
JAVA AND J++ REFERENCE NOTES
JAVA AND J++ REFERENCE NOTES..1
LEARNING JAVA OPERATORS, DATA TYPES AND CONTROL FLOW STRUCTURES BY COMPARING TO VB2

INTRODUCTION ..2
OPERATORS IN VB AND JAVA ..2
SUMMARY OF JAVA OPERATORS (FROM HTTP://JAVA.SUN.COM/DOCS/BOOKS/TUTORIAL/JAVA/NUTSANDBOLTS/OPSUMMARY.HTML) .3

Summary of Arithmetic Operators..3
Summary of Relational and Conditional Operators...3
Summary of Shift and Logical Operators ...4
Summary of Assignment Operators ..4
Summary of Other Operators ...4

PRIMITIVE DATA TYPES IN VB AND JAVA ...5
VARIABLE DECLARATIONS IN VB AND JAVA...6

Variable Declarations in VB ..6
Variable Declarations in Java..6

NAMING CONVENTIONS IN JAVA..7
Variable Names, Object Names and Method Names..7
Class Names and Constructor Method Names ...7
Constant Names..7

WHAT’S THE DIFFERENCE BETWEEN…..7
A Class and an Object? ..7
An Object and a Variable? ...7

CLASS INSTANTIATIONS...7
SEVERAL EXAMPLES OF ARRAY DECLARATIONS...8
PROGRAM CONTROL FLOW – SEQUENCE, SELECTION AND REPETITION ..9

Essential Selection Structures in VB and Java ...9
Advanced Selection Structures in VB and Java..10
Essential Repetition Structures in VB and Java ...11

UNDERSTANDING THE ORGANIZATION OF JAVA AND J++...13
WHAT EXACTLY IS OBJECT-ORIENTED PROGRAMMING? ...13
WHAT THE HECK ARE CLASSES? ...13
SIMPLE EXAMPLE OF CLASSES FROM VISUAL J++ ...13
JAVA IS THE ONLY POPULAR PROGRAMMING LANGUAGE THAT IS ENTIRELY OBJECT-ORIENTED ...15

USING STRINGS IN JAVA ...16
INTRODUCTION ..16
EXAMPLES ...16
CREATING AN OBJECT OF THE “STRING” CLASS ..16
WORKING WITH STRING OBJECTS..16

USING THE MSDN LIBRARY TO LEARN ABOUT CLASS MEMBERS ...17
EXAMPLE OF A STATIC (CLASS) METHOD..17
EXAMPLE OF AN INSTANCE (NON-STATIC) METHOD ..17

WHAT IS THE DIFFERENCE BETWEEN A STATIC (CLASS) METHOD AND AN INSTANCE METHOD?.....................18
CLASS AND INSTANCE METHODS OF THE STRING CLASS ...18

LEARNING JAVA OPERATORS, DATA TYPES AND CONTROL FLOW STRUCTURES BY COMPARING TO VB
Introduction
The tables given below can be used to translate VB expressions and statements into equivalent Java statements and expressions. By
using your extensive knowledge of VB in conjunction with the translation guide given below, it should not take you very long to learn
how to write simple Java programs.
Operators in VB and Java

Operator VB VB Example Java Java Ex. Operator VB VB Example Java Java Ex.

Arithmetic Operators Comparison (Relational) Operators
Unary Plus + A = +2.35E23 + a = +2.35e23; Greater than > If X > 2 Then > if (x > 2)

Unary Minus − A = −2.35E23 − a = −2.35e23; Less than < If X < 2 Then < if (x < 2)

Exponent ^ A = B ^ C pow a = pow (b, c); Greater than or Equal to >= If X >= 2 Then >= if (x >= 2)

Multiplication * A = B * C * a = b * c; Less than or Equal to <= If X <= 2 Then <= if (x <= 2)

Division / A = B / C / a = b / c; Equal to = If X = 2 Then == if (x == 2)

Integer Division \ A = B \ C / a = b / c; Not Equal to < > If X <> 2 Then != if (x != 2)

Remainder (mod) Mod A = B Mod C % a = b % c; Boolean (aka Conditional or Logical)Operators
Addition + A = B + C + a = b + c; Boolean AND And If X>2 And Y=1 _

 Then & if (x>2 & y=1)

Subtraction − A = B − C − a = b − c; Boolean OR Or If X>2 Or Y=1 Then | if (x>2 | y=1)

Shortcut Increment and Decrement Operators Boolean NOT Not If Not Sorted Then ! if (!sorted)

Postfix Increment N/A A(I) = 3
I = I + 1 ++ a[i++] = 3; Boolean Exclusive

OR Xor If X>2 Xor Y=1 _
 Then ^ if (x>2 ^ y=1)

Prefix Increment N/A I = I + 1
A(I) = 3 ++ a[++i] = 3; Conditional Boolean

AND N/A N/A && if (x>2 && y=1)

Postfix
Decrement N/A A(I) = 3

I = I − 1 − − a[i− −] = 3; Conditional Boolean
OR N/A N/A | | if (x>2 | | y=1)

Prefix Decrement N/A I = I − 1
A(I) = 3 − − a[− −i] = 3; Boolean XNOR Eqv If X>2 Eqv Y=1 _

