JAVA AND J++ REFERENCE NOTES

JAVA AND JH+ REFE R EN CE N O T ES ... ittt ittt iittiiii ittt ie s ettt s tesettes it tetesaettsetaseesesiaseeesaseseessaseesestaseeeseassesetassssestebeeesasssssesassessssseeesas 1
LEARNING JAVA OPERATORS, DATA TYPES AND CONTROL FLOW STRUCTURES BY COMPARING TO VB........ 2
INTRODUGCTION L1 iiuttiisietttsesittetessestssesassessstessssssstesesssss s sasessssasbessesses s eese e e e aebesesabs e s s e ohsee s 2488t e e e e b e e s ehb e s e e beesambessesmneeasssbeeesannessssnnnnis 2
OPERATORS IN VB AND JAV A L. tttiiii ittt iittteesittetesatessstsessssetteeesaassssssmses s s st b e s e s ssesseehse e s e et b e e s esse s s emsessse0s e e e aassesesambeeesansbssesnneesssnsenasan 2
SUMMARY OF JAVA OPERATORS (FROM HTTP://JAVA.SUN.COM/DOCS/BOOKS/TUTORIAL/JAVA/NUTSANDBOLTS/OPSUMMARY.HTML) .3
SUMMATY OF AT 1T C OB A0 S, ... ittt ittt ittiee sttt e settetestesteeesesteeesseesessht e e s estt e e eass e e ee e e e eat et ettt e e et e e ettt e et e e e eb e e e sbneasasanenas 3
Summary of Relational and CONAITIONA] OB A0Suuiiiitiiieiittiieieteetesietetessttttsiassesesissesesasssssstassssssiesesssasssssstassssssissesssasssssssaeees 3
SUMMArY Of SNIft QNG LOGICAI OB aATOTS ...t iuueiies ittt ieiitetisitetaesistesesassesssessesasssteesseasessssasesse s s te e s esa e s s ehbe s e s et teeesbsesesenbbeasansbesasses 4
SUMMIATY Of AS S GBI O D AT 0TS ...t ttieiitttiisieteiiesitteeesessessssasesaesesteeesasstssseasesee st te e e s as e e ehme s e e s st e e et e e et e e et te e e s bt sesebbbeasansbasasanes 4
SUMMATY OF Ot T OO A0S & .ttiiuuiitittiitiisitessettisisessstssieesssessesessssesesetssase e ebeseaseeeoheseabe e bt e et e e eb e e bt et s et e bt s s bt s e b basbeessbbasnesasns 4
PRIMITIVE DATA TYPES IN VB AND JAV A L. iuttttiiiiiiiiitttttttietiieettstssssesstasssstesssssstaiasssessssestasssstessessesetassbeseesseestsbbessessestsansbssssssesssasnsres 5
VARIABLE DECLARATIONS IN VB AND JAV A 111ttt ittt iiittttiiiie st iiittittt s e st tsisttesssesstaiast b e e e eeeesetaa st e e e e e e e e as bt e e e e s e e e aab bbb e e s se e tanbbbbeeseesssnbbnbenasas 6
Variable DECIATATIONS 1N VB ...iiiuiiiieiiiiiiiiis ittt iessittesetetssetssssessstessabesssbessbe s sbessbe e sbessabe ettt e s e ehessame s eb s sabessobesanbesabessnbesabesannesas 6
Variable DECIATATIONS 1M JAVA. ... uuiiieiiitiiiieisieits ittt sieteesteessetssssessssessaseesssessesesesbesssesesbessabessbeesabe e ohessabeseebessabesssbessabesabessnbesabesannesas 6
NAMING CONVENTIONS IN JAV A . 11ttt itttieiiitestsietessssistssssssessssasssssssesesssssessssasssssssasesssseseesssnssssssassesssasbesesansessssnsessssnsssesanssssesnnsnssssnsereas 7
Variable Names, Object Names and MEtNOO INAIMIESo ittt ietiies sttt isiteteesisteeesasseesssssessssesesssassssessbesessissesesasssssesabeesssssreresas 7
Class Names and ConStrUCION IMETNOO INGIMIESuiiiiitiiisitiiie sttt ietettetesietetessstteesssstsestesesesaaseesesasseeesieseeeseases s tanesaesssbesssassessasaneeas 7
G0N S AT NI S . .ttt ittt e e ittt e e e ettt e e ettt bttt e ettt oottt e oo bttt 4 e bttt e 4o bttt e s e e e ettt et s e e s e bt bebaeaasssns 7
VWHAT’S THE DIFFERENCE BETWEEN . 4 tiiiiiiuuutttttteetiesustsstssssiessstssssesssasssssssssssstssssssssssssssstssssssssssssstasssssssssssstossssssssssssionssessssssssiessssesases 7

A C1aSS AN AN O 802 . .ttt ittt ittt e s ettt e e tteeeesesseeesess e e e ease e e eht e e e ehs bt e e e e e st e e e oAt e £ et e 44 et £ £kt e £ et e e et e s e sttt s e embebaassnbeneaas 7

