 0.2333 + 0.16441 0.28541
5 0.22740153 + 0.176709041 0.28799
6 0.220485371028619 + 0.180367812121662i 0.28486
7 0.216081251188073 + 0.179536927954531 0.28094
8 0.214457598615653 + 0.1775891280537551 0.27844
9 0.2144541632011 + 0.1761706758853121 0.27754
10 0.214954481072396 + 0.1755610697551141 0.27754
11 0.215383739719543 + 0.1754752772914511 0.27782
12 0.215598582395064 + 0.1755890429027131 0.27805
13 0.21565123674327 + 0.1757134974678621 0.27817
14 0.215630222716514 + 0.175785666082861 0.27820

In this case, after 14 iterations |Zn| remains very small, which makes it very likely that ¢ =0.1+0.2i is a member of the

Mandelbrot set. Since the Mandelbrot sequence appears to be bounded for ¢ =0.1+ 0.2i, then this point is plotted on the
complex plane.

Colouring the Exterior of the Mandelbrot Set
When it comes to colouring, the exterior of the Mandelbrot set is where all the action is! This is particularly true near the
boundary of the set. The points lying outside the boundary of the Mandelbrot set all have something in common; |z,

eventually “blows up” to infinity. More importantly for these points, however, is that |Zn| does not always “blow up” to

Zn| approaches infinity very

infinity at the same rate. For some points, Zn| goes to infinity rather slowly. For others,

rapidly. We can use this as the basis for colouring (e.g. iterations method).



The following is a description of just a few colouring methods.

Iterations Method Modulus Method Exponential Smoothing Method
The Mandelbrot sequence | The Mandelbrot On a small scale (i.e. high degree of magnification), the
is generated until |Zn| sequence is generated “iterations” method can lead to colour “banding” due to the
exceeds a certain fixed until |Zn| exceeds a rather abrupt transition from one colour to another. To prevent
value. The number of certain fixed value. The this problem, a second sequence is computed at the same time as
iterations required to value of |Zn| is then the Mandelbrot sequence is generated:

exceed this value is then =s, + g 7l
used to determine the
colour of the pixel located

at ¢ on the complex plane.

used to determine the Sni

colour of the pixel The value of s, is used to determine the colour of the pixel
located at € on the

located at ¢ on the complex plane. This allows for smoother
complex plane.

colour transitions on a minute scale.

Other colouring methods include decomposition, binary decomposition, orbit traps, direct orbit traps, distance estimator,
Gaussian integer, gradient, triangle inequality average and lighting.

Writing a Java Program to Generate the Mandelbrot Set

The Mandelbrot set lies in a region of the complex plane that is very close to the origin. Generally, the points in the
Mandelbrot set and its immediate exterior are plotted for real values ranging from —2.5 to 1.5 and for imaginary values
ranging from —1.5 to 1.5. This poses a slight problem when writing computer programs because screen co-ordinates do
not correspond to the ranges given above. Therefore, it is necessary to find equations that can translate between screen
co-ordinates and actual complex plane co-ordinates.

. 7100 200 300 400 500 600 700 800"
T 100
1650 F
200
260
I 1 L 300
-2 -1 1 asol
400
450
At 500+
550 F
600}
v
y
Co-ordinates in the Complex Plane Screen Co-ordinates
X—500 y—-300 _ _
Re(z) = L Im(z) = 00 Xx=200Re(z)+500 y=-200Im(z)+300
-2.5 1.5 0 0

-1.5 0.75 200 150

-0.5 0 400 300

0.5 -0.75 600 450

1.5 -1.5 800 600

Using the data in the above table we can easily see how the co-ordinates in the complex plane and the screen co-ordinates
are related. The relationships are nothing more than the familiar linear variety (i.e. y=mx+b).



Creating your own Fractal

Listed below are some examples of fractals that are appropriate for this final culminating activity. If you don’t like any of
these suggestions, you are free to choose any other fractal provided that your program can be completed in the time that is
remaining. It would be a good idea to ask me about the appropriateness of your choice before forging ahead.

Fractal

Name Description Sample Picture(s)

Julia sets are closely related to the Mandelbrot set. As with the
Mandelbrot set, the border of a Julia set is a fractal and its exterior can be
coloured in a variety of interesting ways. Unlike the Mandelbrot set, there
are an infinite number of different Julia sets. The black and white pictures
at the right are three examples of different Julia sets. The fourth picture is
a coloured version of the third Julia set. Only points that are just outside
the Julia set are coloured.

To generate a Julia set use the following algorithm:

1. Choose a point in the Mandelbrot set or just outside the Mandelbrot set.
Call this value ¢. (The value chosen for ¢ is known as the index of the
Julia set.)

2. Choose z; in the complex plane in such a way that —2 <Re(z,) <2
and —1.5<Im(z,)<1.5.
3. Using the value of z; chosen in step 2 and the value of ¢ chosen in step

Julia Sets

1, generate the resulting Mandelbrot sequence until |Zn| exceeds 2 or a
maximum number of iterations is exceeded.
4. If |Zn| <2, then colour the pixel corresponding to z; black. Otherwise,

set the colour according to the colouring scheme that you have chosen.

5. Repeat steps 2 to 4 until all pixels in the range have been coloured. (It
is very important to understand that the value of € remains the same
throughout the entire process.)

1. Begin with a triangle in 3-D space.
2. Find the co-ordinates of the midpoint of each side of the triangle.
3. Use line segments to connect the midpoints to each other. This
produces 4 triangles. See page 2
4. Move each midpoint up or down by a randomly selected amount.
5. Repeat the same process on each of the four resulting triangles.
6. Stop when the triangles become “smaller” than some fixed value.

Fractal
Mountains

Sierpinski | If you are interested in this one, do a search on “Sierpinski Triangle” to
Triangle find out more.

Begin with a single line segment and then recursively alter each line \ /
segment as follows: // \\ T/ /\7
§
1. Divide the line segment into three segments of equal length. / h / K_\‘
2. Draw an equilateral triangle that has the middle segment from step 1 as \/
its base.
Koch 3. Remove the line segment that is the base of the triangle from step 2.
Snowflake Z/\JA?_ r”*f ?-:}
z =
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