 Then N/A if (!(x>2 | y=1))

Assignment Operator Logical Implication Imp If X>2 Imp Y=1 _
 Then N/A if (!(x>2) | x>2 &

 y=1)

Assignment = A = B + C = a = b + c; Bitwise and Shift Operators

Shortcut Assignment Operators Bitwise AND And X = Y And Z & x = y & z;

 N/A X= X + Y += x += y; Bitwise OR Or X = Y Or Z | x = y | z;

 N/A X= X − Y − = x − = y; Bitwise XOR Xor X = Y Xor Z ^ x = y ^ z;

 N/A X= X * Y *= x *= y; Bitwise Complement Not X = Not Y ~ x = ~y;

 N/A X= X / Y /= x /= y; Bitwise XNOR Eqv X = Y Eqv Z N/A x = ~(y | z);

 N/A X= X Mod Y %= x %= ;y Bitwise Logical
Implication Imp X = Y Imp Z N/A x = ~y | y & z;

 N/A X= X And Y &= x &= y; Bitwise Left Shift N/A N/A << x = y << z;

 N/A X= X Or Y |= x |= y; Signed Bitwise Right
Shift N/A N/A >> x = y >> z;

 N/A X= X Xor Y ^= x ^= y; Unsigned Bitwise
Right Shift N/A N/A >>> x = y >>> z;

 N/A N/A <<= x <<= y; Other Operators

 N/A N/A >>= x >>= y; Cast
In VB, type conversions
are done with intrinsic
functions.

() x = (double) y;

 N/A N/A >>>= x >>>= y; Ternary Conditional
Operator N/A ?: x=(y<z) ? y : z;

Note: There are a few other operators in Java that will be included in a separate table.

“pow” is not an operator. It is a mathematical function found in java.lang.Math.

Summary of Java Operators (from http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html)
Summary of Arithmetic Operators

The following table lists the basic arithmetic operators
provided by the Java programming language.

These short cut operators increment or decrement a number by
one.

Operator Use Description Operator Use Description

+ op1 + op2 Adds op1 and op2 (numeric).
Concatenates op1 and op2 (string). ++ op++ Increments op by 1; evaluates to the

value of op before op is incremented

− op1 − op2 Subtracts op2 from op1 ++ ++op Increments op by 1; evaluates to the
value of op after it was incremented

* op1 * op2 Multiplies op1 by op2 − − op− − Decrements op by 1; evaluates to the
value of op before it was decremented

/ op1 / op2 Divides op1 by op2 − − − −op Decrements op by 1; evaluates to the
value of op after it was decremented

% op1 % op2
Computes the remainder of
dividing op1 by op2

Here are the Java programming language’s other arithmetic operators.

Operator Use Description

+ +op Promotes op to int if it’s a byte, short, or char.

− −op Arithmetically negates op.

Summary of Relational and Conditional Operators

Use these relational operators to determine the relationship
between two values.

You can use the following conditional operators to form
multi-part decisions.

Operator Use Returns true if Operator Use Returns true if

> op1 > op2 op1 is greater than op2 && op1 && op2 op1 and op2 are both true,
conditionally evaluates op2

>= op1 >= op2 op1 is greater than or equal to op2 || op1 || op2 either op1 or op2 is true, conditionally
evaluates op2

< op1 < op2 op1 is less than op2 ! ! op op is false

<= op1 <= op2 op1 is less than or equal to op2 & op1 & op2 op1 and op2 are both true, always
evaluates op1 and op2

= = op1 = =
op2 op1 and op2 are equal | op1 | op2 either op1 or op2 is true, always

evaluates op1 and op2

!= op1 != op2 op1 and op2 are not equal ^ op1 ^ op2
if op1 and op2 are different, that is, if
one or the other of the operands is true
but not both

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Summary of Shift and Logical Operators

Each shift operator shifts the bits of the left-hand operand over by the number
of positions indicated by the right-hand operand. The shift occurs in the

direction indicated by the operator itself.
These operators perform logical functions on their operands.

Operator Use Operation Operator Use Operation

>> op1 >> op2 shift bits of op1 right by distance op2 & op1 & op2 bitwise and

<< op1 << op2 shift bits of op1 left by distance op2
(signed) | op1 | op2 bitwise or

>>> op1 >>> op2 shift bits of op1 right by distance op2
(unsigned) ^ op1 ^ op2 bitwise xor

 ~ ~op2 bitwise complement

Summary of Assignment Operators
The basic assignment operator looks as follows and assigns the value of op2 to op1: op1 = op2;
In addition to the basic assignment operation, the Java programming language defines these shortcut assignment operators that
perform an operation and an assignment using one operator.

Operator Use Equivalent to Operator Use Equivalent to

+= op1 += op2 op1 = op1 + op2 |= op1 |= op2 op1 = op1 | op2

− = op1 − = op2 op1 = op1 − op2 ^= op1 ^= op2 op1 = op1 ^ op2

*= op1 *= op2 op1 = op1 * op2 <<= op1 <<= op2 op1 = op1 << op2

/= op1 /= op2 op1 = op1 / op2 >>= op1 >>= op2 op1 = op1 >> op2

%= op1 %= op2 op1 = op1 % op2 >>>= op1 >>>= op2 op1 = op1 >>> op2

&= op1 &= op2 op1 = op1 & op2

Summary of Other Operators
The Java programming language also supports these operators.