AN O JECE AN A VAT A G ..ttt ittt sttt iet et eesieteee s ettt e e sseeeestht e e eets bt e e e e e e st e e oAttt e e et e 4o et e £kt e e et e e e et e s e sttt s e eibbeaesebbeneaas 7
CLAASS INST AN T IATIONS ..ttt ttttttttteestsiesttestessessissseseessesssessseeeeeeees s ssbebeeeeeesesese b e e e e e e oo as et e e e e e oo 4488t be e e e e s oo anbbe b e e s e e e s snbebesesaeatannbbenssassnann 7
SEVERAL EXAMPLES OF ARRAY DECLARATIONS .1 ttttttttiiitttttttttetsiaissstssssesstasssstsssssssssiassssssssssssiosssssssssssstnssssssstssttamssresttessiniomreeiieeainin. 8
PROGRAM CONTROL FLOW — SEQUENCE, SELECTION AND REPETITION L.uuuttttttittiieiustssteeetisiossssssesssssinsssssssssssinmsssssestesiimmmmmessieeiimnnmie 9
Essential Selection StruCtures iN VB GNO JAVAiiiuiiiieiiiisiiisitisieesstesssissseessebsssssesssssssssessstsssbsesshbsssbssesbbssabsessbbssabessssbsssnnessses 9
Advanced Selection StruCtUres iN VB GN0 JAVA....u..iuuiiieiiueiiiisiittssitessitessstessssssstessassssseesssssssssssasssssbessabesssbessabesssbessasesssbessaseraes 10
Essential Repetition StruCtures iN VB GNG JAVAiiieiiiiiiieis it eiieisiettssessittsessesssstesssessisessssesssstssasssssssssasesssssssasessssessasessssessaessns 11
UNDERSTANDING THE ORGANIZATION OF JAVA AND J ittt eeesteeeseetiseeeesessesssessssesssseesssesseseesssesssseesssessseessees 13
WHAT EXACTLY IS OBJECT-ORIENTED PROGRAMMING? 1.ttt iututttitiessiaistettssiessieessstesssssssssssstesssasssstasssesssssssssosssssssssessionssssesssessiosssnses 13
NV H AT THE HECK ARE LA S S E S ? . uuuttttiiiiiiiitttetttesstsiastteessasssstessaessessessteasbeteeesees s assstee s s e e e bs bt e e e s e oo tas b bt ee s e e e e taat bt eeesseestnbbbbeessasssasssnten 13
SIMPLE EXAMPLE OF CLASSES FROM WV ISUAL JHt 1uiiiiiiiiittttiiiiiiisitttettsasessissbetssasassissbesssssee st asbeteessee s s ssbtbessseeeeebbebesssesssesansbesasassssas 13
JAVA IS THE ONLY POPULAR PROGRAMMING LANGUAGE THAT IS ENTIRELY OBJECT-ORIENTED ...vtviiiiiiiiiiutiiiiiieiisiiisiesiesiesiiiisnseeeees 15
USTNG ST RINGS TN J A A ittt ittt ettt ettt te sttt eesat et esteteeeseeteeesass et eetaseeeesas et e e s st e e s e eat e e e e ettt e e ettt e e eate e e e ettt e e st eeessbbesesassbesesses 16
IINTRODUGCTION ittt ttttttttttesstsisstsssssssssissssssessesssassssseessees s ssesbe e e e e e s e eatbe e e e e s o441 an b b et e e e oo o408 e b et e e e e oo 4 ne bbb e e s e e o4 e s bbb e e e e e e e e tnn bt eeeeasasssanbbnnenasas 16

E X AIMIPLES i iiiiitttttit i e ettt et e e st ettt ettt e e s st e b ettt e e e ettt e e e e oottt e et e oot b e et e e e oAb et e e e e oo Dt b e bt e e oo oAb bbb e e e e oo A bbbt e e e seeetabbbbbeeteesiaanbrres 16
CREATING AN OBJECT OF THE “STRING” CLASS ..iiiitttitiiuttteiitetsssetestsiessesssistssssassesssiassssssossssssasessssssssssstssesssansessssnssssssssseeesansessssnenss 16
WWORKING WITH STRING O BJIEC TS ... uuttttiitttieiitttssitsesssestesssasssssssssssssessssssasssssssassssssssesssasssssssasssssstsbesssanssssssnssssssnsssssanssssesasssssssnereas 16
USING THE MSDN LIBRARY TO LEARN ABOUT CLASS MEMBERS ...ttt ittt s iiteissiiesassestiisseseessiisesssassiriasases 17
EXAMPLE OF A STATIC (CLASS) IMIETHOD ..ttt tttietiuttttsitettssestetesassesssiesesssssssesssasssssssasssassassssssassesessasesssssssesssbssssssssesesssssssssasssssssseness 17
EXAMPLE OF AN INSTANCE (NON=STATIC) IMETHOD ... iuuttiiiitttieiestttsiesetaessstsssasssssstessssssssssssssessstesesssssssssssassssssissssessssstssassssessoseness 17
WHAT IS THE DIFFERENCE BETWEEN A STATIC (CLASS) METHOD AND AN INSTANCE METHOD?.......ococovnnee.. 18

CLASS AND INSTANCE METHODS OF THE STRING LA SS L.uttttiiiiiiiitttttttstetsiesssstssssessiessssssssssssiassssssssssstasssstsssssssssisstestsessssiosresieassssins 18

LEARNING JAVA OPERATORS, DATA TYPES AND CONTROL FLOW STRUCTURES BY COMPARING TO VB
Introduction
The tables given below can be used to translate VB expressions and statements into equivalent Java statements and expressions. By
using your extensive knowledge of VB in conjunction with the translation guide given below, it should not take you very long to learn
how to write simple Java programs.

. “pow” is not an operator. It is a mathematical function found in java. lang_Math.
Operators in VB and Java

Operator VB | VB Example | Java Java Ex. Operator VB | VB Example | Java Java EXx.
Arithmetic Operators Comparison (Relational) Operators
Unary Plus + A =+2.35E23 + a=+2.35e23; Greater than > If X>2 Then > if (x>2)
Unary Minus - A =-235E23 - a=-2.35e23; Less than < If X <2 Then < if (x<2)
Exponent n A=B"C pow [a=pow (b, c); Greater than or Equal to >= | IfX>=2Then >= if (x>=2)
Multiplication * A=B*C * a=bh *c; Less than or Equal to <= If X <=2 Then <= if (x <=2)
Division / A=B/C / a=b/c; Equal to = If X =2 Then == if (x==2)
Integer Division \ A=B\C / a=b/c; Not Equal to <> | 1fX<>2Then 1= if (x 1=2)
Remainder (mod) | Mod | A=B ModC % |a=b%c; Boolean (aka Conditional or Logical)Operators
.
Addition + A=B+C + a=b+c; Boolean AND And IfX>2 And Y:%h—en & if (x>2 & y=1)
Subtraction - A=B-C - a=b-c Boolean OR Or If X>2 Or Y=1 Then | if (x>2|y=1)
Shortcut Increment and Decrement Operators Boolean NOT Not | 1f Not Sorted Then ! if (Isorted)
) A(l)=3 S Boolean Exclusive If X>2 Xor Y=1 _ - A
Postfix Increment | N/A 1=1+1 ++ afi++] = 3; OR Xor Fhen A if (x>2 2 y=1)
. I=1+1 . Conditional Boolean . _
Prefix Increment | N/A Adl) =3 ++ a[++i] = 3; AND N/A N/A && if (x>2 && y=1)
Postfix A(l)=3 . . Conditional Boolean - _
Decrement NA LD —— | ali--1=3; OR N/A N/A [if (x>2] | y=1)
] I=1-1 — If X>2 Eqv Y=1_ - _
Prefix Decrement | N/A All)=3 -= a[--i]1=3; Boolean XNOR Eqv Then N/A | if ((x>2|y=1))
H . . . = if(!
ASS|gnment Operator Logical Implication Imp ITX>2 Imp Y lﬂ—mn N7 Sl X>2y§1)
Assignment = | A=B+C = a=b+g; Bitwise and Shift Operators
Shortcut Assignment Operators Bitwise AND And | X=Y AndZ & | x=y&z
N/A | X=X+Y += X+=Y; Bitwise OR Or | X=YOrz | X=y|z
N/A | X=X-Y -= X—=Y,; Bitwise XOR Xor | X=Y XorZ n X=y"z,
N/A | X=X*Y *= X*=y; Bitwise Complement | Not | X=NotY ~ X=-y,
N/A | X=X1Y /= xI=y; Bitwise XNOR Eqv | X=YEqvZ N/A x=~(y|z);
= — _. Bitwise Logical _ _]
N/A | X=X Mod Y %= X %=y Implication Imp | X=YImpZ N/A | x=~y|y&z
N/A | X=XAndY &= X &=Y; Bitwise Left Shift N/A | N/A << X=y<<z
NA | x=xory = | xEy: Signed Bitwise RIOt | nya | nia s> | x=y>>z;
_ _ . Unsigned Bitwise _)
N/A | X=X XorY N= XN=Y; Right Shift N/A | N/A >>> X=y>>>7;
N/A | NIA <<= | x<<=y, Other Operators
In VB, type conversions
N/A | N/A >>= | x>>=vy; Cast are done with intrinsic () X = (double) y;
functions.
_ o Ternary Conditional o _ PIVEES
N/A | N/A >>>= | x>>>=v; Operator N/A 2 x=(y<z)?y:z,

