
UNIT 0 – SOLUTIONS
UNIT 0 – SOLUTIONS ... 1

SOLUTIONS – PAGES 8 AND 9 ... 2
Note .. 3

SOLUTIONS – PAGE 14, 15 .. 4
SOLUTIONS – PAGE 21 ... 6
SOLUTIONS – PAGE 22 ... 7

Exercises .. 7
Using C# to Understand the Solutions on the Previous Page .. 8

Solutions – Pages 8 and 9
1. Write assignment statements in both VB and C# for each of the following situations. (For your convenience, a table is

given that shows some of the most commonly used operators in VB and C#.)

 Arithmetic Operators Relational (Comparison) Operators Conditional Operators

VB + − * / \ Mod ^ = < > <= >= < > And Or Not
C# + − * / / % N/A = = < > <= >= != && | | !

Task to Complete VB Assignment Statement C# Assignment Statement

(a) Increase by 1 the count
of the number of vowels
found in a string.

NumVowels = NumVowels + 1

numVowels = numVowels + 1;

Shortcuts for this in C/C#/C++/Java
numVowels++;

or

++numVowels;

(b) Decrease the bank
balance by the amount of
money withdrawn.

Balance = Balance - Withdrawal

balance = balance – withdrawal;

Shortcuts for this in C/C#/C++/Java
balance -= withdrawal;

(c) Calculate the number of
whole hours in a given
number of seconds.

Hours = Seconds \ 3600 hours = seconds / 3600;

(d) Calculate the number of
seconds remaining once
all whole hours have
been removed.

Seconds = Seconds Mod 3600

seconds = seconds % 3600;

Shortcuts for this in C/C#/C++/Java
seconds %= 3600;

(e) Copy the value of the
variable “Position” to the
variable “NewPosition.”

NewPosition = Position newPosition = position;

(f) Change the value of the
variable “Customer” to
“Chris Rock.”

Customer = "Chris Rock" customer = "Chris Rock";

(g) Triple the amount of
money won by being a
contestant on Jeopardy.

Winnings = Winnings * 3

winnings = winnings * 3;

Shortcuts for this in C/C#/C++/Java
winnings *= 3;

2. Write assignment statements in both VB and Java for each of the following formulas. Remember to use
MEANINGFUL variable names! (You’ll have to do some research to find out how to use the square root and the
power functions in C#.)

Formula VB Assignment Statement C# Assignment Statement

(a) F ma= Force=Mass*Acceleration //Newton's Second Law
force=mass*acceleration;

(b)
1 2
2G

Gm mF
r

= −
 GravForce=-G*Mass1*Mass2/Distance^2

//Newton's Law of Gravitation
//G = Universal Gravitational Constant
gravForce=-G*mass1*mass2/Math.Pow(distance,2);

(c)
2

bhA = TriangleArea=Base*Height/2 triangleArea=base*height/2;

(d) ()
2

h a bA +
=

 TrapezoidArea=Height*(A+B)/2 trapezoidArea=height*(a+b)/2;

(e) 2
0 0E m c= RestEnergy=RestMass*LightSpeed^2

//Equivalence of mass and energy (Einstein)
restEnergy=restMass*Math.Pow(LIGHT_SPEED,2);

(f) 2A rπ= CircleArea=Pi*Radius^2 circleArea=PI*Math.Pow(radius,2);

(g) 34
3V rπ= SphereVolume=4/3*Pi*Radius^3 sphereVolume=4/3*PI*Math.Pow(radius,3);

(h) 2 2c a b= + Hypotenuse=Sqr(A^2+B^2) //Pythagorean Theorem
hypotenuse=Math.Sqrt(Math.Pow(a,2)+ Math.Pow(b,2));

(i)
0

2

21

mm
v
c

=

−

Mass=RestMass/Sqr(1- _
 Velocity^2/LightSpeed^2)

/* Mass of a moving body as measured from an
 inertial frame of reference (the "rest frame")
 with respect to which the body moves away with
 velocity 'velocity' (Einstein) */
mass=restMass/Math.Sqrt (1-
 Math.Pow(velocity,2)/
 Math.Pow (LIGHT_SPEED,2));

Note
1. VB requires the statement continuation characters (space followed by an underscore) to continue a long statement on

the next line. Since C# statements end with a semi-colon, a long statement can be continued on the next line without
the use of any special symbols.

2. By convention, constant names are written in “ALL_CAPS.” Underscores are used to increase the readability of
constant names that contain two or more words. (e.g. LIGHT_SPEED)

3. By convention, variable names are written in “lowerCamelCase” or “UpperCamelCase.” (e.g. restMass or
RestMass)

4. By convention, class names (to be explained later) are written in “UpperCamelCase.” (e.g. Math)

Solutions – Page 14, 15
1. Complete a memory map for each loop. In addition, state the purpose of each loop.