Operator Use Description

?: op1 ? op2 : op3 If op1 is true, returns op2. Otherwise, returns op3.

[] type [] Declares an array of unknown length, which contains elements of type type.

[] type[op1] Creates an array with op1 elements. This must be used with the new operator.

[] op1[op2] Accesses the element at op2 index within the array op1. Indices begin at 0 and extend through the length of the array minus
one.

. op1.op2 Is a reference to the op2, member of op1.

() op1(params) Declares or calls the method named op1 with the specified parameters. The list of parameters can be an empty list. The list
is “comma-separated.”

(type) (type) op1 Casts (converts) op1 to type. An exception will be thrown if the type of op1 is incompatible with type.

new new op1 Creates a new object or array. Note that op1 is either a call to a constructor or an array specification.

instanceof op1 instanceof op2 Returns true if op1 is an instance of op2.

Primitive Data Types in VB and Java

Visual Basic Java

Data
Type Storage Range Data

Type Storage Range

Byte 1 byte
(8 bits) 0 to 255 (0 to 28 – 1) byte 1 byte

(8 bits) −128 to 127 (–27 to 27 – 1)

Integer 2 bytes
(16 bits) -32,768 to 32,767 (–215 to 215 – 1) short 2 bytes

(16 bits) −32,768 to 32,767 (–215 to 215 – 1)

Long 4 bytes
(32 bits) -2,147,483,648 to 2,147,483,647 (–231 to 231 – 1) int 4 bytes

(32 bits) −2,147,483,648 to 2,147,483,647 (–231 to 231 – 1)

N/A N/A N/A long 8 bytes
(64 bits)

-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 (–263 to 263 – 1)

Single 4 bytes
(32 bits)

−3.402823E38 to −1.401298E-45 for negative
values; 1.401298E−45 to 3.402823E38 for
positive values

float 4 bytes
(32 bits)

−3.402823E38 to −1.401298E-45 for negative
values; 1.401298E−45 to 3.402823E38 for positive
values

Double 8 bytes
(64 bits)

−1.79769313486232E308 to −4.94065645841247E-324
for negative values; 4.94065645841247E−324 to
1.79769313486232E308 for positive values

double 8 bytes
(64 bits)

−1.79769313486232E308 to −4.94065645841247E-
324 for negative values; 4.94065645841247E−324 to
1.79769313486232E308 for positive values

Currency 8 bytes
(64 bits)

−922,337,203,685,477.5808 to
922,337,203,685,477.5807 (Used to store money
values.)

N/A N/A N/A

Decimal* 14 bytes
(112 bits)

+/−79,228,162,514,264,337,593,543,950,335 with no
decimal point; +/−7.9228162514264337593543950335
with 28 places to the right of the decimal; smallest non-
zero number is +/−0.0000000000000000000000000001

N/A N/A N/A

String
(variable-

length)

10 bytes
(80 bits)
+ string
length

0 to approximately 2 billion characters N/A N/A N/A

String
(fixed-
length)

Length of
string 1 to approximately 65,400 characters N/A N/A N/A

N/A N/A N/A char
16-bit

Unicode
character

0 to 65535 (64K possible values, usually used for
Unicode characters but can also be used for integers)

Boolean 2 bytes
(16 bits) True or False boolean 1 bit true or false

Date 8 bytes
(64 bits) January 1, 100 to December 31, 9999 N/A N/A N/A

Object 4 bytes
(32 bits) Any Object reference N/A N/A N/A

Variant
(with

numbers)

16 bytes
(128 bits) Any numeric value up to the range of a Double N/A N/A N/A

Variant
(with

characters)

22 bytes
(176 bits)
+ string
length

Same range as for variable-length String N/A N/A N/A

Variable Declarations in VB and Java

Variable Declarations in VB Variable Declarations in Java

VB Declaration Keywords
The following keywords are used to declare variables:

Dim, ReDim, Public, Private, Static
• Dim is used to declare variables at the module level

(global to a form module or code module) or at the
procedure level (local to a Sub or Function procedure).
Variables declared at the module level using the Dim
keyword are by default Private (see below).

• ReDim is used at the procedure level (local to a Sub or
Function procedure) to change the size of a global array
that has already been declared with Dim.

• Public is used to declare variables at the module level
(global to a form module or code module). A variable
declared as Public can be accessed by other form
modules or code modules.

• Private is used to declare variables at the module level
(global to a form module or code module). A variable
declared as Private cannot be accessed by other form
modules or code modules. Variables declared at the
module level using the Dim keyword are by default
Private.

• Static is used to declare variables at the procedure level
(local to a Sub or Function procedure). Unlike local
variables declared using Dim, the value of a Static
variable is retained once the Sub or Function returns.
(This means that the value of such a variable will be
saved for the next call of the Sub or Function.)

Exercise
Write a few VB variable declarations. Make sure that you
use each of the keywords listed above at least once.