Note: There are a few other operators in Java that will be included in a separate table.

Summary of Java Operators (from http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html)

Summary of Arithmetic Operators

The following table lists the basic arithmetic operators These short cut operators increment or decrement a number by
provided by the Java programming language. one.
Operator Use Description Operator Use Description
Adds opl and op2 (numeric). Increments op by 1; evaluates to the
+ + . ++ ++ o
op1 +op2 Concatenates opl and op2 (string). op value of op before op is incremented
Increments op by 1; evaluates to the
a opl-op2 | Subtracts 0p2 from opl i TP Value of op after it was incremented
% % - L | Decrements op by 1; evaluates to the
opl*0p2 | Multiplies op1 by op2 op value of op before it was decremented
- Decrements op by 1; evaluates to the
/ opl/op2 | Divides opl by 0p2 o ~7OP | alue of op after it was decremented
Computes the remainder of
0 0,
% OP1%0P2 | jividing opl by op2
Here are the Java programming language’s other arithmetic operators.
Operator | Use Description
+ +0p | Promotes op to int if it’s a byte, short, or char.

- —op | Arithmetically negates op.

Summary of Relational and Conditional Operators

Use these relational operators to determine the relationship
between two values.

You can use the following conditional operators to form
multi-part decisions.

Operator Use Returns true if Operator Use Returns true if
. opl and op2 are both true,
> opl>op2 | oplisgreater than op2 && opl && op2 conditionally evaluates op2
S— onl >= op2 1i ter th It 2 I opl || op2 either opl or op2 is true, conditionally
= pl >=o0p2 | opl is greater than or equal to op pl|l op evaluates op2
< opl<op2 |oplislessthan op2 ! I op op is false
_ _ . opl and op2 are both true, always
<= opl <=o0p2 |oplis less than or equal to op2 & OpL&OP2 | b e opl and op2
—_ opl== either op1 or op2 is true, always
== op2 opl and op2 are equal opl | op2 evaluates opL and op2
if opl and op2 are different, that is, if
I= opl!=op2 |oplandop2 are notequal n opl ~ op2 one or the other of the operands is true

but not both

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Summary of Shift and Logical Operators

Each shift operator shifts the bits of the left-hand operand over by the number
of positions indicated by the right-hand operand. The shift occurs in the These operators perform logical functions on their operands.
direction indicated by the operator itself.

Operator Use Operation Operator Use Operation

& opl & op2 bitwise and

>> opl >>op2 shift bits of op1 right by distance op2 ||

shift bits of op1 left by distance op2

<< opl << op2 opl | op2 bitwise or

(signed) |
.. opl >>> 0p2 shlft_blts of opl right by distance op2 n opl A op2 bitwise xor
(unsigned)
~ ~op2 bitwise complement

Summary of Assignment Operators

The basic assignment operator looks as follows and assigns the value of 0p2 to opl: opl = op2;

In addition to the basic assignment operation, the Java programming language defines these shortcut assignment operators that
perform an operation and an assignment using one operator.

Operator Use Equivalent to || Operator Use Equivalent to
+= opl+=o0p2 | opl=opl+op2 II |= opl |= op2 opl =opl|op2
-= opl—- =o0p2 | opl=opl-op2 " = opl "= op2 opl =opl”op2
= opl=op2 | opl=opl*op2 " <<= opl <<= op2 opl = opl << op2
/= opl/=op2 | opl=opl/op2 II >>= opl >>= op2 opl = opl >>op2
%= opl %=op2 | opl=opl % op2 " >>>= opl >>>=op2 opl = opl >>>op2
&= opl &=op2 | opl=opl & op2 II

Summary of Other Operators
The Java programming language also supports these operators.

Operator Use Description
?: opl ? op2: op3 If opl is true, returns op2. Otherwise, returns op3.
[1 type [] Declares an array of unknown length, which contains elements of type type.
[1 type[opl] Creates an array with op1 elements. This must be used with the new operator.
0 opi[op2] g\rfgesses the element at op2 index within the array opl. Indices begin at 0 and extend through the length of the array minus
opl.op2 Is a reference to the op2, member of opl.
0 opX(params) !De“clares or calls the Tethod named opl with the specified parameters. The list of parameters can be an empty list. The list
is “comma-separated.
(type) (type) opl Casts (converts) opl to type. An exception will be thrown if the type of opl is incompatible with type.
new new opl Creates a new object or array. Note that opl is either a call to a constructor or an array specification.

instanceof | opl instanceof op2 | Returns true if opl is an instance of op2.