Loop Memory Map Problem Solved
sum = 0;
count = 0;
for (int x=1000; x>=0; x-=100)

{
 sum += x;
 count++;
}

average = sum/count;

x sum count
- 0 0

1000 1000 1
900 1900 2
800 2700 3
700 3400 4
600 4000 5
500 4500 6
400 4900 7
300 5200 8
200 5400 9
100 5500 10

0 5500 11
- 5500 11

The purpose of the given
“for” loop is to

calculate the average of
the values 0, 100, 200,
300, …, 1000. The
average turns out to be
5500/11=500.

int a = 356;
int b = 512;
do
{
 int remainder = a % b;
 a = b;
 b = remainder;

}while (b != 0);

gcd = a;

a b remainder
356 512 −
512 356 356
356 156 156
156 44 44
44 24 24
24 20 20
20 4 4

4 0 −

The purpose of the given
“do” loop is to

use the Euclidean
algorithm to calculate the
greatest common divisor
of 356 and 512, which
turns out to be 4.

/*The memory map at the
 right assumes that 'num'
 is an 'int' variable. */
num=1023;
numDivisionsByTwo = 0;
num/=2;
while (num > 0)
{
 numDivisionsByTwo++;
 num/=2;
}

num numDivisionsByTwo
511 0
255 1
127 2
63 3
31 4
15 5
7 6
3 7
1 8
0 9

0 9

The purpose of the given
“do” loop is to

determine how many
times 2 divides into
‘num.” In this case, it
turns out that 2 divides
into 1023 nine times.

Values Before
Entering Loop

Values After
Exiting Loop

Values Before
Entering Loop

Values After
Exiting Loop

Values Before
Entering Loop

Values After
Exiting Loop

2. On paper, write C# loops to perform each of the following tasks. Do not use a computer for this question except for
verifying that your code is correct.

(a) Add up the numbers 1 + 2 + 3 + 4 + ...
until the Sum > 100.
int sum = 0, i = 1;

while (sum <= 100)
{
 sum += i;
 i++;
}

(b) Determine how many numbers 2 +4 + 6 + 8 + ... are
needed to give a Sum > 1000.
int sum = 0, i = 2, howMany=0;

while (sum <= 1000)
{
 sum += i;
 howMany++;
 i+=2;
}

(c) Determine the sum of all powers of 2 (i.e. 1, 2, 4, 8,
16, 32, …) that are less than 1000000.
int sum = 0, i=0, powerOf2;

do
{
 powerOf2=Math.Pow(2,i);
 sum += powerOf2;
 i++;
}while (powerOf2 <= 1000000);

(d) Output the smallest number (other than 1) that
divides evenly into 2701.
int i = 2;

while (2701 % i != 0)
{
 i++;
}

3. The ancient Greek civilization had a keen interest …

(a) A proper divisor of an integer is any divisor of the integer except itself.

(b) See http://en.wikipedia.org/wiki/Perfect_number

(c) Use a for loop to search for divisors of the given number.
The loop counter variable “i” ranges from 2 to half the given number. The variable “i” is the candidate divisor.

If “i” is a divisor of the given number, add it to the sum. Otherwise, do nothing.

After the loop has finished calculating the sum, compare the sum to the given number.
If the sum is equal to the number, the number is perfect.
Otherwise the number is not perfect.

(d) //Is 'number' perfect? The value of 'number' is set earlier in the code.

int sum = 0;

for (int i = 2; i <= number/2; i++)
{
 if (number % i == 0)
 sum += i;
}

if (sum == number)
 label1.Text = "Perfect!";
else
 label1.Text = "NOT perfect!";

http://en.wikipedia.org/wiki/Perfect_number�

Solutions – Page 21
1. Create a memory map for each code segment. In addition, determine the problem that is solved in each case. (Some

variables have intentionally been given silly names to disguise their purpose.)

Code Segment Memory Map (Trace Chart) Problem Solved?
int harinder=0;
string c="";
string s="aeiouAEIOU";
string a="Laziness is for fools!";

for (int i=0; i<a.Length; i++){
 c=a.Substring(i,1);
 if (s.IndexOf(c)>=0)
 harinder++;
}

The values of “s” and “a” do not change.
Therefore, they are not included in the
memory map.

i c harinder
- "" 0
0 "L" 0
1 "a" 1
2 "z" 1
3 "i" 2
4 "n" 2
5 "e" 3
6 "s" 3
7 "s" 3
8 " " 3
9 "i" 4
10 "s" 4
11 " " 4
12 "f" 4
13 "o" 5
14 "r" 5
15 " " 5
16 "f" 5
17 "o" 6
18 "o" 7
19 "l" 7
20 "s" 7
21 "!" 7
- "!" 7

By the time the
loop has finished
executing, the
variable
“harinder” stores

the number of
vowels found in
the string “a.”

string c="";
string s="Einstein";

for (int i=s.Length-1; i>=0; i--)
 c=c+s.Substring(i,1);

i c
- ""
0 "n"
1 "ni"
2 "nie"
3 "niet"
4 "niets"
5 "nietsn"
6 "nietsni"
7 "nietsniE"
- "nietsniE"

By the time the
loop has finished
executing, the
string variable
“c” stores

the “reverse” of
string “s,” i.e.
having the same
characters as “s”
but in the reverse
order.