Note
In Java, there are no special keywords that are used to declare
variables. Instead, the primitive data type keywords are used in
declarations.

Simplest Form of Declaration
The simplest variable declarations in Java take the
following form:

primitiveDataType var1, var2, var3, …;
where primitiveDataType is one of byte, char, short, int, long, float,
double or boolean.

For example, the statement
int x, y, z;

declares three variables, x, y, and z of type int.

Variables can also be initialized in declarations as shown in
the following example:

int x=2, y=3, z=4;
Java Declaration Modifiers
The following Java keywords are used to modify variable
and method declarations:

public, private, protected, static, final, volatile, transient

• public can be used to modify variable (i.e. data field) and
method declarations at the class level (global to a class). A
public variable (i.e. data field) or method is visible (can be
accessed) everywhere its class is visible.

• private can be used to modify variable (data field) and method
declarations at the class level (global to a class). A private
variable (i.e. data field) or method is not visible (cannot be
accessed) outside its class.

• protected can be used to modify variable (data field) and
method declarations at the class level (global to a class). A
protected variable or method is only visible (can only be
accessed) within its class, within its subclasses or within the
class package.

• static can be used to modify variable and method declarations
at the class level (global to a class). No matter how many
instances of a given class are created, only a single copy of
each static data field will exist.

• final is used along with static to declare constants
• volatile and transient are used for more advanced

applications and will not be discussed here (see MSDN or
Sun’s Java Language Specification.)

Examples
public int initialVelocity=100;
private int finalVelocity=100;
private static int averageVelocity=100;
public static final float PI=3.14159; //Public constant
private static final float PI=3.14159; //Private constant

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/vs60anchor.asp
http://java.sun.com/docs/books/jls/

Naming Conventions in Java
Variable Names, Object Names and Method Names
Variable names, object names and method names should begin with a lowercase letter. All other letters in the variable
name should also be in lowercase except for the first letter of each “word” in the variable name (in the case that the
variable name consists of two or more words).
e.g. surname, givenName, dayOfWeek, buttonQuit, editName, setText, getText

Class Names and Constructor Method Names
The same conventions for naming variables and objects should be used for class and constructor method names except
that the first character of a class name should always be an uppercase letter. Note that the constructor methods for a
class must always have the same name as the class!
e.g. String, Button, FormRomanConverter, Edit

Constant Names
Constant names should consist entirely of uppercase letters and underscores.
e.g. PI, SECS_IN_DAY, HOURS_IN_DAY, DAYS_IN_YEAR

What’s the Difference between…
A Class and an Object?
You should think of a class as a blueprint or template for
creating objects. A class contains all the methods and data
fields needed to cause an object to behave in the desired
manner. Just as a single set of blueprints can be used to
construct as many houses as you like, a single class can be
used to create as many objects as you like. The constructor
methods of a class are analogous to the contractors who
build a house.

In many ways, a class is similar to a primitive data type.
Primitive data types are used to create variables while
classes are used to create objects.

What’s the difference between an object and a variable?
Read on!

An Object and a Variable?
Variables and objects are closely related. In fact, it is
possible to think of a variable as an object containing only
one data field. The main difference between the two is that
objects have a much richer structure. This is analogous to
atoms and molecules. While variables (the “atoms”) can
only store a single value, objects (the “molecules”) consist
of data fields (variables) and methods (functions).

For example, a String object consists of much more than
just a particular string’s value. A String object also
contains a large number of methods for manipulating the
string value.

Class Instantiations
When you instantiate a class, you create an object, that is, a concrete instance of the class. Most class instantiations in
Java take the following form:

ClassName objectName = new ClassName(parameters);

Name of Class
e.g. String

Name of Object
e.g. givenName

new keyword
(used to create new
instance of class)

Constructor Method
Call

e.g. String givenName = new String("Joe");

Several Examples of Array Declarations
double[] temperature;

or
double temperature[];

In this example, a variable of array type is declared but no array
object is created nor is any storage space allocated for the elements
(components) of the array.

String[] name=new String[4];

or
String name[]=new String[4];

Index 0 1 2 3
Data "" "" "" ""

In Java, arrays are implemented as objects. Therefore, you need to
use the new keyword in the declaration of an array to create a new array
object.

int[] height={160, 175, 182, 191};

or
int height[]={160, 175, 182, 191};

Index 0 1 2 3
Data 160 175 182 191

Arrays can be declared, created and initialized on the same line. In such
cases, the new keyword should not be used. The array object is
automatically created when a list of initializers is included.

float[][] distance= new float[2][3];

or
float distance[][]= new float[2][3];

or
float[] distance[]= new float[2][3];

 0 1 2
0 - - -
1 - - -

The statements shown at the left can be used to declare and create a
two-dimensional array of float values. The row indices run from
0 to 1 and the column indices run from 0 to 2. Without any
assignment statements, however, the two-dimensional array is
empty (i.e. the elements have no value).

distance[0][0] = 0
distance[0][1] = 10.7
distance[0][2] = 25.3
distance[1][0] = 10.7
distance[1][1] = 0
distance[1][2] = 16.3

 0 1 2
0 0 10.7 25.3
1 10.7 0 16.3

Once the assignment statements at the left are executed, the two-
dimensional array (matrix) will contain the values shown above.

float[][] distance={{0, 10.7, 25.3},
 {10.7, 0, 16.3}};

This statement is an alternative (and probably preferable) method of
declaring, creating and initializing the two-dimensional array shown
above. Each row of the matrix is enclosed in braces and listed in
the desired order.