Primitive Data Types in VB and Java

Visual Basic Java
Data Data
Storage Range Storage Range
Type Type
1 byte 5 1 byte 710 27
Byte (8 bits) 0to255(0to2°-1) byte (8 bits) -12810127 (-2"to 2" - 1)
2 bytes } 1540 515 2 bytes 15, 515
Integer (16 bits) 32,768 t0 32,767 (27 to 27 - 1) short (16 bits) —-32,768 10 32,767 (-2°t0 2™ - 1)
4 bytes B 3L, o3l . 4 bytes 2 2
Long (32 bits) 2,147,483,648 to0 2,147,483,647 (-2* to 2** - 1) Int (32 bits) —-2,147,483,648 t0 2,147,483,647 (-2*" to 2> - 1)
8 bytes -9,223,372,036,854,775,808 to
N/A NIA || NIA 1ong I (64 bits) || 9.223.372.036,854,775,807 (2% to 2% — 1)
4 bytes —3.402823E38 to —1.401298E-45 for negative 4 bytes —3.402823E38 to —1.401298E-45 for negative
Single (32%- values; 1.401298E-45 to 3.402823E38 for float v values; 1.401298E-45 to 3.402823E38 for positive
its) o (32 bits)
positive values values
8 bytes —1.79769313486232E308 to —4.94065645841247E-324 B (i —1.79769313486232E308 to —4.94065645841247E-
Double || (g4 i’)its) for negative values; 494065645841247E-324 to double || g, {)its) 324 for negative values; 4.94065645841247E-324 to
1.79769313486232E308 for positive values 1.79769313486232E308 for positive values
8 bytes —922,337,203,685,477.5808 to
Currency - 922,337,203,685,477.5807 (Used to store money N/A N/A N/A
(64 bits) values.)
+/-79,228,162,514,264,337,593,543,950,335 with no
. 14 bytes || decimal point; +/-7.9228162514264337593543950335
Decimal* (112 bits) || with 28 places to the right of the decimal; smallest non- N/A A A
zero number is +/—0.0000000000000000000000000001
String 10 bytes
(variable- (f(s)t?ilrtlz) 0 to approximately 2 billion characters N/A N/A N/A
length) length
String
(fixed- Lesr:rgi;hgof 1 to approximately 65,400 characters N/A N/A N/A
length)
16-bit .
. 0 to 65535 (64K possible values, usually used for
N/A NIA NIA char Unicode Unicode characters but can also be used for integers)
character
2 bytes .
Boolean (16 bits) True or False boolean 1 bit true or false
Date S January 1, 100 to December 31, 9999 N/A N/A N/A
(64 bits)
q 4 bytes ;
Object (32 bits) Any Object reference N/A N/A N/A
Variant
(with 16 bytes Any numeric value up to the range of a Double N/A N/A N/A
(128 bits)
numbers)
Variant 215 gﬁt“:‘:
(with (S 4115 Same range as for variable-length String N/A N/A N/A
+ string
characters) length

Variable Declarations in VB and Java

Variable Declarations in VB

VB Declaration Keywords
The following keywords are used to declare variables:

Dim, ReDim, Public, Private, Static

e Dim is used to declare variables at the module level
(global to a form module or code module) or at the
procedure level (local to a Sub or Function procedure).
Variables declared at the module level using the Dim
keyword are by default Private (see below).

e ReDim is used at the procedure level (local to a Sub or
Function procedure) to change the size of a global array
that has already been declared with Dim.

e Public is used to declare variables at the module level
(global to a form module or code module). A variable
declared as Public can be accessed by other form
modules or code modules.

o Private is used to declare variables at the module level
(global to a form module or code module). A variable
declared as Private cannot be accessed by other form
modules or code modules. Variables declared at the
module level using the Dim keyword are by default
Private.

o Static is used to declare variables at the procedure level
(local to a Sub or Function procedure). Unlike local
variables declared using Dim, the value of a Static
variable is retained once the Sub or Function returns.
(This means that the value of such a variable will be
saved for the next call of the Sub or Function.)

Exercise
Write a few VB variable declarations. Make sure that you
use each of the keywords listed above at least once.

Variable Declarations in Java

Note

In Java, there are no special keywords that are used to declare
variables. Instead, the primitive data type keywords are used in
declarations.

Simplest Form of Declaration
The simplest variable declarations in Java take the
following form:

primitiveDataType varl, var2, var3, ...;

where primitiveDataType is one of byte, char, short, int, long, float,
double or boolean.

For example, the statement

intx,vy, z;

declares three variables, X, y, and z of type int.

Variables can also be initialized in declarations as shown in
the following example:

int x=2, y=3, z=4;

Java Declaration Modifiers
The following Java keywords are used to modify variable
and method declarations:

public, private, protected, static, final, volatile, transient

public can be used to modify variable (i.e. data field) and
method declarations at the class level (global to a class). A
public variable (i.e. data field) or method is visible (can be
accessed) everywhere its class is visible.

private can be used to modify variable (data field) and method
declarations at the class level (global to a class). A private
variable (i.e. data field) or method is not visible (cannot be
accessed) outside its class.

protected can be used to modify variable (data field) and
method declarations at the class level (global to a class). A
protected variable or method is only visible (can only be
accessed) within its class, within its subclasses or within the
class package.

static can be used to modify variable and method declarations
at the class level (global to a class). No matter how many
instances of a given class are created, only a single copy of
each static data field will exist.

final is used along with static to declare constants

volatile and transient are used for more advanced
applications and will not be discussed here (see MSDN or
Sun’s Java Language Specification.)

Examples

public int initialVelocity=100;

private int finalVelocity=100;

private static int averageVelocity=100;

public static final float PI=3.14159; //Public constant
private static final float P1=3.14159; //Private constant

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/vs60anchor.asp
http://java.sun.com/docs/books/jls/

Naming Conventions in Java
Variable Names, Object Names and Method Names

Variable names, object names and method names should begin with a lowercase letter. All other letters in the variable
name should also be in lowercase except for the first letter of each “word” in the variable name (in the case that the

variable name consists of two or more words).

e.g. surname, givenName, dayOfWeek, buttonQuit, editName, setText, getText

Class Names and Constructor Method Names

The same conventions for naming variables and objects should be used for class and constructor method names except
that the first character of a class name should always be an uppercase letter. Note that the constructor methods for a

class must always have the same name as the class!

e.g. String, Button, FormRomanConverter, Edit

Constant Names

Constant names should consist entirely of uppercase letters and underscores.
e.g. P1, SECS_IN_DAY, HOURS_IN_DAY, DAYS_IN_YEAR

What’s the Difference between...
A Class and an Object?

You should think of a class as a blueprint or template for
creating objects. A class contains all the methods and data
fields needed to cause an object to behave in the desired
manner. Just as a single set of blueprints can be used to
construct as many houses as you like, a single class can be
used to create as many objects as you like. The constructor
methods of a class are analogous to the contractors who
build a house.

