
Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-1

ICS4U0 UNIT 0 – INTRODUCTION TO C# & REVIEW OF ESSENTIAL PROGRAMMING CONCEPTS

ICS4U0 UNIT 0 – INTRODUCTION TO C# & REVIEW OF ESSENTIAL PROGRAMMING CONCEPTS 1

SUMMARY OF UNIT 0 .. 3

A COMPUTER AS A DATA PROCESSING MACHINE ... 4

ASSIGNMENT STATEMENTS AND EXPRESSIONS ... 5

DEFINITIONS .. 5
EXAMPLES ... 5
EXERCISES ... 5

WHAT IS THE DIFFERENCE BETWEEN AN OBJECT AND A VARIABLE? ... 7

VARIABLES .. 7
OBJECTS... 7
QUESTIONS .. 7

VARIABLE DECLARATIONS IN C#.. 8

MAIN IDEA ... 8
VARIABLES IN THE .NET ENVIRONMENT .. 8
EXAMPLES ... 8
RESEARCH QUESTION ... 8

CONTROL FLOW - SEQUENCE, SELECTION AND REPETITION ... 9

CONCEPTS .. 9
Sequence ... 9
Selection (“If” Statements) .. 9
Repetition (Loops) ... 9

“IF” STATEMENT DETAILS .. 10
Research Question .. 10

LOOP DETAILS ... 11
IMPORTANT EXERCISES ON LOOPS AND IF STATEMENTS .. 12

PROCEDURES IN C# ... 14

OVERVIEW OF PROCEDURES ... 14
“BLACK-BOX” VIEW OF PROCEDURES .. 14
EXAMPLES OF PROGRAMMER-DEFINED METHODS IN C# ... 15
ADVANTAGES OF PROCEDURES ... 16
PROBLEMS ... 16

ALTERNATIVE METHOD OF BRACE PLACEMENT .. 17

EXAMPLES ... 17

DEPENDENT AND INDEPENDENT “IF” STATEMENT STRUCTURES .. 18

QUESTIONS .. 19

WORKING WITH STRINGS IN C# .. 20

EXAMPLES OF DECLARATION OF STRING “VARIABLES” .. 20
WORKING WITH STRINGS .. 20
WHAT A STRING REALLY “LOOKS LIKE” .. 20
STATIC (CLASS) VERSUS INSTANCE ... 21
STATIC METHODS AND DATA FIELDS/PROPERTIES .. 21
INSTANCE METHODS AND DATA FIELDS/PROPERTIES .. 21

Example .. 21
Example .. 21

SUMMARY .. 21
DEMYSTIFYING MSDN TECHNICAL INFORMATION: GETTING TO KNOW THE .NET STRING CLASS ... 22

What is MSDN? .. 22
Using MSDN to understand the Structure of the .NET String Class ... 22

SEVERAL HELPFUL METHODS FOUND WITHIN THE .NET STRING CLASS .. 23

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-2

EXERCISES INVOLVING STRINGS ... 24

STRING ASSIGNMENT - CREDIT CARD VALIDATION ... 25

INTRODUCTION... 25
RULES FOR CREDIT CARD NUMBER VALIDITY .. 25
EXAMPLE ... 25
PROGRAM PLAN ... 26
ADDITIONAL NOTES ... 26
ADDITIONAL CHALLENGE FOR EXTRA CREDIT .. 26
PRACTICE EXERCISES ... 27
EVALUATION GUIDE FOR CREDIT CARD VALIDATION PROGRAM ... 28

USING ARRAYS IN C# ... 29

THE CONCEPT OF AN ARRAY .. 29
IMPORTANT DETAILS ABOUT ARRAYS IN C# ... 29
SEVERAL EXAMPLES OF ARRAY DECLARATIONS ... 29
EXERCISES INVOLVING ARRAYS ... 31

LISTS IN C# ... 33

INTRODUCTION... 33

ICS4U0 – ROMAN CONVERTER PROJECT .. 34

ROMAN TO HINDU-ARABIC CONVERTER ... 34
Before setting out to write Code, Consider this… .. 34
STOP! DO NOT WRITE ANY CODE YET! First we need to TRY SPECIFIC EXAMPLES and develop A PLAN! 35
Hindu-Arabic to Roman Algorithm Example ... 35
Roman to Hindu-Arabic Algorithm Example ... 35
Hindu-Arabic to Roman Algorithm Pseudo-Code .. 35
Roman to Hindu-Arabic Algorithm Pseudo-Code .. 35
Exercises ... 36

ROMAN CONVERTER EVALUATION GUIDE .. 37

INQUIRY: USING A CHALLENGING PROBLEM TO EXPAND OUR KNOWLEDGE ... 38

PROBLEM ... 38
YOUR TASK.. 38
SPECIFIC EXAMPLES ... 38

Input (n) .. 38
Output (m) .. 38

TECHNICAL ASPECTS OF C# ... 39

STRONGLY-TYPED LANGUAGES (TYPE SAFETY) ... 39
Strongly-Typed Features of C# .. 39
Examples of how Strong Typing is enforced in C# ... 39
Type Safety .. 39

PRIMITIVE DATA TYPES .. 40
Comparison of Primitive Data Types in Java and C# .. 40

PRIMITIVE DATA TYPES IN C# .. 41
EXERCISES ... 42

WHAT THE HECK IS THE .NET FRAMEWORK? .. 43

OVERVIEW OF THE .NET FRAMEWORK ... 43
VISUAL OVERVIEW OF THE .NET FRAMEWORK ... 43
SEE ALSO ... 43
OVERVIEW OF .NET PROGRAM COMPILATION AND EXECUTION .. 44
WHAT .NET CIL CODE (AKA BYTECODE OR P-CODE) LOOKS LIKE .. 44
WHAT ASSEMBLY CODE LOOKS LIKE ... 45

https://d.docs.live.net/0db3bfbf9f90458d/Documents/02-Cpss/00-Current%20Courses/Ics4uo/Unit%200%20-%20Introduction%20to%20CSharp%20and%20Review/Unit%200-Introduction%20to%20CSharp%20Review%20of%20Programming%20Concepts.docx#_Toc466370173

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-3

SUMMARY OF UNIT 0

 Elements of Programming
Variables, “If” Statements, Loops, Assignment Statements

 Data Types
Numeric, String, Boolean, etc.

 Working with Strings

 Structuring Data

Arrays and Lists

 Object-Oriented Concepts

Objects, (Data) Fields, Properties, Methods, Static (Class) versus Instance

 Event-Driven Programming

 Examples of Problems to be Investigated

Greatest Common Divisor of Two Integers

Generating all Prime Numbers from 1 to n

Credit Card Number Validation

Converting between Roman and Indo-Arabic Numbers

 What the Heck is the .NET Framework?

 High-Level versus Low-Level Coding

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-4

A COMPUTER AS A DATA PROCESSING MACHINE

A computer can be viewed as a data processing machine. Since data come in various forms that require different amounts of memory, different

encoding schemes and different kinds of operations, programming languages offer many diverse data types.

The following diagram shows the some of the most commonly used data types in VB and C#.

Data

Numeric Text Logical

Integers (Integral) Floating Point Numbers

VB

(.Net)

SByte
1 byte storage

128 to 127

(–27 to 27–1)

Byte
1 byte storage

0 to 255

(0 to 28 – 1)

Integer

4 bytes storage

2147483648
to

2147483647

(–231 to 231 – 1)

Long

8 bytes storage

9223372036854775808
to

9223372036854775807

(–263 to 263 – 1)

Single

4 bytes storage

3.4028235E38

to

1.401298E45
for negative values;

1.401298E45

to
3.4028235E38

for positive values

Double

8 bytes storage

1.79769313486231570E308

to

4.94065645841246544E324
for negative values;

4.94065645841247E324

to
1.79769313486232E308

for positive values

String

Storage depends

on platform

0 to about

2 billion Unicode

characters

Char

2 bytes storage

0 to 65535

This type is actually

an integral (integer)

type. Each integer

in the range

represents a

Unicode character.

Boolean

Storage depends on

platform

True or False

C#

(.Net)

sbyte

Same as VB

“SByte” type

byte

Same as VB

“Byte” type

int

Same as VB

“Integer” type

long

Same as VB “Long” type

float

Same as VB

“Single” type

double

Same as VB “Double” type

string

Same as VB

“String” type

char

Same as VB

“Char” type

bool

Storage depends on

platform

true or false

Input
e.g. text box

Processing

e.g. +, , *, /

Output
e.g. label

Memory
e.g. variables

Math Operators

and Functions

+, −, *, /, sin, …

String Operators

and Functions

&, +, Trim, …

Logical Operators

And, Or, Not, …

&&, | |, !, …

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-5

ASSIGNMENT STATEMENTS AND EXPRESSIONS

Definitions

An assignment statement takes the following form:

Identifier = Expression

Assignment statements are used to give values to variables (or any programming entity that can have a value).

Examples

VB C#

'Increase the debt by the amount of money borrowed

TotalDebt = TotalDebt + MoneyBorrowed

'Join given name to surname and assign to "FullName"

FullName = GivenName & " " & Surname

//Increase the debt by the amount of money borrowed

totalDebt = totalDebt + moneyBorrowed;

//Join given name to surname and assign to "fullName"

fullName = givenName + " " + surname;

Exercises

1. Write assignment statements in both VB and C# for each of the following situations. (For your convenience,

a table is given that shows some of the most commonly used operators in VB and C#.)

 Arithmetic Operators
Relational (Comparison)

Operators
Conditional Operators

VB +  * / \ Mod ^ = < > <= >= < > And Or Not

C# +  * / / % N/A = = < > <= >= != && | | !

Task to Complete VB Assignment Statement C# Assignment Statement

(a) Increase by 1 the count of the

number of vowels found in a

string.

(b) Decrease the bank balance by the

amount of money withdrawn.

(c) Calculate the number of whole

hours in a given number of

seconds.

(d) Calculate the number of seconds

remaining once all whole hours

have been removed.

(e) Copy the value of the variable

“Position” to the variable

“NewPosition.”

(f) Change the value of the variable

“Customer” to “Chris Rock.”

(g) Triple the amount of money won

by being a contestant on

Jeopardy.

Name of any programming entity that can

be given a value.

e.g. Variable Name, Property Name, etc

Any statement that can be evaluated.

e.g. 0.13*Price

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-6

2. Write assignment statements in both VB and C# for each of the following formulas. Remember to use

MEANINGFUL variable names! (You’ll have to do some research to find out how to use the square root

and the power functions in C#.)

Formula VB Assignment Statement C# Assignment Statement

(a) F ma

(b) 1 2

2G

Gm m
F

r
 

(c)
2

bh
A 

(d)
()

2

h a b
A




(e)
2

0 0E m c

(f)
2A r

(g)
34

3
V r

(h)
2 2c a b 

(i) 0

2

2
1

m
m

v

c





3. How many of the above formulas do you recognize? Explain as many as you can.

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-7

WHAT IS THE DIFFERENCE BETWEEN AN OBJECT AND A VARIABLE?