Number of elements in the array.

Program Control Flow – Sequence, Selection and Repetition
Essential Selection Structures in VB and Java

Control Flow Structure VB Java

Sequence

statement1
statement2
statement3

statement1;
statement2;
statement3;

Selection (Example 1)

Structure
If relationalExpression Then
 statement1

Else

statement2

 statement3
End If

Example
If X > 3 Then
 X = X - 4
 Y = Y + X
Else
 X
End If

= X + 4

Structure
if (relationalExpression)
{
 statement1;
 statement2;
}
else
 statement3;

Example
if (x > 3)
{
 x = x -4;
 y = y + x;
}
else
 x = x + 4;

Selection (Example 2)

Structure
If relationalExpression1 Then

ElseIf relationalExpression2 Then

statement1

ElseIf relationalExpression3 Then

Statement2

 Statement3
ElseIf relationalExpression4 Then
 Statement4
 .
 .
 .
End If

Example
If X > 3 Then
 X = X - 4
ElseIf X >= 0 And X < 3 Then
 X =
ElseIf X >= -3 And X < 0 Then

 X + 4

 X – 8 X =
ElseIf X >= -9 And X < -3 Then
 X = X + 8
End If

Structure
if (relationalExpression1)

else if (relationalExpression2)

statement1;

 statement2;
else if (relationalExpression3)

else if (relationalExpression4)

statement3;

 statement4;
 .
 .
 .

Example
if (x > 3)
 x = x -4;
else if (x >= 0 & x < 3)
 x = x + 4;
else if (x >= -3 & x < 0)
 x =
else if (x >= -9 & x < -3)

x - 4;

 x = x + 8;

Please Note: In Java, C and C++, brace brackets (i.e. “{” and “}”) are used to group one or more statements to create a compound
statement. Brace brackets are used in “if” statements, loops, method definitions, class definitions and a few other structures. The
braces must be used to group two or more statements. Braces are optional whenever a group consists of only one statement.

Advanced Selection Structures in VB and Java

VB Java

Structure
Select Case testExpression

 Case expressionList1
 Statements
 Case expressionList2
 Statements
 Case expressionList3
 Statements
 .
 .
 .

 Case Else
 statements

End Select

Example
Select Case Number
 Case 1 To 5
 Debug.Print "Between 1 and 5"
 Case 6, 7, 8
 Debug.Print "Between 6 and 8"
 Case 9 To 10
 Debug.Print "Greater than 8"
 Case Else
 Debug.Print "Not between 1 and 10"
End Select

Equivalent To
If Number >= 1 And Number <= 5 Then
 Debug.Print "Between 1 and 5"
ElseIf Number >= 6 And Number <= 8 Then
 Debug.Print "Between 6 and 5"
ElseIf Number >= 9 And Number <= 10 Then
 Debug.Print "Greater than 8"
Else
 Debug.Print "Not between 1 and 10"
End If

Note
The “Select … Case” statement in VB is much more flexible
than the “switch” statement in Java. See msdn.microsoft.com for
more details.

Structure
switch (integerExpression)
{
 case 0:
 statements
 break;
 case 1:
 statements
 break;
 case 2:
 statements
 break;
 .
 .
 .

 default:
 statements
}

Example
int bracket = Integer.parseInt(stdin.readLine());

switch (bracket)
{
 case 1:
 System.out.println("Pay no taxes");
 break;
 case 2:
 System.out.println("Pay 20% taxes");
 break;
 case 3:
 System.out.println("Pay 30% taxes");
 break;
 default:
 System.out.println("Error: bad input");
}

Equivalent To
int bracket = Integer.parseInt(stdin.readLine());
if (bracket == 1)

else if (bracket == 2)

System.out.println("Pay no taxes");

 Syst
else if (bracket == 3)

em.out.println("Pay 20% taxes");

else

System.out.println("Pay 30% taxes");

 System.out.println("Error: bad input");

N/A

Structure
rel_exp ? exp1 : exp2

Example
z = a < b ? a : b;

Equivalent To
if (a < b)
 z = a;
else
 z = b;

http://msdn.microsoft.com/

Essential Repetition Structures in VB and Java

VB Java

Structure
Do While RelationalExpression
 statement1
 statement2
 .
 .
 .

Loop

Example
FactorsOfTwo = 0
Num = Num \ 2
Do While Num > 0
 FactorsOfTwo = FactorsOfTwo + 1
 Num = Num \ 2
Loop

Note
In VB, a “Do” loop can be ended prematurely by using the
“Exit Do” statement. A “For” loop can be ended prematurely
using the “Exit For” statement. Although it is often extremely
convenient to exit from loops and other structures prematurely,
programs that do so are almost impossible to verify for
correctness and can be extremely difficult to debug. Therefore,
such statements should be used sparingly, if at all.