In many ways, a class is similar to a primitive data type.
Primitive data types are used to create variables while
classes are used to create objects.

What’s the difference between an object and a variable?
Read on!
Class Instantiations

An Object and a Variable?

Variables and objects are closely related. In fact, it is
possible to think of a variable as an object containing only
one data field. The main difference between the two is that
objects have a much richer structure. This is analogous to
atoms and molecules. While variables (the “atoms”) can
only store a single value, objects (the “molecules”) consist
of data fields (variables) and methods (functions).

For example, a String object consists of much more than
just a particular string’s value. A String object also
contains a large number of methods for manipulating the
string value.

When you instantiate a class, you create an object, that is, a concrete instance of the class. Most class instantiations in

Java take the following form:
ClassName objectName =

Name of Class
e.g. String

Name of Object
e.g. givenName

e.g. String givenName

new ClassName(parameters);

new keyword
(used to create new
instance of class)

Constructor Method
Call

= new String('Joe');

Several Examples of Array Declarations
double[] temperature;

or
double temperature[];

String[] name=new String[4];

or
String name[]=new String[4];

int[] height={160, 175, 182, 191};
or
int height[]={160, 175, 182, 191};

float[][] distance= new float[2][3];
or

float distance[][]= new float[2][3];
or

float[] distance[]= new float[2][3];

distance[0][0] = O
distance[0][1] = 10.7
distance[0][2] = 25.3
distance[1][0] = 10.7
distance[1][1] = O
distance[1][2] = 16.3

float[][] distance={{0, 10.7, 25.3},
{10.7, 0, 16.3}};

In this example, a variable of array type is declared but no array
object is created nor is any storage space allocated for the elements
(components) of the array.

Number of elements in the array.

Index 0 1 2 3
Data

In Java, arrays are implemented as objects. Therefore, you need to
use the new keyword in the declaration of an array to create a new array
object.

Index 0 1 2 3
Data 160 175 182 191

Arrays can be declared, created and initialized on the same line. In such
cases, the new keyword should not be used. The array object is
automatically created when a list of initializers is included.

0 1 2
0 - - -
1 - - -

The statements shown at the left can be used to declare and create a
two-dimensional array of float values. The row indices run from
0 to 1 and the column indices run from 0 to 2. Without any
assignment statements, however, the two-dimensional array is
empty (i.e. the elements have no value).

0 1 2
0 0 10.7 25.3
1 10.7 0 16.3

Once the assignment statements at the left are executed, the two-
dimensional array (matrix) will contain the values shown above.

This statement is an alternative (and probably preferable) method of
declaring, creating and initializing the two-dimensional array shown
above. Each row of the matrix is enclosed in braces and listed in
the desired order.

Program Control Flow — Sequence, Selection and Repetition
Essential Selection Structures in VB and Java

Control Flow Structure

Sequence

Statement 1
Statement 2

Statement 3

Selection (Example 2)

Statement 1

false

Statement 2

false

Statement 3

false

true

false

Statement 4

VB

statementl
statement2
statement3

Structure

IT relationalExpression Then
statementl
statement2

Else
statement3

End IFf

Example

If X > 3 Then
X X -4
Y Y + X
Else
X
End If

X+ 4

Structure

IT relationalExpressionl Then
statementl

Elself relationalExpression2 Then
Statement2

Elself relationalExpression3 Then
Statement3

Elself relationalExpression4 Then
Statement4

End if

Example

If X > 3 Then
X=X-4

Elself X >= 0 And X < 3 Then
X=X+ 4

Elself X >= -3 And X < 0 Then
X=X-28

Elself X >= -9 And X < -3 Then
X=X+ 8

End If

Java

statementl;
statement?2;
statement3;

Structure
iT (relationalExpression)

{

statementl;
statement?2;

}

else
statement3;

Example
if (x> 3)

X -4;
y + X;

<
I

X = X + 4;

Structure

it (relationalExpressionl)
statementl;

else if (relationalExpression2)
statement?;

else if (relationalExpression3)
statement3;

else if (relationalExpression4)
statement4;

X -4;

X >0 & x < 3)

X + 4;

X > -3 & x<0)
X - 4;

(X >= -9 & x < -3)
X + 8;

0]
%]
D

0] (0]
%] %]
D D
Il:hlll:hlll-hll

Please Note: In Java, C and C++, brace brackets (i.e. “{” and “}”’) are used to group one or more statements to create a compound
statement. Brace brackets are used in “if” statements, loops, method definitions, class definitions and a few other structures. The
braces must be used to group two or more statements. Braces are optional whenever a group consists of only one statement.

Advanced Selection Structures in VB and Java

VB

Structure
Select Case testExpression

Case expressionListl
Statements

Case expressionList2
Statements

Case expressionList3
Statements

Case Else
statements

End Select

Example
Select Case Number

Case 1 To 5

Debug.Print ""Between 1 and 5"
Case 6, 7, 8

Debug.Print "Between 6 and 8"
Case 9 To 10

Debug.Print "Greater than 8"
Case Else

Debug.Print ""Not between 1 and 10"
End Select

Equivalent To

If Number >= 1 And Number <= 5 Then
Debug.Print "Between 1 and 5"
Elself Number >= 6 And Number <=
Debug.Print ""Between 6 and 5"
Elself Number >= 9 And Number <=
Debug.Print "‘Greater than 8"

Else
Debug.Print "Not between 1 and 10"
End If

8 Then

10 Then

Note

The “Select ... Case” statement in VB is much more flexible
than the “switch” statement in Java. See msdn.microsoft.com for
more details.

N/A

Java

Structure
switch (integerExpression)

{

case O:
statements
break;

case 1:
statements
break;

case 2:
statements
break;

default:
statements

}

Example
int bracket = Integer.parselnt (stdin.readLine());

switch (bracket)

case 1:
System.out.println("Pay no taxes");
break;

case 2:
System.out.println("Pay 20% taxes");
break;

case 3:
System.out.println("Pay 30% taxes");
break;

default:
System.out.println ("Error: bad input");

Equivalent To
int bracket = Integer.parselnt (stdin.readLine()) ;
if (bracket == 1)

System.out.println ("Pay no taxes");

else if (bracket == 2)
System.out.println("Pay 20% taxes");
else if (bracket == 3)

System.out.println("Pay 30% taxes");
else

System.out.println ("Error: bad input");

Structure

rel exp ? expl exp2
Example

Z =a«<Db? a: b;
Equivalent To

if (a < b)
z = a;
else
z = b;

http://msdn.microsoft.com/

Essential Repetition Structures in VB and Java

VB

Java

Structure

Do While RelationalExpression
statementl
statement2

Loop

Example

FactorsOfTwo = O
Num = Num \ 2

Do While Num > 0

FactorsOfTwo = FactorsOfTwo + 1
Num = Num \ 2

Loop

Note

In VB, a “Do” loop can be ended prematurely by using the
“Exit Do” statement. A “For” loop can be ended prematurely
using the “Exit For” statement. Although it is often extremely
convenient to exit from loops and other structures prematurely,
programs that do so are almost impossible to verify for
correctness and can be extremely difficult to debug. Therefore,
such statements should be used sparingly, if at all.