Variables

 A variable has a very simple structure compared to an object.

 A variable is used only to store a single value in RAM.

 A variable can only store one value at a time. When a new value is assigned to a variable, its old value is
overwritten with the new value.

 In VB.Net, if “Option Explicit On” is specified, variables must be declared explicitly. (Keep in mind

that it is a very bad idea to use “Option Explicit Off.” Doing so will make it impossible for VB to

detect misspelled variable names.)

 In C# and most other programming languages, variables must be declared explicitly. Programming
languages in which variables must be declared are called strongly-typed.

Objects

 As shown in the diagram at the right, objects have
a very complex structure compared to variables.

 An object is a collection of properties and

methods. (In object-oriented programming, the

more general term for a property is “data field.”

Note also that the .NET framework includes

events as members of certain objects.)

 An object can store many different values
(properties, data fields) and can perform a variety of different actions (methods).

 Values can be assigned to the properties / data fields of objects but not to the objects themselves.

Questions

1. Why are variables so important in programming?

2. What does it mean to declare a variable? What is a strongly-typed language?

3. An identifier is a name given to a program entity that can be used to refer to it. Identifiers include variable

names, object names, function names and method names. What are the rules for creating valid identifiers in

VB and in C#?

Method

Properties

(Data Fields)

Events

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-8

VARIABLE DECLARATIONS IN C#

Main Idea

Variables are used to save information for later use, that is, at some later point in program execution.

Variables in the .NET Environment

In the .NET programming languages, all data types are actually implemented as objects, making the line

between variables and objects somewhat blurry. In older object-oriented languages, there is a very sharp

distinction between variables and objects (as outlined on page 7). Nonetheless, we can continue to think of

variables in exactly the same manner as long as we keep in mind that in .NET we can call object methods using

variable names, which is often not the case outside the .NET environment.

Examples

VB Variable Declarations Corresponding C# Variable Declarations

'In VB, the data type must be stated for each

'variable in the declaration statement.

Dim Age As Integer, Weight As Integer

//In C, C# C++ and Java, the data type name

//is used to declare variables. It is

//listed at the beginning of the

//declaration statement EXACTLY ONCE!

int age, weight;

'In older versions of VB, declaration and

'initialization had to be done in separate.

'statements. In VB.Net, variable declaration and

'variable initialization can be done in a single

'statement.

Dim DiscountRate As Single = 0.15

Dim ExchangeRate As Single = 1.24

//In C, C#, C++ and Java, variables can be

//initialized in a declaration statement.

float discountRate=0.15, exchangeRate=1.24;

Dim upperCaseA As Char = "A"C

Dim lowerCaseZ As Char = "T"C;

Dim upperCaseA As Char = ChrW(&H41)

Dim lowerCaseZ As Char = ChrW(&H7A)

Dim upperCaseA As Char = ChrW(65)

Dim lowerCaseZ As Char = ChrW(122)

//The "char" data type is used to store

//character codes for Unicode characters. The

//values can be specified in a number of ways.

//Method 1: Specify the character literal

//enclosed in single quotation marks.

char upperCaseA='A', lowerCaseZ='z';

//Method 2: Specify the Unicode hexadecimal

//representation.

char upperCaseA='\u0041', lowerCaseZ='\u007A';

//Method 3: Specify the hexadecimal

//escape sequence representation.

char upperCaseA='\x0041', lowerCaseZ='\x007A';

//Method 4: Cast the integral decimal values.

//See p.29 for more info on the cast operator.

char upperCaseA=(char)65, lowerCaseZ=(char)122;

Dim Name As String = "Hollywood Blonde Jabroni" string name = "Hollywood Blonde Jabroni";

Dim AnswerFound As Boolean = False bool answerFound = false;

Research Question

What is the purpose of variable declarations?

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-9

CONTROL FLOW - SEQUENCE, SELECTION AND REPETITION

Concepts

In computer science control flow (or alternatively, flow of control) refers to the order in which the individual

instructions are executed. As outlined below, there are three main control flow structures in most

programming languages. Theoretical computer scientists have shown that the programming structures

sequence, selection and repetition are necessary and sufficient for being able to write programs to solve any

computable problem, that is, any problem that can in principle be solved by a computer.

Sequence

When a program segment uses the principle of sequence, its execution

proceeds in a linear fashion. That is, the statements are executed in sequence,

one after the other. This is similar to walking through a completely enclosed

tunnel. You must continue walking through the tunnel until you find an exit.

The following is an example of sequence in everyday life.

Selection (“If” Statements)

When a program segment uses the principle of selection, its execution does

not proceed in a linear fashion. One or more groups of statements are given

as possible statements to be executed. Based on a condition or a set of

conditions, one group of statements is selected and executed while the others

are ignored. This is similar to walking through a completely enclosed tunnel

and suddenly reaching a point at which the tunnel branches into two or more

tunnels. In this case, you must choose or select which tunnel to follow.

The following is an example of selection in everyday life.

Repetition (Loops)

When repetition is employed, a program segment is executed in a repetitive fashion. A group of statements is

repeated a certain number of times (counted loop), while a certain condition is true (conditional while loop) or

until a certain condition is true (conditional loop until). This is similar to jogging around the block a certain

number of times, while you feel energetic or until fatigue sets in. The following is an example of repetition in

everyday life.

Wake Up
Get Ready

for School

Go to

School

Attend all

Classes
Go Home

I say “yes” and

it’s the truth.

I’m allowed to go out

with my friends.

My mom/dad asks if

my homework is done.

I’m at

Home
I’m sent to my room to

complete my homework.

I’m grounded for six

months for lying.

I say “yes” and

it’s a lie.

I say “no” and

it’s the truth.

Wake up
Get Ready

for School

Go to

School
Attend all

Classes

Go

Home

Do

Homework
Sleep

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-10

“If” Statement Details

VB “If” Statement Examples C# “if” Statement Examples

If Mark >= 80 Then

 Message = "Wow! What a great effort!"

End If

if (mark >= 80)

 message = "Wow! What a great effort!";

If Mark >= 80 Then

 Message = "Wow! What a great effort!"

Else

 Message = "Keep trying to improve!"

End If

if (mark >= 80)

 message = "Wow! What a great effort!";

else

 message = "Keep trying to improve!";

If Mark >= 80 And Mark <= 100 Then

 Message = "Wow! What a great effort!"

ElseIf Mark >= 70 Then

 Message = "Pretty good! Keep it up!"

ElseIf Mark >= 60 Then

 Message = "Not bad, you’re getting there!"

ElseIf Mark >= 50 Then

 Message = "You’re skating on thin ice!"

ElseIf Mark >= 0 And Mark <50 Then

 Message = "Get your butt in gear dude!"

Else

 Message = "What are you on dude?"

End If

if (mark >= 80 && mark <= 100)

 message = "Wow! What a great effort!";

else if (mark >= 70)

 message = "Pretty good! Keep it up!";

else if (mark >= 60)

 message = "Not bad, you’re getting there!";

else if (mark >= 50)

 message = "You’re skating on thin ice!";

else

 message = "What are you on dude?";

If Temperature >= 25 Then

 Message1 = "Time to wear shorts!"

 Message2 = "Turn on the AC dude!"

ElseIf Temperature >= 10 And Temperature < 25 Then

 Message1 = "Too cold for shorts but still OK!"

 Message2 = "Turn off the AC dude!"

ElseIf Temperature >= 0 And Temperature < 10 Then

 Message1 = "Time to get out the winter coats!"

 Message2 = "Turn on the heat man!"

Else

 Message1 = "Holy crap it’s cold!"

 Message2 = "Don’t turn off the heat!"

End If

if (temperature >= 25)

{

 message1 = "Time to wear shorts!";

 message2 = "Turn on the AC dude!";

}

else if (temperature >= 10 && temperature < 25)

{

 message1="Too cold for shorts but still OK!";

 message2="Turn off the AC dude!";

}

else if (temperature >= 0 && temperature < 10)

{

 message1="Time to get out the winter coats!";

 message2="Turn on the heat man!";

}

else

{

 message1 = "Holy crap it’s cold!";

 message2 = "Don’t turn off the heat!";

}

Research Question

Why are braces (i.e. “{“ and “}”) used in C# “if” statements? Are they always necessary?

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-11

Loop Details

VB Loop Examples C# Loop Examples

Sum = 0

For X As Integer = 1 To 5

 Sum = Sum + X

Next X

//As with "if" statements, braces are not needed

//if there is only one statement to be executed

sum = 0;

for (int x=1; x<= 5; x++)

 sum = sum + x;

Sum = 0

Count = 0

For X As Integer = 1 To 5

 Sum = Sum + X

 Count = Count + 1

Next X

Average = Sum / Count

sum = 0;

count = 0;

for (int x=1; x<= 5; ++x)

{

 sum += x; //Shortcut for sum=sum+x

 count += 1; //Shortcut for count=count+1

}

average = sum/count;

Sum = 0

Count = 99

For Num As Integer = 3 To Count Step 3

 Sum = Sum + Num

 Score = Score – Sum

 If Score Mod 2 = 0 Then

 Message = "Even Score"

 Else

 Message = "Odd Score"

 End If

Next Num

sum = 0;

count = 10;

for (int num=3; num<=count; num+=3)

{

 sum += num;

 score -= sum;

 if (score % 2 == 0)

 message = "Even Score";

 else

 message = "Odd Score";

}

'Euclid’s method for computing

'the gcd of two integers

a = 356

b = 512

Do

 remainder = a Mod b

 a = b

 b = remainder

Loop Until b = 0

gcd = a

//There is no "until" keyword in C#. "Until

//b is equal to zero" is logically equivalent to

//"while b is not equal to zero."

a = 356;

b = 512;

do

{

 remainder = a % b;

 a = b;

 b = remainder;

}while (b != 0);

gcd = a;

'Calculate the number of times '2' divides into

'"Num" before a quotient of 0 is obtained

NumDivisionsByTwo = 0

Num = Num \ 2

Do While Num > 0

 NumDivisionsByTwo = NumDivisionsByTwo + 1

 Num = Num \ 2

Loop

//Calculate the number of times '2' divides into

//"Num" before a quotient of 0 is obtained

numDivisionsByTwo = 0;

num/=2;

while (num > 0)

{

 numDivisionsByTwo++;

 num/=2;

}

x++ is a shortcut for x=x+1

++x is also a shortcut for
x=x+1

There is a subtle difference

between the two that will

become clear later in the course.