Structure
/* "while" loop with a single statement
 Braces are not needed. */
while (relationalExpression)
 statement;

/* "while" loop with a compound statement
 Braces are needed. */
while (relationalExpression)
{
 statement1;
 statement2;
 .
 .
 .
}

Examples
while (x > 10)
 x = x - 1;

factorsOfTwo = 0;
num = num / 2;
while (num > 0)
{
 factorsOfTwo = factorsOfTwo + 1;
 num = num / 2;
}

Note
In Java, a loop can be ended prematurely by using the “break;”
statement (as was the case with the “switch” statement).

Structure
Do
 statement1
 statement2
 .
 .
 .

Loop While RelationalExpression

Example
NumDivisionsByTwo = 0
Do
 NumDivisionsByTwo = NumDivisionsByTwo + 1
 Num = Num \ 2
Loop While Num > 0

Structure
//"do while" loop with a single statement
do
 statement;
while (relational_expression);

//"do while" loop with a compound statement
do
{
 statement1;
 statement2;
 .
 .
 .
} while (relational_expression);

Example
numDivisionsByTwo = -1
do
{
 numDivisionsByTwo++;
 num = num / 2;
} while (num > 0)

VB Java

Structure
For counter = start To end [Step step]
 statement1
 statement2
 .
 .
 .

Next [counter]

Examples
'Evaluate 0+1+2+3+4
Dim I As Long, Sum As Integer
Sum = 0
For I = 0 To 4
 Sum = Sum + I
Next I

'Important Exercise: Rewrite the strange
'Java program segment at the right in VB.
'What difficulties do you encounter when
'you try to use a "For … Next" loop in your
'VB code?

Structure
/* "for" loop with a single statement
 Braces are not needed. */
for (expr1; relExpr; expr2)
 statement;

/* "for" loop with a compound statement
 Braces are needed. */
for (expr1; relExpr; expr2)
{
 statement1;
 statement2;
 .
 .
 .
}

Examples
//Evaluate 0+1+2+3+4
int sum = 0;
for (int i = 0; i < 5; i++)
 sum += i;

//This strange example shows that the
//"while" condition in a "for" does not
//need to involve the loop counter!
int j = 0, x = 0;
for (int i = 0; x < 1500; i++)
{
 x = i + j;
 j = i * i * i;
}

N/A

Structure

//"do while" loop with a compound statement
do
{
 statement1;
 statement2;
 .
 .
 .
} while (relational_expression);

Example
factorsOfTwo = -1
do
{
 factorsOfTwo = factorsOfTwo + 1
 num = num / 2
} while (num > 0)

UNDERSTANDING THE ORGANIZATION OF JAVA AND J++
What exactly is Object-Oriented Programming?
Object-oriented programming (OOP) is a highly organized method of coding in which all programming tasks are centred
about reusable, neatly packaged items called objects. Often, objects are modelled after real-world entities. Examples of
such objects include command buttons (called “buttons” in J++), text boxes (called “edit controls” in J++) and option
buttons (called “radio buttons” in J++).

Edit Controls
Form

Radio Buttons Label Buttons

However, objects do not need to be confined to the realm of real-world objects. They can be patterned after just about
anything!

What the Heck are Classes?
Whenever I teach students about classes, I can usually sense a heightened feeling of tension in the air. First, the concept
of a class in object-oriented programming is already confusing enough. What really seems to bother the students,
however, is the number of times per period that the word “classes” is uttered. It reminds them too much of all their
schoolwork. Perhaps the creators of OOP should have thought of a different word.

There are many ways of explaining the concept of a class, but I think that the simplest way is to think of classes as
blueprints or templates for creating objects. The class itself contains all the code that is required to make an object
function in the desired manner. Every time we create a new object of a certain class, a copy is made of (most of) the code
in the class for the new object. In a sense, the class is able to “reproduce” itself whenever an object of its type is created.

A helpful analogy is to think of a class as a cookie cutter. The cookie cutter (the class) is used to create any number of
cookies (the objects). It is also important to remember that classes should are most often used to model real-world
objects. For example, the J++ class “Button” can be considered a blueprint for making button objects.

Simple Example of Classes from Visual J++
Visual programming languages are wonderfully convenient because they allow us to create many kinds of objects without
writing any code. One must realize, however, that code is still required to make these objects work! So where does the
code come from? The answer is that it is generated automatically by the programming software being used. See next
page…

When you begin a new J++ project, a certain amount of code is generated automatically for you. In particular, a portion
of the code is displayed with a grey background. It is prefaced with a comment reminding you not to modify the code
manually. This code is automatically generated by J++ for all the objects you create visually. At the outset of a new
project, there isn’t much code.
/**
* NOTE: The following code is required by the Visual J++
* form designer. It can be modified using the form.
 * editor. Do not modify it using the code editor.
 */
Container components = new Container();

private void initForm()
{
 this.setSize (new Point(300,300));
 this.setText ("Form1");
}