Structure

/* "while" loop with a single statement
Braces are not needed. */

while (relationalExpression)
Statement;

/* "while" loop with a compound statement
Braces are needed. */
while (relationalExpression)

statementl;
statement2;
Examples

while (x > 10)

X =x - 1;
factorsOfTwo = 0;
num = num / 2;
while (num > 0)

factorsOfTwo = factorsOfTwo + 1;
num = num / 2;

}

Note
In Java, a loop can be ended prematurely by using the “break;”
statement (as was the case with the “switch” statement).

Structure

Do
statementl
statement?2

Loop While RelationalExpression

Example
NumDivisionsByTwo = O
Do
NumDivisionsByTwo = NumDivisionsByTwo + 1

Num = Num \ 2
Loop While Num > 0

Structure

//"do while" loop with a single statement
do

Statement;
while (relational expression) ;

//"do while" loop with a compound statement
do

{

statementl;
statement2;

} while (relational expression) ;

Example

numDivisionsByTwo = -1
do

numDivisionsByTwo++;
num = num / 2;
} while (num > 0)

VB

Java

Structure
For counter = start To end [Step step]

statementl
statement2

Next [counter]

Examples

'Evaluate 0+1+2+3+4
Dim I As Long, Sum As Integer
Sum = 0
For I = 0 To 4
Sum = Sum + I
Next 1

'Important Exercise: Rewrite the strange
'Java program segment at the right in VB.
'What difficulties do you encounter when
'you try to use a "For .. Next" loop in your
'VB code?

Structure

/* "for" loop with a single statement
Braces are not needed. */

for (exprl; relExpr; expr2)
statement;

/* "for" loop with a compound statement
Braces are needed. */
for (exprl; relExpr; expr2)

statementl;
statement?2;

}

Examples
//Evaluate 0+1+2+3+4
int sum = 0;

for (int 1 = 0; 1 < 5;
sum += 1i;

i++)

//This strange example shows that the
//"while" condition in a "for" does not
//need to involve the loop counter!

int j = 0, x = 0;

for (int 1 = 0; x < 1500; i++)

x =1+ 3;
jo=1*1

* i

N/A

Structure

//"do while"
do

{

loop with a compound statement

statementl;
statement2;

} while (relational expression) ;

Example
factorsOfTwo = -1
do

{
factorsOfTwo = factorsOfTwo + 1
num = num / 2

} while (num > 0)

UNDERSTANDING THE ORGANIZATION OF JAVA AND J++

What exactly is Object-Oriented Programming?

Object-oriented programming (OOP) is a highly organized method of coding in which all programming tasks are centred
about reusable, neatly packaged items called objects. Often, objects are modelled after real-world entities. Examples of
such objects include command buttons (called “buttons” in J++), text boxes (called “edit controls” in J++) and option
buttons (called “radio buttons” in J++).

- Form
Edit Controls

M -+ Implementation of Time meerte E]@E]

Stopwatch Options Help

Days Houwsrs Minutos Seconds

Stop Watch Controls

[+ Count Up)
Conwert Start Eeszet

Buttons Radio Buttons Label

However, objects do not need to be confined to the realm of real-world objects. They can be patterned after just about
anything!

What the Heck are Classes?

Whenever | teach students about classes, | can usually sense a heightened feeling of tension in the air. First, the concept
of a class in object-oriented programming is already confusing enough. What really seems to bother the students,
however, is the number of times per period that the word “classes” is uttered. It reminds them too much of all their
schoolwork. Perhaps the creators of OOP should have thought of a different word.

There are many ways of explaining the concept of a class, but I think that the simplest way is to think of classes as
blueprints or templates for creating objects. The class itself contains all the code that is required to make an object
function in the desired manner. Every time we create a new object of a certain class, a copy is made of (most of) the code
in the class for the new object. In a sense, the class is able to “reproduce” itself whenever an object of its type is created.

A helpful analogy is to think of a class as a cookie cutter. The cookie cutter (the class) is used to create any humber of
cookies (the objects). It is also important to remember that classes should are most often used to model real-world
objects. For example, the J++ class “Button” can be considered a blueprint for making button objects.

Simple Example of Classes from Visual J++

Visual programming languages are wonderfully convenient because they allow us to create many kinds of objects without
writing any code. One must realize, however, that code is still required to make these objects work! So where does the
code come from? The answer is that it is generated automatically by the programming software being used. See next

page...

When you begin a new J++ project, a certain amount of code is generated automatically for you. In particular, a portion
of the code is displayed with a grey background. It is prefaced with a comment reminding you not to modify the code
manually. This code is automatically generated by J++ for all the objects you create visually. At the outset of a new
project, there isn’t much code.
/**

* NOTE: The following code is required by the Visual J++
* form designer. It can be modified using the form.

* editor. Do not modify it using the code editor.

*/

Container components = new Container();

M Form1

The keyword “this” is used

as a placeholder for the

private void initFormQ) name of an object. This

{ gives programmers the
this.setSize (new Point(300,300)); freedom to choose whatever

}

this.setText (“'Forml'™); names they like.