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-12

More VB Loop Examples More C# Loop Examples

Sum = 0

For X = 0 To 1000 Step 10

 Sum = Sum + X

Next X

//As with "if" statements, braces are not needed

//if there is only one statement to be executed

sum = 0;

for (x=0; x<=1000; x+=10)

 sum = sum + x;

Sum = 0

Count = 0

For X = 10000 To 0 Step -10

 Sum = Sum + X

 Count = Count + 1

Next X

Average = Sum / Count

sum = 0;

count = 0;

for (x=10000; x>=0; x-=10)

{

 sum += x; //Shortcut for sum=sum+x

 count++; //Shortcut for count=count+1

}

average = sum/count;

Important Exercises on Loops and If Statements

1. As shown in the example, complete a memory map for each loop. In addition, state the purpose of each loop.

x sum count

- 0 0

1 1 1

2 3 2

3 6 3

4 10 4

5 15 5

- 15 5

Loop Memory Map Problem Solved

int sum = 0;

int count = 0;

for (int x=1000; x>0; x-=200)

{

 sum += x;

 count++;

}

average = sum/count;

x sum count

The purpose of the

given “for” loop is to

int a = 356;

int b = 512;

do

{

 int remainder = a % b;

 a = b;

 b = remainder;

}while (b != 0);

gcd = a;

The given “do” loop

implements the

algorithm for

computing the _____

int num=1023;

int numDivisionsByTwo = 0;

num/=2;

while (num > 0)

{

 numDivisionsByTwo++;

 num/=2;

}

The purpose of the

given “while” loop is

Values Before

Entering Loop

int count = 0;

int sum = 0;

for (int x=1; x<= 5; x++)

{

 sum += x;

 count++;
}

This is a shortcut for x=x+10

This is a shortcut for x=x-10

Values After

Exiting Loop

The purpose of the given C#

“for” loop is to

 add the integers from 1 to 5

inclusive (i.e. 1+2+3+4+5)

 count the number of integers

that were added (5)

These values are stored using the

variables “sum” and “count”

respectively.

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-13

2. On paper, write C# loops to perform each of the following tasks. Do not use a computer for this question

except for verifying that your code is correct.

(a) Add up the numbers 1 + 2 + 3 + 4 + ... until the Sum > 100.

(b) Determine how many numbers 2 +4 + 6 + 8 + ... are needed to give a Sum > 1000.

(c) Determine the sum of all powers of 2 (i.e. 1, 2, 4, 8, 16, 32, …) that are less than 1000000.

(d) Output the smallest number (other than 1) that divides evenly into 2701.

3. The ancient Greek civilization had a keen interest in philosophy, mathematics, science, literature and the

pursuit of knowledge for its own sake. In fact, the Greeks had much less interest in the practical applications

of their intellectual inquiries because they believed that nature existed primarily for the wonderment of

humans. Nature was there to be explored, contemplated and even worshipped, but not to be tampered with or

altered. Largely due to this attitude, in a few short centuries the Greeks developed a body of knowledge and

a system of rational thought that was unrivalled in ancient times. In fact, it was the rediscovery of ancient

Greek learning that spawned the Renaissance, a pivotal period without which our modern technological

society probably would not exist.

Among other things, the Greeks were interested in the properties of numbers, including numbers that the

Greeks called perfect. An integer is called perfect if the sum of its proper divisors is equal to the number

itself. Two examples of perfect numbers are 6 and 28 because 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14.

(a) What is a proper divisor of a number?

(b) Without writing a program, find a perfect number greater than 28.

(c) Consider the steps that you used in question 3(b) to find a perfect number greater than 28. Without

referring to specific numbers, list steps that can be followed to determine whether an integer is perfect.

(d) Write a program that can determine whether a given number is perfect.

(e) Write a program that finds all perfect numbers less than 10000.

(f) The numbers 220 and 284 are called an amicable pair because the sum of the proper divisors of 220 is

284 and the sum of the proper divisors of 284 is 220. Write a C# program that determines whether a

given pair of integers forms an amicable pair.

(g) Write a program that finds all amicable pairs less than 10000.

4. To a mathematician, a prime number serves the same purpose as a chemical element does to a chemist. Just

as all molecules are made using the elements of the periodic table, all numbers can be constructed using

nothing but primes. Another way of putting this is that the primes are the basic building blocks of all

numbers. Prime numbers are not just a whimsical curiosity of mathematicians. Without them, it would not

be possible to conduct secure transactions over the Internet! (The details of how prime numbers ensure the

security of Web transactions will follow in a future unit and from time to time in class discussions. For more

information consult http://en.wikipedia.org/wiki/Public_key_encryption)

(a) What is a prime number?

(b) Rewrite your definition in 4(a) using the concept of proper divisor.

(c) Explain how you could use your code for finding all proper divisors of a number to determine whether a

given number is prime. Would this be an efficient method?

(d) Write a C# program that can determine whether a given number is prime. (When you test your program,

use relatively small integers as input. Otherwise, you may spend a great deal of time waiting for your

program to produce its output.)

(e) Primes are considered the building blocks of all numbers because every integer can be written as a

product of primes. For example, 24 = 2(2)(2)(3) = 23(3) and 105 = 3(5)(7). Write a C# program that can

find the prime factorization of a given integer. (Don’t forget to observe the caveat of 4(d).)

http://en.wikipedia.org/wiki/Public_key_encryption

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-14

PROCEDURES IN C#

Overview of Procedures

 Procedure (aka “Subroutine” and “Subprogram”)

A procedure is a named set of programming instructions.

The instructions can be executed whenever needed simply by specifying the name of the procedure.

 Procedure Call

Calling a procedure means to use the procedure’s name to execute the instructions contained within the

body of the procedure.

 Function
A procedure that returns a value (i.e. has an “output” value) is often called a function. In C, all procedures

are called functions, even those that don’t return a value.

 Method
A procedure that belongs to a class or an object is called a method. In C#, all procedures are defined within

classes, meaning that all procedures are methods.

 Programmer-Defined Procedure
A procedure that is not built in to a programming language but is created by a user of the language.

 Intrinsic (“Built-in”) Procedure

A procedure that is built in to a programming language.

“Black-Box” View of Procedures

In science, computing, and engineering, a black box is a device, system or object which can be viewed in terms

of its inputs and outputs (or transfer characteristics), without any knowledge of its internal workings. Its

implementation is “opaque” (black). Almost anything might be referred to as a black box: a transistor,

algorithm, or the human brain. (Source: https://en.wikipedia.org/wiki/Black_box)

 (Source: https://en.wikipedia.org/wiki/Black_box)

Procedures
(aka "Subroutines" and "Subprograms)

All procedures in C# are methods.

Event
Handlers

Methods
Programmer-

Defined
Procedures

Built-in
(Intrinsic)

Procedures

In a black-box view of a system, there is no need to have any knowledge

of the internal workings of the system. The behaviour of the system is

completely characterized by its inputs and corresponding outputs.

https://en.wikipedia.org/wiki/Transfer_function
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Human_brain
https://en.wikipedia.org/wiki/Black_box
https://en.wikipedia.org/wiki/Black_box

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-15

Examples of Programmer-Defined Methods in C#

Procedure Definition Example Calls

/**
 * "isDivisor" returns "true" if "n" is a divisor of "m"
 * and returns "false" otherwise
 */

private bool isDivisor(int m, int n)
{
 if (m % n == 0)
 return true;
 else
 return false;

}//end of "isDivisor"

bool x = isDivisor(24, 7);

int a = 20, b = 30;

if (isDivisor(a, b))
 b = a;

else
 a = b;

/**
 * "gcd" uses the Euclidean algorithm
 * to compute the greatest common
 * divisor of "m" and "n"
 */
private int gcd(int m, int n)
{
 do
 {
 int remainder = m % n;
 m = n;
 n = remainder;

 }while (n != 0);

 return m;
}//end of "gcd"

int x = gcd(24, 8);

int a = 10, b = 30;

if (gcd(a, b) == a)
 b = a;

else
 a = b;

Procedure

 Performs a set of zero or more tasks

 From the black-box point of view, it is not necessary to know how

these tasks are performed (i.e. implementation details are hidden)

 Can have zero or more inputs

 Each input is called a formal parameter or parameter. Each

parameter is a variable or object that is local to the procedure.

 Can have zero outputs or one output

 If there is an output, it is called the returned value.

…
 { The output, if

there is one, is

called the

returned value.

The inputs of

a procedure

are called

formal

parameters or

parameters.

The values

passed to the

inputs are

called actual

parameters or

arguments.

(formal) parameters

return type name of method

private

This means that the

procedure is only

available to the class in

which it is defined.

method

Any procedure defined

within a class is called a

method. In C#, all

procedures are methods.

Mathematical Basis of the

Euclidean Algorithm

If a and b are integers, then

a = bq + r

for integers q (quotient) and

r (remainder).

This means that any number

that divides a and b exactly

must also divide r exactly.

Therefore,

gcd(a, b) = gcd(b, r)

The method shown at the left

exploits this property of gcd.

actual parameters

(aka arguments)

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-16

Procedure Definition Example Calls

/**
 * "nextHighestPalindromeButton_Click" is a C# event-handling method
 * (i.e. an event handler). Notice that its return type is "void."
 * This means that the method does not return a value (i.e. no output).
 */

private void nextHighestPalindromeButton_Click(object sender, EventArgs e)
{
 int num = Convert.ToInt32(integerTextBox.Text);
 answerLabel.Text = nextHighestPalindrome(num).ToString();

}//end of "nextHighestPalindromeButton_Click"

Parameters

sender: object that contains information about the object on which event took place

e: object that contains information about the event that took place

Normally, event handlers

are called automatically

by a system called the

event monitor.

Although it’s rarely done

in practice, event

handlers can also be

called in the same way as

all other methods are

called. All that is

required is that

arguments of the right

type be supplied.

Advantages of Procedures

1. Eliminate repetition of code and thereby reduce program size

2. Allow for large, complex problems to be broken down logically into a series of smaller, simpler problems

3. Make programs easier to read and understand

4. Improve portability: properly designed procedures can be used in any program without modification

5. Debugging is easier because bugs are localized to procedures

Problems

Write C# methods to solve each of the following problems. Keep in mind the following important points:

 Parameters are always local to the method in which they are defined.

 Ensure that each method that you write is completely self-contained. That is, each method must not refer to
any global information whatsoever.