Values Before
Entering Loop

Values Before
Entering Loop

Values After
Exiting Loop

Values After
Exiting Loop

Solutions – Page 22
Exercises
Study the given C# declarations. Then complete the table.
int a;

long b=3;

short c=1;

byte d=1;

char e=(char)1024; // Force a conversion from 'int' to 'char.' The decimal value 1024 can
 // also be specified explicitly as the hexadecimal Unicode value
 // '\u0400' or as the hexadecimal escape sequence '\x0400'

float f=3.8e21f; // The 'f' at the end means that the value should be stored as a 'float'

double g=3.232552e152; // Unless specified otherwise, floating point values are stored as
 // 'double' values. A 'd' can also be used to indicate that the
 // number should be stored as a 'double' value: e.g. 2.0d

string h="If thinking makes your brain hurt it’s probably due to lack of practice!";

C# Statement Is it Allowed? If so, explain why. If not, suggest a correction.

1. b=a;
NOT allowed because “a” has not previously been assigned a value.
Correction: int a=0; //Any 32-bit (or smaller) integral value
 //can be assigned to "a"

2. a=b; NOT allowed because “int” is a smaller integral (integer) type than “long.”
Correction: a=(int)b;

3. h=f; NOT allowed because “h” is of type “string” and “f” is of type “float.”
Correction: h=Convert.ToString(f);

4. f=h; NOT allowed because “f” is of type “float” and “h” is of type “string.”
Correction: f=Convert.ToSingle(h); //'Single' is the .NET class for 'float'

5. e=c; NOT allowed because “e” is of type “char” and “c” is of type “short.”
Correction: e=(char)b;

6. c=e; NOT allowed because “c” is of type “short” and “e” is of type “char.”
Correction: c=(short)e;

7. g=f; Allowed because “double” is a larger floating point type than “float.”

8. f=g; NOT allowed because “float” is a smaller floating point type than “double.”
Correction: f=(float)g;

9. f=d;
Allowed because “float” is a floating point type that is large enough to accommodate “byte” integral
values. (The “byte” type is a very small integral type, which means that a “byte” value can be assigned
to almost any numeric type.)

10. d=f; NOT allowed because “float” is a much larger type than “byte.”
Correction: d=(byte)f;

11. d=e; NOT allowed because “d” is of type “byte” and “e” is of type “char.”
Correction: d=(byte)e;

12. e=d; NOT allowed because “e” is of type “char” and “d” is of type “byte.”
Correction: e=(char)d;

13. f=b;
Allowed because “float” is a floating point type that is large enough to accommodate “long” integral
values. Note that precision can be lost in such an assignment because “float” values only have up to 7
significant digits while “long” values can have up to 10 digits.

Using C# to Understand the Solutions on the Previous Page
If the code is typed exactly as shown on the previous page, the following appears in the C# development environment:

Code in Code Editor Errors in the Error List

Once the code is typed as follows, that is, with all the corrections as indicated on the previous page, the errors disappear!

int a=0;
long b = 3;
short c = 1;
byte d = 1;
char e = (char)1024; // Force a conversion from 'int' to 'char.' The decimal value 1024 can
 // also be specified explicitly as the hexadecimal Unicode value
 // '\u0400' or as the hexadecimal escape sequence '\x0400'
float f = 3.8e21f; // The 'f' at the end means that the value should be stored as a 'float'
double g = 3.232552e152; // Unless specified otherwise, floating point values are stored as
 // 'double' values. A 'd' can also be used to indicate that the
 // number should be stored as a 'double' value: e.g. 2.0d
string h = "If thinking makes your brain hurt it’s probably due to lack of practice!";

b = a;
a = (int)b;
h = Convert.ToString(f);
f = Convert.ToSingle(h);
e = (char)c;
c = (short)e;
g = f;
f = (float)g;
f = d;
d = (byte)f;
d = (byte)e;
e = (char)d;
f = b;

	Unit 0 – Solutions
	Solutions – Pages 8 and 9
	Note

	Solutions – Page 14, 15
	Solutions – Page 21
	Solutions – Page 22
	Exercises
	Using C# to Understand the Solutions on the Previous Page