As you add objects to your form, the code becomes more complicated:
Container components = new Container();
Button buttonConvert = new Button();
Edit editNumber = new Edit();
Button buttonClose = new Button();
Button buttonClear = new Button();
private void initForm()
{
 this.setSize (new Point(300,300));
 this.setText ("Sample Form");
 this.setAutoScaleBaseSize(new Point(5, 13));
 this.setClientSize(new Point(292, 267));
 buttonConvert.setLocation(new Point(16, 192));
 buttonConvert.setSize(new Point(80, 32));
 buttonConvert.setTabIndex(0);
 buttonConvert.setText("Convert");
 buttonClear.setLocation(new Point(112, 192));
 buttonClear.setSize(new Point(72, 32));
 buttonClear.setTabIndex(1);
 buttonClear.setText("Clear");
 buttonClear.addOnClick(new
 EventHandler(this.buttonClear_click));
 buttonClose.setLocation(new Point(200, 192));
 buttonClose.setSize(new Point(64, 32));
 buttonClose.setTabIndex(2);
 buttonClose.setText("Close");
 editNumber.setLocation(new Point(16, 56));
 editNumber.setSize(new Point(256, 20));
 editNumber.setTabIndex(3);
 editNumber.setText("");

The keyword “this” is used
as a placeholder for the
name of an object. This
gives programmers the
freedom to choose whatever
names they like.

The “new” keyword is used to
instantiate a class. That is, it is
used to create an instance of the
class. A more familiar term for
instance is object of course.

Notice the format of most of these
statements. Most of them are of
the following form:

objectName.memberName(…)

 this.setNewControls(new Control[] {
 editNumber,
 buttonClose,
 buttonClear,
 buttonConvert});

Note: By studying Java’s class
hierarchy, we would notice that
the class “Control” only exists in
the Microsoft language extensions.
It is not part of Sun’s Java
language specification.

The final line of code
(this.setNewControls(…)) is
used to store the names of all the
controls (i.e. objects) on the form
in an array. The elements of the
array all belong to the class
“Control.”

}

Java is the only Popular Programming Language that is Entirely Object-Oriented
Many people have heard of Java, C++ and Visual Basic. Furthermore, many people also know that these languages are
object-oriented. What many people do not realize is that Java is the only language of these three that is entirely object-
oriented. C++ has several features inherited from C that are not object-oriented. Nonetheless, C++ is a superbly
organized object-oriented language when compared to Visual Basic! VB is a highly disorganized jumble of object-
oriented and non-object-oriented features.

The beauty of Java is that it is entirely based on classes. Once you understand classes, you pretty much understand the
entire language! The diagrams below show the basic structure of Java.

By loading the “Object Browser” in
J++, one can view a list of all the
available packages.

A package is a collection of classes,
interfaces, methods (functions) and
data fields (properties).

Notice that most of the package names
begin with “java,” “sun” or “com.” The
packages whose names begin with
“com” collectively form the Microsoft
Language Extensions. They are not
contained in Sun’s Java language
specification.

We shall not be studying interfaces in
this course. If you are interested in
learning about them, consult MSDN
and/or any other appropriate sources.

This shows an expanded view of the
package “java.lang.” You can see that it
contains data fields (the blue-green
icons), methods (the violet icons) and
classes (the multi-coloured icons). If
you were to scroll down further in the
package, you would also see a few
interfaces. You may also notice that
certain members have a small padlock
icon beside them. The padlock indicates
the private members.

A Data Field

A Class

A Method

USING STRINGS IN JAVA
Introduction
Unlike many other programming languages you may know, Java does not have a string primitive type. Strings are
implemented through classes. There is a class called “String” but there is no primitive data type called “string.”
You probably have noticed that Java has a small number of primitive data types, especially when compared to a language
like VB. At first, this seems somewhat annoying, but as our understanding of Java deepens, we begin to appreciate the
method behind the madness. You should think of each of these primitive data types as one of the basic elements out of
which all other data types are constructed. Just as complex molecules are made up of chemical elements and simpler
molecules, complex data types like strings are constructed from primitive data types and simpler classes. In particular,
the “String” class uses an array of type “char” to store strings. (The primitive data type “char,” inherited from the C
programming language, is used to store single characters. In fact, any variable of type “char” stores an integer ranging
from 0 to 65535 (0 to 216 – 1). Although the type “char” is intended to store the Unicode code of any Unicode character,
it can also be used as if it were intended to store unsigned integers in the range given above.)

Examples

Creating an Object of the “String” Class
String surname = new String(); //Create an object of class String and set initial value to ""

String givenName = new String("Joe"); //Create an object of class String and set initial value to "Joe"

String daysText =new String(editDays.getText());//Set initial value to text in "editDays" edit cont.

String hoursText=new String(editHours.getText());//Set initial value to text in "editHours" edit

String minutesText=new String(editMinutes.getText());//Set initial value to text in "editMinutes"

String secondsText=new String(editSeconds.getText());//Set initial value to text in "editSeconds"

Working with String Objects

Name of
the class

Name of
the

object

Indicates
creation of a
new object

Call to the
constructor method

of the class

Parameter of the constructor
method of the class (initial
value of string in this case)

Once you have instantiated a string, you can work with it using the “+” string operator and any of the methods in the
string class. Since the number of members of each class tends to be large, it is not advisable to memorize the names and
functions of each member. Instead, you should use the MDSN library to find the information that you need.