1. Write a method that determines whether a given number is prime.

2. Write a method that computes the discriminant of any quadratic function.

3. Write a method that solves any linear equation.

4. Write a method that computes the distance between any two points on a two-dimensional Cartesian plane.

5. Write a method that determines whether any given year (Gregorian calendar) since 1582 is a leap year.

(See https://www.wwu.edu/skywise/leapyear.html)

6. Write a method that takes any Gregorian calendar date and returns the day of the week of that date. For

example, if the input is February 17, 2016, the method returns “Wednesday.” (See

http://www.timeanddate.com/date/doomsday-weekday.html and

https://en.wikipedia.org/wiki/Doomsday_rule)

(formal) parameters return type name of event handler

call of programmer-

defined method

https://www.wwu.edu/skywise/leapyear.html
http://www.timeanddate.com/date/doomsday-weekday.html
https://en.wikipedia.org/wiki/Doomsday_rule

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-17

ALTERNATIVE METHOD OF BRACE PLACEMENT

Examples

Format suggested when Clarity is the Primary

Concern

Format suggested when Brevity is the Primary

Concern

if (temperature >= 25)

{

 message1 = "Time to wear shorts!";

 message2 = "Turn on the AC dude!";

}

else if (temperature >= 10 && temperature < 25)

{

 message1="Too cold for shorts but still OK!";

 message2="Turn off the AC dude!";

}

else if (temperature >= 0 && temperature < 10)

{

 message1="Time to get out the winter coats!";

 message2="Turn on the heat man!";

}

else

{

 message1 = "Holy crap it’s cold!";

 message2 = "Don’t turn off the heat!";

}

if (temperature >= 25){

 message1 = "Time to wear shorts!";

 message2 = "Turn on the AC dude!";

}

else if (temperature >= 10 && temperature < 25){

 message1="Too cold for shorts but still OK!";

 message2="Turn off the AC dude!";

}

else if (temperature >= 0 && temperature < 10){

 message1="Time to get out the winter coats!";

 message2="Turn on the heat man!";

}

else{

 message1 = "Holy crap it’s cold!";

 message2 = "Don’t turn off the heat!";

}

sum = 0;

count = 0;

for (int x=1000; x>=0; x-=100)

{

 sum += x;

 count++;

}

average = sum/count;

sum = 0;

count = 0;

for (int x=1000; x>=0; x-=100){

 sum += x;

 count++;

}

average = sum/count;

a = 356;

b = 512;

do

{

 remainder = a % b;

 a = b;

 b = remainder;

}while (b != 0);

gcd = a;

a = 356;

b = 512;

do{

 remainder = a % b;

 a = b;

 b = remainder;

}while (b != 0);

gcd = a;

num=1023;

numDivisionsByTwo = 0;

num/=2;

while (num > 0)

{

 numDivisionsByTwo++;

 num/=2;

}

num=1023;

numDivisionsByTwo = 0;

num/=2;

while (num > 0){

 numDivisionsByTwo++;

 num/=2;

}

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-18

DEPENDENT AND INDEPENDENT “IF” STATEMENT STRUCTURES

See the complete program: S:\Out\Nolfinator\Ics4uo\CSharpExamples\PizzaIfStatementApplication

private void summarizeOrderButton_Click(object sender, EventArgs e)

{// Start "summarizeOrderButton_Click" Method

 // LOCAL VARIABLES
 string pizzaSize, pizzaDough, toppings="";

 // ONE "if" statement with multiple clauses is used to determine the pizza size selected by the user.
 // This structure is used when only ONE option can be chosen from 2 or more possibilities.
 if (smallRadioButton.Checked)
 pizzaSize = "small";

 else if (mediumRadioButton.Checked)
 pizzaSize = "medium";

 else if (largeRadioButton.Checked)
 pizzaSize = "large";

 else if (extraLargeRadioButton.Checked)
 pizzaSize = "extra large";

 else if (partySizeRadioButton.Checked)
 pizzaSize = "party size";

 else
 pizzaSize = "super size";

 // ONE "if" statement with multiple clauses is used to determine the pizza dough selected by the user.
 // This structure is used when only ONE option can be chosen from 2 or more possibilities.
 if (enrichedWhiteRadioButton.Checked)
 pizzaDough = "enriched white";

 else if (wholeWheatRadioButton.Checked)
 pizzaDough = "whole wheat";

 else if (multiGrainRadioButton.Checked)
 pizzaDough = "multi-grain";

 else if (flaxRadioButton.Checked)
 pizzaDough = "flax";

 else if (spinachRadioButton.Checked)
 pizzaDough = "spinach";

 else
 pizzaDough = "rye";

 // Determine which toppings, if any, have been chosen. Each topping requires its own "if" statement
 // because the choice of any topping is INDEPENDENT of the choice of any other topping.
 if (pepperoniCheckBox.Checked)
 toppings = "pepperoni, ";

 if (mushroomsCheckBox.Checked)
 toppings += "mushrooms, ";

 if (greenPeppersCheckBox.Checked)
 toppings += "green peppers, ";

 if (hotPeppersCheckBox.Checked)
 toppings += "hot peppers, ";

 if (anchoviesCheckBox.Checked)
 toppings += "anchovies, ";

 if (pineapplesCheckBox.Checked)
 toppings += "pineapples, ";

 .
 .
 .
 // Remove the final comma and space at the end of the 'toppings' string if at least one topping was chosen.
 if (toppings != "")
 toppings = toppings.Substring(0, toppings.Length - 2);
 else
 toppings = "no toppings chosen";

 // OUTPUT
 orderSummaryLabel.Text = "Let me get this straight. You would like a " + pizzaSize + " pizza made with "
 + pizzaDough + " dough and with the following toppings: " + toppings + ".";

} //End of "summarizeOrderButton_Click" Method

The rest of the “if” statements have been omitted to make it

possible to fit the entire method on one page.

Each check box requires a

separate “if” statement

because each check box is

independent of all the rest.

This is a single “if”

statement with multiple

clauses. Its purpose is to set

the value of the variable

“pizzaSize.” Only one “if”

statement is needed because

only one radio button can be

selected.

This is a single “if”

statement with multiple

clauses. Its purpose is to set

the value of the variable

“pizzaDough.” Only one

“if” statement is needed

because only one radio

button can be selected.

}
}
}

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-19

Questions

1. How many “if” statements are there in the “summarizeOrderButton_Click” method? Why are so many “if”

statements needed?

2. The name of the method on the previous page is “summarizeOrderButton_Click.” What is the significance

of the names “summarizeOrderButton” and “Click?”

3. Using the pizza order confirmation program as a model, create your first C# program. Instead of choosing a

pizza size, type of dough and toppings, your program will allow the user to choose a car make, model and

options.

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-20

WORKING WITH STRINGS IN C#

Examples of Declaration of String “Variables”

Strings in C# are actually implemented as objects. However, the C# syntax for working with strings allows us

to think of them as variables. Here are some basic examples of how the string data type can be used in C#.

string surname = ""; //Set the initial value of the string variable 'surname' to the null string

string givenName = "Rags"; //Set the initial value of the string variable 'givenName' to "Rags"

string secondsText = secondsTextBox.Text; //Set initial value to the text in 'secondsTextBox.'

Working with Strings

Once you have created a string variable, you can work with it using the “+” string concatenation operator and

any of the methods in the .NET String class (described in more detail on pages 21 to 23). Since the number of

methods in each class tends to be large, it is not advisable to memorize the names and purposes of each method.

Instead, you should consult sources such as MSDN (Microsoft Development Network – msdn.microsoft.com),

or simply “Google” the information that you need to find.

What a String Really “Looks Like”

As shown in the following example, a string’s value is stored as an array of char values:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

'N' 'o' 'l' 'f' 'i'
'

'
'h' 'a' 't' 'e' 's'

'

'
'l' 'a' 'z' 'i' 'n' 'e' 's' 's' '\0'

Notice that the special character '\0', known as the null character or terminating character, is used to mark

the end of a string. Although a combination of two symbols is used to denote the terminating character, it only

counts as a single character. As shown in the diagram below, its Unicode numeric value is zero.

Special characters like '\0' are known as escape sequences or control sequences. See

http://en.wikipedia.org/wiki/Escape_sequence for a good description of escape sequences.

As you probably know, the Unicode value (visit www.unicode.org to find out more) of each character is what

is actually stored. Therefore, the array really should look like the following:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

78 111 108 102 105 32 104 97 116 101 115 32 108 97 122 105 110 101 115 115 0

Since a char value occupies two bytes of memory, each element of the array actually corresponds to two

memory locations. (Also, in C#, the actual Unicode values are specified in the format '\u####' as shown in the

example on page 8. This was not shown here due to lack of space.)

Now this is not all there is to a string in C#. The .NET “String” class provides a number of methods that can

be used to manipulate strings:

Compare, CompareOrdinal, Concat, CompareTo, Contains, CopyTo, EndsWith, Equals, Format,

GetEnumerator, GetHashCode, GetType, IndexOf, IndexOfAny, Insert, IsNormalized, Intern,

IsInterned, IsNullOrEmpty, IsNullOrWhiteSpace, Join, LastIndexOf, LastIndexOfAny,

Normalize, PadLeft, PadRight, ReferenceEquals, Remove, Replace, Split, StartsWith,

SubString, ToCharArray, ToLower, ToLowerInvariant, ToString, ToUpper, ToUpperInvariant,

Trim, TrimEnd, TrimStart

The .NET “String” class also provides two properties (data fields) for strings:

Length, Chars

The index or subscript of a character in a string is a number that identifies

the position of the character in the string.

https://d.docs.live.net/0db3bfbf9f90458d/Documents/02-Cpss/00-Current%20Courses/Ics4uo/Unit%200%20-%20Introduction%20to%20CSharp%20and%20Review/msdn.microsoft.com
http://en.wikipedia.org/wiki/Escape_sequence
http://www.unicode.org/

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-21

Static (Class) versus Instance

As already pointed out on the previous page, the .NET “String” class provides numerous methods, as well as

two properties, that can be used to manipulate strings. To gain a full appreciation of this class, however, it is

first necessary to examine the differences between static and instance members of a class.

Static Methods and Data Fields/Properties Instance Methods and Data Fields/Properties

These are methods or properties/data fields that can be

accessed directly from a class without creating an

object.

Example

//The value of 'x' will be 'true.'
//Note that the method 'IsNullOrEmpty' is
//used without creating a string object.

bool x = string.IsNullOrEmpty("");

//The value of 'y' will be 'false.'
//Once again, the method 'IsNullOrEmpty' is
//used without creating a string object.

bool y = string.IsNullOrEmpty(" ");

These are methods or data fields that can only be

accessed when an object is created. In a sense, these

methods or data fields “belong” to the object.

Example

//This time 'x' is a string object.

string x = "Toronto Maple Leafs";

//The following shows an example call of the
//instance method 'IndexOf.' Note that it
//does not make sense to call 'IndexOf'
//independently of 'x.'

//The value of 'y' will be 12 because the first
//'e' in the string 'x' is found at index 12.

int y = x.IndexOf("e");

Summary

Class

Data Fields/
Properties

Static
(Class)

Instance

Methods

Static
(Class)

Instance

When a dot is typed

after a data type name

or class name, a list of

static (aka class)

members is displayed.

Static methods and

properties exist

independently of any

object.