As you add objects to your form, the code becomes more complicated:

Container components
Button buttonConvert

new Container();
new Button();

Edit editNumber = new Edit();
Button buttonClose = new Button();
Button buttonClear = new Button();

private void initForm()

M Sample Form

{
this.setSize (new Point(300,300));
this.setText ('Sample Form™);
this.setAutoScaleBaseSize(nhew Point(5, 13));
this.setClientSize(new Point(292, 267));
buttonConvert.setLocation(new Point(16, 192));
buttonConvert.setSize(new Point(80, 32));
buttonConvert.setTablndex(0); The “new” keyword is used to
buttonConvert.setText('Convert™); instantiate a class. That is, it is
buttonClear.setLocation(new Point(112, 192)); used to create an instance of the
buttonClear.setSize(new Point(72, 32)); class. A more familiar term for
buttonClear.setTablndex(1); instance is object of course.
buttonClear.setText("'Clear');
buttonClear.addOnClick(new i i Notice the format of most of these
EventHandler(this.buttonClear_click)); statements. Most of them are of
buttonClose.setlLocation(new Point(200, 192)); the following form:
buttonClose.setSize(new Point(64, 32));
buttonClose.setTablIndex(2); objectName.memberName(...)
buttonClose.setText("'Close™);
editNumber.setLocation(new Point(16, 56)); The final line of code
editNumber.setSize(new Point(256, 20)); (this.setNewControls(..)) is
editNumber.setTablndex(3); used to store the names of all the
editNumber.setText(""); controls (i.e. objects) on the form
this.setNewControls(new Control[] { in an array. The elements of the
editNumber, array all belong to the class
buttonClose, “Control.”
buttonClear, Note: By studying Java’s class
buttonConvert}); hierarchy, we would notice that
¥ the class “Control” only exists in

the Microsoft language extensions.
It is not part of Sun’s Java
language specification.

Java is the only Popular Programming Language that is Entirely Object-Oriented

Many people have heard of Java, C++ and Visual Basic. Furthermore, many people also know that these languages are
object-oriented. What many people do not realize is that Java is the only language of these three that is entirely object-
oriented. C++ has several features inherited from C that are not object-oriented. Nonetheless, C++ is a superbly
organized object-oriented language when compared to Visual Basic! VB is a highly disorganized jumble of object-

oriented and non-object-oriented features.

The beauty of Java is that it is entirely based on classes. Once you understand classes, you pretty much understand the

entire language! The diagrams below show the basic structure of Java.

Object Browser - ¥iewing All Classes and Members by Package

¢ .9 T F G o B
Classes & Manihers Empty

+- (il comunz.xmLom -
(il comumz.xmlparser

(i comums.xmLutil

(i Default package [FirztProject]

(il java.applet

(i javaawt

i javaauwtdatatransfer

(il java.auwtevent

(i java.awtimage

il javaawtpeer

il javaheans

(i java.io

@

i javalang reflect

(il java.muath A

package java.lang

e O B O Oy e O B

Object Browser

Object Browser - Yiewing All Classes and Members by Package

4B K E Bl B2

Classes & Members

+- ([javaheans
+- () java.io
I javalang
EI@ "
= abs
o o3
= AhstractMethodEmor
= anos
=@ activeCount
= activelsroupCount
B activeThread]
Hy 24
= allowThreadinspension
=@ append
<
Class AhstracthethodExror
Member of java.lang

Iembers of 'AbstractMethodError’

= AbstractMethodErro)
= AbstractMethodErron String)

Chject Browser

By loading the “Object Browser” in
J++, one can view a list of all the
available packages.

A package is a collection of classes,
interfaces, methods (functions) and
data fields (properties).

Notice that most of the package names
begin with “java,” “sun” or “com.” The
packages whose names begin with
“com” collectively form the Microsoft
Language Extensions. They are not
contained in Sun’s Java language
specification.

We shall not be studying interfaces in
this course. If you are interested in
learning about them, consult MSDN
and/or any other appropriate sources.

This shows an expanded view of the
package “java.lang.” You can see that it
contains data fields (the blue-green
icons), methods (the violet icons) and
classes (the multi-coloured icons). If
you were to scroll down further in the
package, you would also see a few
interfaces. You may also notice that
certain members have a small padlock
icon beside them. The padlock indicates
the private members.

A Data Field

A Class

A Method

USING STRINGS IN JAVA

Introduction

Unlike many other programming languages you may know, Java does not have a string primitive type. Strings are
implemented through classes. There is a class called “String” but there is no primitive data type called “string.”

You probably have noticed that Java has a small number of primitive data types, especially when compared to a language
like VB. At first, this seems somewhat annoying, but as our understanding of Java deepens, we begin to appreciate the
method behind the madness. You should think of each of these primitive data types as one of the basic elements out of
which all other data types are constructed. Just as complex molecules are made up of chemical elements and simpler
molecules, complex data types like strings are constructed from primitive data types and simpler classes. In particular,
the “String” class uses an array of type “char” to store strings. (The primitive data type “char,” inherited from the C
programming language, is used to store single characters. In fact, any variable of type “char” stores an integer ranging
from 0 to 65535 (0 to 2'° — 1). Although the type “char” is intended to store the Unicode code of any Unicode character,
it can also be used as if it were intended to store unsigned integers in the range given above.)

Examples

Creating an Object of the “String” Class

String surname = new String(); //Create an object of class String and set initial value to "
String givenName = new String('Joe'); //Create an object of class String and set initial value to "Joe"
String daysText =new String(editDays.getText());//Set initial value to text in "editDays" edit cont.
String hoursText=new String(editHours.getText());//Set initial value to text in "editHours"™ edit
String minutesText=new String(editMinutes.getText());//Set initial value to text in "editMinutes"
String secondsText=new String(editSeconds.getText());//Set initial value to text in "editSeconds™

Name of Indicates Call to the Parameter of the constructor
Name of " . -
the creation of a constructor method method of the class (initial
the class) A N
object new object of the class value of string in this case)

Working with String Objects

Once you have instantiated a string, you can work with it using the “+” string operator and any of the methods in the
string class. Since the number of members of each class tends to be large, it is not advisable to memorize the names and
functions of each member. Instead, you should use the MDSN library to find the information that you need.

UsiNnG THE MSDN LIBRARY TO LEARN ABOUT CLASS M EEMBERS

Use the “Search” tab of the MSDN library to search for information on a particular class. For instance, to find
information on the “String” class, type “String” in the search field and press “Enter.” From the list of topics displayed,
double-click on “String Members.” You will obtain a list of all the members of the “String” class.