USING THE MSDN LIBRARY TO LEARN ABOUT CLASS MEMBERS
Use the “Search” tab of the MSDN library to search for information on a particular class. For instance, to find
information on the “String” class, type “String” in the search field and press “Enter.” From the list of topics displayed,
double-click on “String Members.” You will obtain a list of all the members of the “String” class.

Example of a Static (Class) Method Example of an Instance (non-static) Method

Syntax
public static String valueOf(boolean b)

Parameters
b, a boolean.

Returns
If the argument is true, a string equal to "true" is
returned; otherwise, a string equal to "false" is
returned.
Description

Make sure that the active subset is
set to “J++.” Otherwise, you will
obtain too many irrelevant results.

The “String” class has 11 different
versions of the constructor method.
Each version has the same name
and the same purpose. The only
difference between one version and
another is in the type of data
accepted. This idea is known as
polymorphism. Whenever there
are two or more versions of the
same method, we say that the
method is overloaded.

Click on a link to get more details
on how the method is used.

Avoid the use of deprecated methods. These methods are
scheduled to be discontinued in upcoming releases of Java.

Syntax
public String trim()

Returns
this string, with white space removed from the
beginning and the end.

Description
Removes white space from both ends of this string. All
characters that have codes less than or equal to '\u0020' (the
space character) are considered white space.

Returns the string representation of the boolean
argument.

WHAT IS THE DIFFERENCE BETWEEN A STATIC (CLASS) METHOD AND AN INSTANCE METHOD?

Earlier on, we described the instantiation of a class as a process that involves creating a copy of most of the code in the
class. The object that results from this process is completely self-contained in that it has a copy of most of the code that it
needs to function in the intended manner. There are some methods, however, that are not copied for every object created,
which is why we keep stating “most of the code” instead of “all the code.”
Most methods, known as instance methods, can only exist in the context of an object. A copy of such a method must be
made for every instance (object) of a class because these methods depend directly on the values of the data fields
belonging to the object. For example, every edit control has methods called “getText” and “setText.” Both of these
methods have to be instance methods because the values they return depend directly on the text stored in the edit control.
Thus, each edit control that you create must have its own copy of the “getText” and “setText” methods.
There are some methods, on the other hand, that can exist entirely independently of any objects. Such methods are called
static or class methods. Class methods are independent of the structure of any particular object and therefore, can be used
without instantiation. This means that only one copy of a static method is needed, a feature that is very helpful in the
conservation of memory! For example, every control, including edit controls has a static method called
“getMouseButtons.” Since this method depends only on which mouse buttons are pressed and does not depend on the
state of any particular control, it is best to define it as a static method.

Class and Instance Methods of the String Class
Most methods in the String class are instance methods. The only class (static) methods are “valueOf” and
“copyValueOf.” The table below illustrates the use of both types of methods in the context of the “String” class.

 String givenName=new String("Rachel");
int x = 43; String firstInitial=new String();
editNumber.setText(String.valueOf(x)); firstInitial=givenName.charAt(0);

The class name is used to access static (class)
methods. No object of the given class need exist.

The object
performe

 name is used to access instance methods. The action
d by the method relates directly to the particular object.

In this example,
“givenName” is a string
object. To access all its
members (both class and
instance methods), simply
type the name of the object
followed by a dot. Then
choose the appropriate
method from the pop-up
menu that appears. Notice
that the list of available
members is very long
compared to the class
method example at the left.

In this example, there is no
string object associated with
the code. All we want to do
is convert an integer value to
string form. Simply type the
name of the class (String)
followed by a dot. The pop-
up menu that appears lists
the available members.
Notice that the list is very
short since most method are
instance methods.

	Java and J++ Reference Notes
	 Learning Java Operators, Data Types and Control Flow Structures by Comparing to VB
	Introduction
	Operators in VB and Java
	 Summary of Java Operators (from http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html)
	Summary of Arithmetic Operators
	Summary of Relational and Conditional Operators
	 Summary of Shift and Logical Operators
	Summary of Assignment Operators
	Summary of Other Operators

	 Primitive Data Types in VB and Java
	 Variable Declarations in VB and Java
	Variable Declarations in VB
	Variable Declarations in Java

	 Naming Conventions in Java
	Variable Names, Object Names and Method Names
	Class Names and Constructor Method Names
	Constant Names

	What’s the Difference between…
	A Class and an Object?
	An Object and a Variable?

	Class Instantiations
	 Several Examples of Array Declarations
	 Program Control Flow – Sequence, Selection and Repetition
	Essential Selection Structures in VB and Java
	 Advanced Selection Structures in VB and Java
	 Essential Repetition Structures in VB and Java

	 Understanding the Organization of Java and J++
	What exactly is Object-Oriented Programming?
	What the Heck are Classes?
	Simple Example of Classes from Visual J++
	 Java is the only Popular Programming Language that is Entirely Object-Oriented

	 Using Strings in Java
	Introduction
	Examples
	Creating an Object of the “String” Class
	Working with String Objects

	 Using the MSDN Library to Learn about Class Members
	Example of a Static (Class) Method
	Example of an Instance (non-static) Method

	 What is the Difference between a Static (Class) Method and an Instance Method?
	Class and Instance Methods of the String Class