In this example, a string

variable called “x” (which

is really a .NET “String”

object) is created first.

When a dot is typed after

the object name “x,” a list

of instance members is

displayed. An instance

method or property always

refers to a particular object.

Without the object, it does

not make any sense to use

the property or method.

 A class is a template or

blueprint for creating an object.

 A class is to an object as a

cookie cutter is to a cookie.

 Data fields/properties are variables

or objects that “belong” to an object.

 Data fields/properties store

information about an object.

 Think of properties as adjectives.

 Methods are functions or procedures

that “belong” to an object.

 Methods perform actions associated

with the object.

 Think of methods as verbs.

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-22

Demystifying MSDN Technical Information: Getting to Know the .NET String Class

What is MSDN?

 MSDN stands for “Microsoft Developer Network.”

 MSDN’s URL is http://msdn.microsoft.com.

 MSDN contains a wealth of technical information on how to use Microsoft’s various software development
tools. (e.g. Microsoft Visual Studio, .NET Framework, etc.)

 The reference materials provided by MSDN are highly technical and as such, can be difficult to understand.

 The information presented below is intended to help make technical documents easier to comprehend.

Using MSDN to understand the Structure of the .NET String Class

A logical way to begin searching for information on the .NET string class is to Google “.NET string class.”

Doing so returns millions of results, the first of which is http://msdn.microsoft.com/en-

us/library/system.string.aspx. Shown below are a few of the main features of this page.

Introduction to the Class

Detailed Description of Members of the Class

What follows the introduction to the class is a complete listing of all constructor methods, instance methods,

static methods, extension methods, properties and fields. The following table describes how this information is

organized as well as the meanings of the various icons that are used in the descriptions of the members.

How the Information is Organized Meanings of the Various Icons

 Public Method

 Private Method

 Property

 Field

 Static Method

 Extension Method

 Supported by Portable Class Library

 Supported by XNA Framework

 Supported in .NET for Windows Store Apps

Class

Data Fields

Properties

Fields

Methods

Constructor
Methods

Instance
Methods

Static
Methods

Extension
Methods

The “String” class inherits all the members

of the “Object” class. In other words, it

uses the “Object” class as a foundation

upon which its own functionality is built.

Because of this, the “String” class contains

all members of the “Object” class in

addition to its own specific members.

The purpose of the “String” class

String Class

Object Class

http://msdn.microsoft.com/
http://msdn.microsoft.com/en-us/library/system.string.aspx
http://msdn.microsoft.com/en-us/library/system.string.aspx
http://en.wikipedia.org/wiki/Extension_method
http://msdn.microsoft.com/en-us/library/gg597391.aspx
http://en.wikipedia.org/wiki/Microsoft_XNA
http://en.wikipedia.org/wiki/Windows_Store

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-23

Several Helpful Methods found within the .NET String Class

For each of the following …

 …state whether the method is a static method or an instance method

 …describe its purpose

 …give an example of how it could be used.

Method Name
Static or

Instance?
Purpose Example

Compare

CompareTo

Contains

CopyTo

EndsWith

Equals

IndexOf

IsNullOrWhiteSpace

PadLeft

PadRight

Remove

Replace

StartsWith

SubString

ToLower

ToString

ToUpper

Trim

TrimEnd

TrimStart

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-24

Exercises involving Strings

1. Create a memory map for each code segment. In addition, determine the problem that is solved in each

case. (Some variables have intentionally been given silly names to disguise their purpose.)

Code Segment Memory Map (Trace Chart) Problem Solved?

int harinder=0;

string c="";

string s="aeiouAEIOU";

string a="Laziness is for fools!";

for (int i=0; i<a.Length; i++){

 c=a.Substring(i,1);

 if (s.IndexOf(c)>=0)

 harinder++;

}

By the time the

loop has finished

executing, the

variable “harinder”

stores

string c="";

string s="Einstein";

for (int i=s.Length-1; i>=0; i--)

 c=c+s.Substring(i,1);

By the time the

loop has finished

executing, the

string “c” stores

2. On paper, write C# code to perform each of the following tasks. Do not use a computer for this question

except for verifying that your code is correct.

(a) Determine whether a given string is a palindrome. (A palindrome is a word or phrase that reads the

same forward or backward. Examples of palindromes include “bob,” “madam” and “ten animals I slam

in a net.”)

(b) Write a program that counts the number of consonants in a given string.

(c) Write a program that counts the number of “double letter” occurrences in a given string. For instance, in

the word “occurrence,” there is a double “c” and a double “r,” making the count equal to two.

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-25

STRING ASSIGNMENT - CREDIT CARD VALIDATION

Introduction

All credit card accounts are identified by a number, usually consisting of 14 to 16 digits. To

distinguish valid credit card numbers from random sequences of digits, a simple method called the

Luhn Algorithm is used. This algorithm involves computing a value called a checksum, which

must be divisible by 10. In this assignment, you will design a program that determines whether a

credit card number satisfies the Luhn algorithm and other conditions that are specific to the

particular credit card company.

Rules for Credit Card Number Validity

1. Length and Prefix

In addition to satisfying the Luhn algorithm, each credit card number must…

 …begin with a specific series of one or more digits (called the prefix)

 …have a specific number of digits (called the length)

For instance, Visa numbers must begin with a “4” and be exactly 16 digits long.

Credit Card Type Valid Length Valid Prefix

Visa 16 4

Master Card

Diners Club (in U.S and Canada)
16 51 to 55

American Express 15 34 or 37

Discover 16 6011

Diners Club (Outside U.S. and Canada) 14 36

2. Luhn Algorithm Checksum

The Luhn algorithm, developed by IBM scientist Hans Peter Luhn in 1954, is described below.

 Begin with a checksum of zero.

 Starting at the rightmost digit, move from right to left digit by digit and add to the checksum.

 Digits in odd positions are simply added to the checksum.

 Digits in even positions (“alternate digits”) must be adjusted in the following way:
o Multiply each alternate digit by 2.

o If the product is more than a single digit (i.e. greater than 9), add the two digits to obtain a single digit.

o Add the result to the checksum.

 The checksum mod 10 must be equal to 0. That is, the checksum must be exactly divisible by 10.

Example

Suppose you are testing the following Visa number: 4568926885633463

1. Length and Prefix

Clearly, the number has the correct prefix (4) and the correct length (16).

2. Luhn Algorithm Checksum

We shall add the digits from right to left, multiplying and adjusting alternate digits as described above.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th

3 6 4 3 3 6 5 8 8 6 2 9 8 6 5 4

3 6*2

=12

1+2
=3

4 3*2

=6
3 6*2

=12

1+2
=3

5 8*2

=16

1+6
=7

8 6*2

=12

1+2
=3

2 9*2

=18

1+8
=9

8 6*2

=12

1+2
=3

5 4*2

=8

Therefore, checksum = 3+3+4+6+3+3+5+7+8+3+2+9+8+3+5+8 = 80

Since 80 mod 10 = 0, the checksum is valid.

Therefore, the credit card number is valid, since it meets all conditions.

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-26

Program Plan

The following shows you how you can divide the large problem of determining credit card validity into a series

of smaller, simpler problems.

Step 1: Capture User Input

 What is the credit card type?

 What is the credit card number?

Step 2: Determine Number Validity

 Check length.

 Check prefix.

 Calculate the checksum using the Luhn algorithm.

 If all conditions are satisfied, the number is valid. Otherwise, it is invalid.

Step 3: Display the Result

 Output a message about credit card validity.

Additional Notes

 Please note that your program will only be able to determine whether a credit card’s length, prefix and
checksum are valid. It will not be able to determine whether a given credit card number has actually been

issued by a bank to one of its customers. Such authentication can only be done through databases that are

accessible only to authorized merchants.

 Think carefully of which data types you will use.

 The input for the program is a credit card type and a credit card number. The output should be a
determination (true or false) of credit card’s numerical validity.

 Think before you start programming! Solve simple problems first! Then move on to more challenging ones.

 You are also expected to provide a set of test cases (sample inputs with corresponding sample outputs) for

your program that shows program correctness (i.e. that your program produced correct outputs for all inputs).

 If the user input is anything but a valid number, your program should consider the number invalid.

 If you’re stuck, make use of online and offline documentation and resources.

Additional Challenge for Extra Credit

 Instead of asking the user for the credit card type, your program can use the prefix to determine the type.

 Include a feature that allows the user to generate valid credit card numbers.

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-27

Practice Exercises

1. Determine which of these credit card numbers are valid based on the prefix, length and the Luhn algorithm.

a) Is VISA number 4484663142585415 valid?

Check Prefix: 4 (correct)

Check Length: 16 (correct)

Checksum = 5+2+4+1+8+1+2+8+1+6+6+3+4+7+4+8 = 70

70 mod 10 = 0 (correct)

This number is VALID.

b) Is DISCOVER number 601195145328714 valid?

Check Prefix:

Check Length:

Checksum:

This number is

c) Is MASTERCARD number 5358390378156038 valid?

Check Prefix:

Check Length:

Checksum:

This number is

d) Is AMEX number 375627815798423 valid?

Check Prefix:

Check Length:

Checksum:

This number is

2. Change the invalid numbers above (by changing their digits) into valid ones. How many ways are there to do

this?

3. From scratch, come up with your own valid credit card number.

4. Suppose that a 16-digit number is chosen at random. What is the probability that the number would satisfy

the Luhn algorithm?

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-28

Evaluation Guide for Credit Card Validation Program

Categories Criteria
Descriptors

Level Mark
Level 4 Level 3 Level 2 Level 1 Level 0

Knowledge

and

Understanding

(KU)

Understanding of Programming Concepts Extensive Good Moderate Minimal Insufficient

Understanding of the Problem Extensive Good Moderate Minimal Insufficient

Application

(APP)

Correctness
To what degree is the output correct?

Very High High Moderate Minimal Insufficient

Exception Handling
How stable is the software?

Highly

Stable
Stable

Moderately

Stable

Somewhat

Unstable

Very

Unstable

Declaration of Variables
To what degree are the variables declared with

appropriate data types?

Very High High Moderate Minimal Insufficient

Unnecessary Duplication of Code

To what degree has the student avoided

unnecessary duplication of code?

Very High High Moderate Minimal Insufficient

Debugging
To what degree has the student employed a logical,

thorough and organized debugging method?

Very High High Moderate Minimal Insufficient

Thinking,

Inquiry and

Problem

Solving

(TIPS)

Algorithm Design and Selection
To what degree has the student used approaches

such as solving a specific example of the problem

to gain insight into the problem that needs to be
solved?

Very High High Moderate Minimal Insufficient

Ability to Design and Select Algorithms Independently

To what degree has the student been able to design

and select algorithms without assistance?
Very High High Moderate Minimal Insufficient

Ability to Implement Algorithms Independently
To what degree is the student able to implement

chosen algorithms without assistance?