E? MSDHN Library ¥isual Studio 6.0

File Edit Wiew &o

Help

HOE O+ L e 2 @

Hide Locate Prewious — Mest Back
Active Subzet
|‘J++ / ﬂ
LContents] Index Search l Favorites]
Type in the word(z) to search for:
|String ﬂ j
Lizt Topics | Dizplay |
Select topic: Found: 500
Title | Location | Ra
2012 The Clagzja.. WFCand.. 1
2013 The Claszja.. WFCand... 2
String Mernbers WFCand... 3
StringB uffer. inzert WFCand... 4
StringBuffer.append WFCand... B
StringBuffer Members WFCand ... B
208 TheClazzjav... WFCand... 7
String.String WFCand... 8
DatabaseMetabata.. WFCand.. 13
20.7 TheClaszjav... WFCand... 10
2224 TheClaszja.. WFCand ... 11
23105 String Literals WFCand ... 12
2110 The Clagzja.. WFCand... 13
Itils. formnat WFCand... 14
15.25.2 Compound... WFC and ... 15 %
< »

[Search previous results
[v Match similar waords
[Search titles anly

Faonward top Refrezh

Home

Make sure that the active subset is
set to “J++.” Otherwise, you will
obtain too many irrelevant results.

Frint

it Members

Class Owerview | This Package | All F‘a&’l&

Constructors

Mame /Béc:riptiun
String[§] S e —— Strir
String[(Sa=I) Construct a new

array of bytes using

The “String” class has 11 different
versions of the constructor method.
Each version has the same name
and the same purpose. The only
difference between one version and
another is in the type of data
accepted. This idea is known as
polymorphism. Whenever there
are two or more versions of the
same method, we say that the
method is overloaded.

encoding.

EIne bytel], int)

sllocates a new Eage containing characters
constructed from an array of B-bit integer values,

Deprec:r:lted.

Ennebytel], int,

inth

Construct a new by converting the specified
subarray of bytes using the platform's default

character encoding.

B byte[], int,

AIIDcafs a new constructed from a subarray

inft, int? of an array of 8-bit integer values. Deprecated.

EIeatinel bytel], int, | Construct a new by conwverting the specified

int, K subarfay of bytes using the specified character
encoding.

arra

Congtruct a new by converting the specified
of bytes using the specified character encoding. | s

[

Click on a link to get more details
on how the method is used.

Avoid the use of deprecated methods. These methods are
scheduled to be discontinued in upcoming releases of Java.

Example of a Static (Class) Method

Syntax

public static String valueOf(boolean b)

Parameters
b, a boolean.

Returns

If the argument is true, a string equal to "true" is
returned; otherwise, a string equal to "false" is

returned.
Description

Returns the string representation of the boolean

argument.

Example of an Instance (non-static) Method

Syntax

public String trim()

Returns

this string, with white space removed from the
beginning and the end.

Description

Removes white space from both ends of this string. All
characters that have codes less than or equal to \u0020' (the
space character) are considered white space.

WHAT IS THE DIFFERENCE BETWEEN A STATIC (CLASS) METHOD AND AN INSTANCE METHOD?

Earlier on, we described the instantiation of a class as a process that involves creating a copy of most of the code in the
class. The object that results from this process is completely self-contained in that it has a copy of most of the code that it
needs to function in the intended manner. There are some methods, however, that are not copied for every object created,
which is why we keep stating “most of the code” instead of “all the code.”

Most methods, known as instance methods, can only exist in the context of an object. A copy of such a method must be
made for every instance (object) of a class because these methods depend directly on the values of the data fields
belonging to the object. For example, every edit control has methods called “getText” and “setText.” Both of these
methods have to be instance methods because the values they return depend directly on the text stored in the edit control.
Thus, each edit control that you create must have its own copy of the “getText” and “setText” methods.

There are some methods, on the other hand, that can exist entirely independently of any objects. Such methods are called
static or class methods. Class methods are independent of the structure of any particular object and therefore, can be used
without instantiation. This means that only one copy of a static method is needed, a feature that is very helpful in the
conservation of memory! For example, every control, including edit controls has a static method called
“getMouseButtons.” Since this method depends only on which mouse buttons are pressed and does not depend on the
state of any particular control, it is best to define it as a static method.

Class and Instance Methods of the String Class

Most methods in the String class are instance methods. The only class (static) methods are “valueOf” and
“copyValueOf.” The table below illustrates the use of both types of methods in the context of the “String” class.

String givenName=new String('‘Rachel™);
int x = 43; String firstlnitial=new String();
editNumber.setText(String.valueOf(x)); firstlnitial=givenName.charAt(0);

The class name is used to access static (class) The object name is used to access instance methods. The action
methods. No object of the given class need exist. performed by the method relates directly to the particular object.

Jtring givenMName=new 3tring|("Rachel™):
String firstInitial=new Stringl):
firstInitial=givenI‘-Iame.|

~fpicharht .
=i compareTo

In this example, there is no ‘I‘n this examelt_e, | =4 concat

string object associated with gl_venName e St”.”g A copyVameOf

the code. All we want to do I access dllgg - endsWith

is convert an integer value to fiigmbers (both class and = equals

instance methods), simply

string form. Simply type the type the name of the object . equalslznorease

name of the class (String) followed by a dot. Then # cetBytes
el e
the available members. ¢ from the pop-tf e =

menu that appears. Notice
that the list of available
members is very long
compared to the class
method example at the left.

Notice that the list is very
short since most method are
instance methods.

	Java and J++ Reference Notes
	 Learning Java Operators, Data Types and Control Flow Structures by Comparing to VB
	Introduction
	Operators in VB and Java
	 Summary of Java Operators (from http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html)
	Summary of Arithmetic Operators
	Summary of Relational and Conditional Operators
	 Summary of Shift and Logical Operators
	Summary of Assignment Operators
	Summary of Other Operators

	 Primitive Data Types in VB and Java
	 Variable Declarations in VB and Java
	Variable Declarations in VB
	Variable Declarations in Java

	 Naming Conventions in Java
	Variable Names, Object Names and Method Names
	Class Names and Constructor Method Names
	Constant Names

	What’s the Difference between…
	A Class and an Object?
	An Object and a Variable?

	Class Instantiations
	 Several Examples of Array Declarations
	 Program Control Flow – Sequence, Selection and Repetition
	Essential Selection Structures in VB and Java
	 Advanced Selection Structures in VB and Java
	 Essential Repetition Structures in VB and Java

	 Understanding the Organization of Java and J++
	What exactly is Object-Oriented Programming?
	What the Heck are Classes?
	Simple Example of Classes from Visual J++
	 Java is the only Popular Programming Language that is Entirely Object-Oriented

	 Using Strings in Java
	Introduction
	Examples
	Creating an Object of the “String” Class
	Working with String Objects

	 Using the MSDN Library to Learn about Class Members
	Example of a Static (Class) Method
	Example of an Instance (non-static) Method

	 What is the Difference between a Static (Class) Method and an Instance Method?
	Class and Instance Methods of the String Class