Very High High Moderate Minimal Insufficient

Efficiency of Algorithms and Implementation

To what degree does the algorithm use resources

(memory, processor time, etc) efficiently?

Very High High Moderate Minimal Insufficient

Communication

(COM)

Indentation of Code

Insertion of Blank Lines in Strategic Places

(to make code easier to read)

Very Few

or no

Errors

A Few

Minor

Errors

Moderate

Number of

Errors

Large

Number of

Errors

Very Large

Number of

Errors

Comments

 Effectiveness of explaining abstruse (difficult-to-

understand) code

 Effectiveness of introducing major blocks of code

 Avoidance of comments for self-explanatory code

Very High High Moderate Minimal Insufficient

Descriptiveness of Identifier Names

Variables, Constants, Objects, Methods,
Data Fields, etc

Clarity of Code

How easy is it to understand, modify and debug the

code?

Adherence to Naming Conventions

(e.g. lowerCamelCase for variable names, etc)

Masterful Good Adequate Passable Insufficient

User Interface

To what degree is the user interface well designed,

logical, attractive and user-friendly?

Very High High Moderate Minimal Insufficient

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-29

USING ARRAYS IN C#

The Concept of an Array

 An array is a structure that allows you to use a single name to refer to a group of two or more variables.

 To distinguish one variable in the group from another, a number, called the index or subscript, is used.

 This concept is similar to the street address of a house. Each house on a given street is
identified by the same street name. However, each house also is identified by a unique

number, which makes it possible to locate any given house.

 For example, shown at the right is an overhead view of a portion of Centre Street North in

Brampton. Since each house on this street is identified by a unique number, there is never

any confusion distinguishing one house from another.

 Arrays are used whenever a program needs to process a group (usually a large group) of
related data.

 Arrays help you to create shorter and simpler code in many situations because loops can
be used to process the array elements efficiently, regardless of the size of the array.

Important Details about Arrays in C#

 All the elements in an array have the same data type.

 Because C# must allocate memory for each element of an array, avoid creating very large arrays.

 Arrays have both upper and lower bounds and the elements of the array are contiguous within those bounds.
In C, C++, C# and a host of other languages derived from C, the lowest index is always zero.

 If a program attempts to access an element of an array using an index that is either negative or greater than
the upper bound, an “ArgumentOutOfRangeException” is thrown.

 Arrays can be thought of as fixed-size lists. Once an array has been declared and initialized, the number of

elements in the array remains fixed.

 C# also provides support for Lists, which can be thought of as variable-size arrays or dynamic arrays. Lists
are essentially arrays that can grow and shrink in size while a program is being executed. Lists in C# are

covered later in this unit.

Several Examples of Array Declarations

//Create a one-dimensional, empty array of "double"
//values. The elements of the array exist but
//they have not yet been assigned any values.

double[] temperature = new double[4];

Index 0 1 2 3

Data - - - -

In this example, a variable of array type is

declared, an array object is created and storage

space is allocated for the elements (also called

components) of the array. However, the elements

of the array do not yet have values.

//Create and initialize an array of "double" values.
//Initial values are given in an initializer list.
//An initializer list is a set of values, separated
//by commas and enclosed in braces.

double[] temperature = new double[4] {0,2,4,6};

Index 0 1 2 3

Data 0 2 4 6

In C#, arrays are implemented as objects.

Therefore, the new keyword must be used in the

declaration of an array to create a new array

object. Note that array indices (singular index,

also called subscripts) in C# always start at zero.

Number of elements in the array.

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-30

//Create an array of "string" values. No values
//have been assigned yet to the elements of the array.

string[] name = new string[4];

Index 0 1 2 3

Data - - - -

//The following declares a two-dimensional array called
//'distance.' It consists of two rows (horizontal) and
//3 columns (vertical). Its purpose is to store distances
//between points. As with other similar examples, the
//array elements have not yet been assigned values.

double[,] distance = new double[2,3];

 0 1 2

0 - - -

1 - - -

The statements shown at the left can

be used to declare and create a two-

dimensional array of double

values. The row indices run from 0

to 1 and the column indices run from

0 to 2. Without any assignment

statements, however, the two-

dimensional array is empty (i.e. the

elements have not yet been assigned

any values).

//'distance[i,j]' stores the distance from point 'i' to
//point 'j.' For example, the distance from point 0 to
//point 1 is 10.7.

distance[0,0] = 0;
distance[0,1] = 10.7;
distance[0,2] = 25.3;
distance[1,0] = 10.7;
distance[1,1] = 0;
distance[1,2] = 16.3;

 0 1 2

0 0 10.7 25.3

1 10.7 0 16.3

Once the assignment statements at

the left are executed, the two-

dimensional array (also known as a

matrix) will contain the values

shown above.

//Use an initializer list of initializer lists to initialize the
//two-dimensional array 'distance.'

double[,] distance = new double[2,3] { { 0, 10.7, 25.3 },
 { 10.7, 0, 16.3 } };

This statement is an alternative (and

preferable) method of declaring,

creating and initializing the two-

dimensional array shown above.

Each row of the matrix is enclosed

in braces and listed in the desired

order.

//A two-dimensional array used as a height map for an algorithm
//such as the "diamond-square" algorithm. For the sake of
//simplicity, the array is only 5x5. In reality, it would be
//much larger.

double[,] height = new double[5,5] { { 10, 0, 0, 0, 10 },
 { 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0 },
 { 10, 0, 0, 0, 10 } };

We shall study the diamond-square

algorithm in detail in the next unit.

Number of Rows Number of Columns

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-31

Exercises involving Arrays

1. Create a memory map for each code segment. In addition, determine the problem that is solved in each

case. (Some variables have intentionally been given silly names to disguise their purpose.)

Code Segment Memory Map (Trace Chart) Problem Solved?

int[] a = { -1, 5, 3, -6, 3 };
int moe = a[0];

for (int x = 1; x < a.Length; x++)
{
 if (a[x] < moe)
 moe = a[x];
}

By the time the

loop has finished

executing, the

variable “moe”

stores

Random randomGenerator = new Random();
int[] a = new int[6];

for (int i = 0; i < a.Length; i++)
{
 bool rep = false;
 int r;

 do
 {
 r = randomGenerator.Next(1, 70);
 rep = false;

 for (int j = 0; j < i; j++)
 {
 if (a[j] == r)
 {
 rep = true;
 break; //exit 'for' loop
 }
 }//end inner for

 } while (rep);

 a[i] = r;

}//end outer for

By the time the

outer for loop has

finished

executing, the

array “a” stores

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-32

2. The following table lists answers to question 1. Check your answers to ensure that they are correct.

Code Segment Memory Map (Trace Chart) Problem Solved?

int[] a = { -1, 5, 3, -6, 3 };
int moe = a[0];

for (int x = 1; x < a.Length; x++)
{
 if (a[x] < moe)
 moe = a[x];
}

Data stored in the array “a.”

Index 0 1 2 3 4

Data 1 5 3 6 3

x moe
- -1
1 -1
2 -1
3 -6
4 -6
- -6

By the time the

loop has finished

executing, the

variable “moe”

stores the

smallest value

stored in the

array.

Random randomGenerator = new Random();
int[] a = new int[6];

for (int i = 0; i < a.Length; i++)
{
 bool rep = false;
 int r;

 do
 {
 r = randomGenerator.Next(1, 70);
 rep = false;

 for (int j = 0; j < i; j++)
 {
 if (a[j] == r)
 {
 rep = true;
 break; //exit 'for' loop
 }
 }//end inner for

 } while (rep);

 a[i] = r;

}//end outer for

Since the given code produces random

integers, it is not possible to predict

exactly what will occur when the code is

executed. The following is an example

of what could happen.

Array

Index

i

0 1 2 3 4 5 r

- - - - - - - -

0 27 - - - - - 27

1 27 3 - - - - 3

2 27 3 51 - - - 51

3 27 3 51 - - - 3

3 27 3 51 - - - 16

4 27 3 51 16 - - 27

4 27 3 51 16 - - 51

4 27 3 51 16 42 42

5 27 3 51 16 42 9 9

Notice the numbers displayed in red.

Since each of these numbers already

occurred for a previous value of “i,” a

new value of “r” needs to be generated.

By the time the

outer for loop has

finished

executing, the

array “a” stores

six random

integers ranging

from 1 to 69,

without

repetition (i.e.

each random

integer is

different from

all the others).

3. On paper, write C# static methods to perform each of the following tasks. Do not use a computer for this

question except for verifying that your code is correct.

(d) Find the largest value stored in an array.

(e) Find the average of the values stored in an array.

(f) Find the median of the values stored in an array.

(g) Copies the values stored in an array to another array. (Avoid this in practice because it uses a great deal

of memory.)

(h) Fill an array of 52 elements with random integers ranging from 0 to 51 without repetition. (This is

equivalent to shuffling a deck of 52 cards. Use a diagram to illustrate this.) See question 1 for a hint.

4. Write a C# program for a word “jumble” game (also known as word scramble). The user is given a word in

“jumbled” form (the letters are randomly rearranged) and the user is given a limited number of guesses

and/or a time limit to figure out the word. For example, if the user is given the string “bmejul,” the correct

answer would be “jumble.”

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-33

LISTS IN C#

Introduction

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-34

ICS4U0 – ROMAN CONVERTER PROJECT

Roman to Hindu-Arabic Converter

Write a program that can convert a number expressed in Roman form to a number expressed in Hindu-Arabic

form and vice versa. Your program must

 be able to convert any value from 1 to 3999999 from Hindu-Arabic to Roman or vice versa

 respond intelligently to any user input

 conform to the usual conventions of good coding

Before setting out to write Code, Consider this…

1. What are the rules for writing numbers using Roman numerals?

2. How can you design an algorithm that converts from Hindu-Arabic to Roman?

3. How can you design an algorithm that converts from Roman to Hindu-Arabic?

4. How are numbers greater than 3999 represented using Roman numerals?

5. How can you make your program recognize invalid values such as “XXMMMM?”

The look

on Mr. Nolfi’s face

whenever…

1. …students install software

or change computer

settings without asking for

permission!

2. …students try to write

programs to solve

problems that they do not

know how to solve!

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-35

STOP! DO NOT WRITE ANY CODE YET! First we need to TRY SPECIFIC EXAMPLES and develop A PLAN!

The table below shows the basic “building blocks” of Roman numbers less than 4000 and their respective

values. That is, any Hindu-Arabic number less than 4000 can be written as a Roman number that uses some

combination of the symbols listed below. The best way to store the Roman symbols and their values is to use

two arrays. (Keep in mind that in C, C++ and C#, array indices always begin at zero. This is not the case in

VB, where indices can range from any Integer value to any other Integer value.)

 Index (Subscript)

Array Name
0 1 2 3 4 5 6 7 8 9 10 11 12

romanSymbol "M" "CM" "D" "CD" "C" "XC" "L" "XL" "X" "IX" "V" "IV" "I"

romanSymbolValue 1000 900 500 400 100 90 50 40 10 9 5 4 1

Hindu-Arabic to Roman Algorithm Example

Convert 1642 to Roman form.

Operation Remainder Quotient Roman String

 1642 - “”

÷1000 642 1 “M”

÷900 642 0 “M”

÷500 142 1 “MD”

÷400 142 0 “MD”

÷100 42 1 “MDC”

÷90 42 0 “MDC”

÷50 42 0 “MDC”

÷40 2 1 “MDCXL”

÷10 2 0 “MDCXL”

÷9 2 0 “MDCXL”

÷5 2 0 “MDCXL”

÷4 2 0 “MDCXL”

÷1 0 2 “MDCXLII”

Roman to Hindu-Arabic Algorithm Example

Convert “MCMXLIV” to Hindu-Arabic form.

i
Character

at Index i

Character at

Index i+1
Operation

Hindu-Arabic

Form

- - - - 0

0 “M” “C” +1000 1000

1 “C” “M” 100 900

2 “M” X +1000 1900

3 “X” “L” 10 1890

4 “L” “I” +50 1940

5 “I” “V” 1 1939

6 “V” - +5 1944

Hindu-Arabic to Roman Algorithm Pseudo-Code
store all possible one character and two

 character Roman symbol combinations in

 descending order in an array

store Hindu-Arabic values of above in descending

 order in another array

set roman to null string

set remainder to value of Hindu-Arabic number

for (i=0; i<number elements of array; i++)

{

 set quotient to quotient of remainder divided

 by element "i" of the array storing divisors

 set remainder to remainder of remainder

 divided by element "i" of the same array

 concatenate quotient Roman symbols (of type

 found at element "i" of Roman symbol array)

 to roman

}

Roman to Hindu-Arabic Algorithm Pseudo-Code
set len to length of the Roman number string

for (i=0; i<len; i++)

{

 set char to character at position "i"

 set value to Hindu-Arabic value of char

 if (i<len-1)

 {

 set nextChar to character at position "i+1"

 set valueNext to Hindu-Arabic value of nextChar

 }

 if (valueNext<=value)

 set HinduArabic to HinduArabic + value

 else

 set HinduArabic to HinduArabic - value

}

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-36

Exercises

Convert 2007 to Roman form.

Operation Remainder Quotient Roman String

Convert “MCMXCVIII” to Hindu-Arabic form.

i
Character

at Index i

Character at

Index i+1
Operation

Hindu-Arabic

Form

Convert 3999 to Roman form.

Operation Remainder Quotient Roman String

Convert MMMCDXLIV” to Hindu-Arabic form.

i
Character

at Index i

Character at

Index i+1
Operation

Hindu-Arabic

Form

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-37

ROMAN CONVERTER EVALUATION GUIDE

Victim: ______________________________

Categories Criteria
Descriptors

Mark
Level 4 Level 3 Level 2 Level 1 Level 0

Knowledge

and

Understanding

(KU)

Degree of Completeness

 be able to convert any value from 1 to 3999999

from Hindu-Arabic to Roman or vice versa

Very High

(All

features

imple-

mented)

High

(Most

features

imple-

mented)

Moderate

(Some

important

features

imple-

mented)

Minimal

(A few

features

imple-

mented)

Insufficient

(Little to

nothing

imple-

mented)
20

Application

(APP)

Correctness

To what degree does the program produce correct

output?

Very High High Moderate Minimal Insufficient

20

Avoidance of Code Duplication

To what degree has the student used methods (i.e

functions) to avoid duplication of code? (i.e. to avoid
copy & paste coding)

Very High High Moderate Minimal Insufficient

Data Validation and Exception Handling

To what degree are exceptions caught and handled?

To what degree can the program detect invalid input?

Very High High Moderate Minimal Insufficient

Thinking,

Inquiry and

Problem

Solving

(TIPS)

Independence

To what degree has the student been able to implement

the solution without asking for assistance?

Very High High Moderate Minimal Insufficient

30

Research

When problems are encountered during the design,

implementation and validation phases, to what degree

has the student consulted resources before asking for

help?

Very High High Moderate Minimal Insufficient

Algorithm/Implementation Efficiency

 To what level does the algorithm use resources

(memory, processor time, etc) efficiently?

 To what degree are appropriate data types used?

Very High High Moderate Minimal Insufficient

Communication

(COM)

Indentation of Code

Insertion of Blank Lines in Strategic Places

(to make code easier to read)

Very Few

or no

Errors

A Few

Minor

Errors

Moderate

Number of

Errors

Large

Number of

Errors

Very Large

Number of

Errors

30

Comments (Internal Documentation)

 Effectiveness of explaining abstruse (difficult-to-

understand) code

 Effectiveness of introducing major blocks of code

 Avoidance of comments for self-explanatory code

Very High High Moderate Minimal Insufficient

Descriptiveness of Identifier Names

Variables, Constants, Objects, Methods, Classes, etc

Method and Class Design

 Methods are self-contained (can be used in other

programs without modification)

 Parameters and return types are logical

 Class structure is logical and efficient

Clarity of Code

How easy is it to understand, modify and debug code?

Adherence to Naming Conventions

 lowerCamelCase used for variable, object, methods

 UpperCamelCase used for classes and constructors

 ALL_UPPER_CASE used for constants

Masterful Good Adequate Passable Insufficient

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-38

INQUIRY: USING A CHALLENGING PROBLEM TO EXPAND OUR KNOWLEDGE

Problem

Given an integer n, find an integer m (if one exists) such that all the following conditions hold:

 m n

 m contains exactly the same digits as n

 There is no other integer q containing exactly the same digits as n such that n q m  .

Less formally, find the smallest integer m that contains the same digits as n but is also greater than n.

Specific Examples

Input (n) Output (m)

9 Does not exist

11 Does not exist

32 Does not exist

23 32

323 332

676 766

521 Does not exist

777 Does not exist

1000 Does not exist

1001 1010

1321 2113

4981 8149

54981 58149

1472443 1473244

1472483 1474823

1474823 1474832

98765432 Does not exist

Your Task

1. Develop a “brute-force” algorithm to solve this

problem. Such algorithms are also called exhaustive

searches because they solve problems by blindly

searching through the set of all possible solutions.

2. Develop a cleverer algorithm for solving this

problem. Compare the efficiency of this algorithm to

that of the brute-force algorithm.

3. Implement both algorithms in C#.

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-39

TECHNICAL ASPECTS OF C#

Strongly-Typed Languages (Type Safety)

Contrary to what our friend Georgie W.

Bush might believe, the meaning of

“strongly-typed” has nothing at all to do

with typing! This term actually is used to

describe certain programming languages

that have strict rules governing how data

types are used. There is no universally

agreed-upon definition of what it means to

be strongly-typed. Nonetheless, certain

important data type rules in C# can help us get the gist of what it means.

Strongly-Typed Features of C#

 All variables must have a defined data type.

 Implicit conversion of data types is generally not allowed.

 Strict type checking is performed at run-time.

Examples of how Strong Typing is enforced in C#

int x=3; // The variable 'x' cannot be used unless it is first declared.

int x="3"; // NOT ALLOWED in C#! VB would perform an implicit conversion from type

 // 'String' to type 'Integer.' C# does not perform such conversions!

int x=Convert.toInt32("3"); // An explicit data type conversion is performed.

 // The string "3" is explicitly converted to

 // a 32-bit signed integer (i.e. the 'int' type).

int x=3;

long y=3;

y=x; // This is allowed. An implicit conversion is made from 'int' to 'long.'

 // It is safe to perform an implicit conversion in this case because a

 // 'long' is a 64-bit integral type, which means it has plenty of room to

 // accept a 32-bit 'int' integral value.

x=y; // This is NOT allowed. The type 'long' is a 64-bit integer while the type

 // 'int' is only a 32-bit integer. An implicit conversion would result

 // in a loss of 32 bits of data!

x=(int)y; // The 'cast' operator is formed by enclosing a data type in parentheses.

 // This operator forces a conversion to the specified type even if the

 // conversion results in a loss of data. This is called TYPE COERCION.

Type Safety

Because there is a great deal of confusion regarding exactly what it means, some writers avoid the term

“strongly-typed” in favour of the term “type safety.”

Hmm, let me think about that

one. Oh yes, a strongly-

typed language means that

the keys on a keyboard must

be pressed very hard. Does

anyone know if Mexican is

strongly-typed?













Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-40

Primitive Data Types

Primitive data types are basic data types

that are provided by programming

languages. As with the term “strongly-

typed,” there is no consensus on precisely

what constitutes a primitive data type.

Once again, a general description is given

for the sake of getting across an intuitive

notion of what is meant by “primitive data

type.”

Primitive Data Type

In general, primitive data types are the “simplest” data types provided by a programming language.

Admittedly, this description is rather vague because it is not clear exactly what is meant by “simplest.” The

following terms, which are closely related to the idea of a primitive data type, may help to clarify matters.

 Basic Type
A basic data type is a type provided by a programming language that serves as a building block for creating

more complicated types called composite types. In general, basic types cannot be decomposed (i.e. broken

down) into simpler components. In a sense, basic data types are like the elements of the periodic table. All

known substances are either elements or made up of some combination of elements.

 Built-In Type
A built-in data type is a data type for which a programming language has built-in support.

Comparison of Primitive Data Types in Java and C#

Java C#

 Java has a small number of primitive data
types: byte, short, int, long, float, double,

char, boolean. All other types are built from

these basic types.

 Primitive data types are not implemented as
objects in Java. This means that they have no

further substructure. They are basic entities

that cannot be decomposed into simpler types.

 Java provides built-in support for primitive

data types through wrapper classes. For

example, the wrapper class for the “int” type is

called “Integer.” The “Integer” class contains

methods for working with “int” values.

 Therefore, primitive data types in Java are both
basic and built-in.

 C# has a larger number of primitive data types:

byte, sbyte, short, ushort, int, uint, long, ulong, float,

double, char, bool, object, string, decimal

 Primitive data types are implemented as objects in C#.
This means that they do have a further substructure,

making it possible to call object methods on primitive data

types. Like molecules made from the elements of the

periodic table, they are composite entities.

 Since primitive data types are implemented as objects in

C#, there is no need for wrapper classes within C# to

provide support for them. The wrapper classes for the C#

primitive data types are contained within the .NET

framework.

 Therefore, primitive data types in C# are built-in but not
basic. All primitive data types in C# are composite types.

Example: Create a String Object in Java

int x=3;

String s = new String(Integer.toString(x));

Example: Create a String Variable in C#

int x=3;

string s = x.ToString();

Hmm, that’s another tricky

one. A primitive data type

must have something to do

with dating services for

prehistoric computer nerds.

“Are you my data type?”

would be a great slogan!

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-41

Primitive Data Types in C#

The following table lists the primitive data types in C# along with their corresponding .NET framework classes.

Note that the symbol “e” is used to denote powers of 10 for numbers expressed in scientific notation.

e.g. −3.402823e38 =
383.402823 10  = −340282300000000000000000000000000000000

Short

Name

.NET

Class
Type

Width

(bits)
Range

byte Byte Unsigned Integer 8
0 to 255

(0 to 28−1)

sbyte SByte Signed Integer 8
−128 to 127

(−27 to 27−1)

int Int32 Signed Integer 32
−2147483648 to 2147483647

(−231 to 231−1)

uint UInt32 Unsigned Integer 32
0 to 4294967295

(0 to 232−1)

short Int16 Signed Integer 16
−32,768 to 32,767

(−215 to 215−1)

ushort UInt16 Unsigned Integer 16
0 to 65535

(0 to 216−1)

long Int64 Signed Integer 64

−922337203685477508 to

922337203685477507

(−263 to 263−1)

ulong UInt64 Unsigned Integer 64
0 to 18446744073709551615

(0 to 264−1)

float Single

Single-Precision Floating-Point Type

(7 Significant Digits)
32 −3.402823e38 to 3.402823e38

double Double

Double- Precision Floating-Point Type

(15 to 16 Significant Digits)
64

−1.79769313486232e308 to

1.79769313486232e308

char Char A Single Unicode Character 16 Unicode Symbols used in Text

bool Boolean Logical Boolean Type 8 true or false

object Object Base Type of all other Types

string String A Sequence of Unicode Characters

decimal Decimal

Precise fractional or integral type that can

represent decimal numbers with 29 significant

digits. Compared to floating-point types, the

decimal type has a greater precision and a

smaller range, which makes it suitable for

financial and monetary calculations.

128
Approximate Range

±1.0 × 10−28 to ±7.9 × 1028

http://msdn.microsoft.com/en-us/library/system.byte%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.sbyte%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.int32.aspx
http://msdn.microsoft.com/en-us/library/system.uint32%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.int16%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.uint16%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.int64%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.uint64%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.single%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.double.aspx
http://msdn.microsoft.com/en-us/library/system.char%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.boolean%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.object%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.string%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.decimal%28v=vs.80%29.aspx

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-42

Exercises

Study the given C# declarations. Then complete the table.

int a;

long b=3;

short c=1;

byte d=1;

char e=(char)1024; // Force a conversion from 'int' to 'char.' The decimal value 1024 can

 // also be specified explicitly as the hexadecimal Unicode value

 // '\u0400' or as the hexadecimal escape sequence '\x0400'

float f=3.8e21f; // The 'f' at the end means that the value should be stored as a 'float'

double g=3.232552e152; // Unless specified otherwise, floating point values are stored as

 // 'double' values. A 'd' can also be used to indicate that the

 // number should be stored as a 'double' value: e.g. 2.0d

string h="If thinking makes your brain hurt it’s probably due to lack of practice!";

C# Statement Is it Allowed? If so, explain why. If not, suggest a correction.

1. b=a;

2. a=b;

3. h=f;

4. f=h;

5. e=c;

6. c=e;

7. g=f;

8. f=g;

9. f=d;

10. d=f;

11. d=e;

12. e=d;

13. f=b;

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-43

WHAT THE HECK IS THE .NET FRAMEWORK?

Overview of the .NET Framework

Source: http://en.wikipedia.org/wiki/.NET_Framework

The .NET Framework (pronounced dot net) is a software framework developed by Microsoft that runs primarily

on Microsoft Windows. It includes a large library and provides language interoperability (each language can

use code written in other languages) across several programming languages. Programs written for the .NET

Framework execute in a software environment (as contrasted to hardware environment), known as the Common

Language Runtime (CLR), an application virtual machine that provides services such as security, memory

management and exception handling. The class library and the CLR together constitute the .NET Framework.

The .NET Framework’s Base Class Library provides user interface, data access, database connectivity,

cryptography, Web application development, numeric algorithms and network communications. Programmers

produce software by combining their own source code with the .NET Framework and other libraries. The .NET

Framework is intended to be used by most new applications created for the Windows platform. Microsoft also

produces an integrated development environment largely for .NET software called Visual Studio.

Visual Overview of the .NET Framework

See Also

Common Language Infrastructure (CLI)

Languages supported by the .NET framework

include .NET versions of C++, C#, F#, VB and

many others. (See List of CLI languages.)

A CLS is a set of rules for translating source code

into bytecode (p-code). When languages use the

same CLS, different parts of a program can be

written in different languages.

The .NET CTS is a standard that specifies how

data types are represented in memory. This

standard allows programs written in different

languages to share data easily.

The FCL is a collection of reusable classes,

interfaces and value types that provide basic

functionality for applications.

ADO.NET: Framework for data access

ASP.NET: Framework for server-side Web apps

Windows Forms: Framework for Windows GUI

The CLR is the virtual machine component of the .NET framework. It is responsible for managing the execution of

.NET programs. All programs written for the .NET framework, regardless of programming language, are executed by

the CLR. It provides exception handling, garbage collection and thread management. The CLR is common to all

versions of the .NET framework.

http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Base_Class_Library
http://en.wikipedia.org/wiki/Language_interoperability
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/Process_virtual_machine
http://en.wikipedia.org/wiki/Memory_management
http://en.wikipedia.org/wiki/Memory_management
http://en.wikipedia.org/wiki/Exception_handling
http://en.wikipedia.org/wiki/Base_Class_Library
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Data_access
http://en.wikipedia.org/wiki/Database_connection
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computer_networking
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://en.wikipedia.org/wiki/Common_Language_Infrastructure
http://en.wikipedia.org/wiki/Microsoft_.NET_Languages
http://simple.wikipedia.org/wiki/Common_Language_Specification
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Bytecode
http://en.wikipedia.org/wiki/Common_Type_System
http://en.wikipedia.org/wiki/Framework_Class_Library
http://en.wikipedia.org/wiki/Class_%28computer_programming%29
http://en.wikipedia.org/wiki/Interface_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Value_type
http://en.wikipedia.org/wiki/ADO.NET
http://en.wikipedia.org/wiki/ASP.NET
http://en.wikipedia.org/wiki/Windows_Forms
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://en.wikipedia.org/wiki/Thread_%28computing%29

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-44

Overview of .NET Program Compilation and Execution

What .NET CIL Code (aka Bytecode or p-code) Looks Like

CIL: Common Intermediate Language (see http://en.wikipedia.org/wiki/Common_Intermediate_Language)

The following is a sample of what .NET CIL code looks like. For the sake of restricting this code to a single

page, a small portion of the code has been omitted.

.

.

.

 Outside of Microsoft

circles, native code is more

commonly known as

machine code.

 The “human-readable”

form of machine code is

called assembly code.

 A central processing unit,

also known as a CPU or

processor, cannot execute

instructions written in

high-level languages like

VB and C#.

 CPUs can only execute

machine language

instructions.

The CIL code shown at the left was

produced by opening

“PizzaIfStatementApplication.exe”

using a free program called ILSpy.

(ILSpy stands for “Intermediate

Language Spy.”)

“PizzaIfStatementApplication.exe” is

one of the executable files associated

with the C# example found on

page 18 of these notes.

http://en.wikipedia.org/wiki/Common_Intermediate_Language
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Cpu
http://ilspy.net/

Copyright ©, Nick E. Nolfi ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts ICSREPC-45

What Assembly Code Looks Like

Assembly code is essentially the “human-readable” form of machine code. While machine code is purely

numeric, assembly code contains short abbreviations that represent machine instructions. For example, the

abbreviation “jae” found in the sample assembly code below stands for “jump if above or equal.” Using

abbreviations instead of numbers makes it possible for specialists in assembly code to understand, modify and

create machine instructions. Nowadays, it is not often necessary to work directly with assembly code because

programs are much easier to understand, modify and create using high-level languages like C# and VB.

Occasionally, however, it is necessary to work with assembly code, especially in applications for which speed is

critical.

Assembler: A program that translates assembly code into machine code.

Disassembler: A program that translates machine code into assembly code.

Compiler: A program that translates source code written in a high-level language such as C# or VB to a lower-level

language such as CIL, assembly language or machine language.

The assembly code shown at the left

was produced by disassembling

“PizzaIfStatementApplication.exe”

using a free program called Explorer

Suite.

Only a small portion of the assembly

code is shown.

http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Source_code
http://ntcore.com/exsuite.php
http://ntcore.com/exsuite.php

	ICS4U0 Unit 0 – Introduction to C# & Review of Essential Programming Concepts
	Summary of Unit 0
	A Computer as a Data Processing Machine
	Assignment Statements and Expressions
	Definitions
	Examples
	Exercises

	What is the Difference between an Object and a Variable?
	Variables
	Objects
	Questions

	Variable Declarations in C#
	Main Idea
	Variables in the .NET Environment
	Examples
	Research Question

	Control Flow - Sequence, Selection and Repetition
	Concepts
	Repetition (Loops)

	“If” Statement Details
	Research Question

	Loop Details
	Important Exercises on Loops and If Statements

	Procedures in C#
	Overview of Procedures
	“Black-Box” View of Procedures
	Examples of Programmer-Defined Methods in C#
	Advantages of Procedures
	Problems

	Alternative Method of Brace Placement
	Examples

	Dependent and Independent “if” Statement Structures
	Questions

	Working with Strings in C#
	Examples of Declaration of String “Variables”
	Working with Strings
	What a String Really “Looks Like”
	Static (Class) versus Instance
	Summary
	Demystifying MSDN Technical Information: Getting to Know the .NET String Class
	What is MSDN?
	Using MSDN to understand the Structure of the .NET String Class

	Several Helpful Methods found within the .NET String Class
	Exercises involving Strings

	String Assignment - Credit Card Validation
	Introduction
	Rules for Credit Card Number Validity
	Example
	Program Plan
	Additional Notes
	Additional Challenge for Extra Credit
	Practice Exercises
	Evaluation Guide for Credit Card Validation Program

	Using Arrays in C#
	The Concept of an Array
	Important Details about Arrays in C#
	Several Examples of Array Declarations
	Exercises involving Arrays

	Lists in C#
	Introduction

	ICS4U0 – Roman Converter Project
	STOP! DO NOT WRITE ANY CODE YET! First we need to TRY SPECIFIC EXAMPLES and develop A PLAN!
	Exercises

	Roman Converter Evaluation Guide
	Inquiry: Using a Challenging Problem to Expand our Knowledge
	Problem
	Specific Examples

	Your Task
	Technical Aspects of C#
	Strongly-Typed Languages (Type Safety)
	Strongly-Typed Features of C#
	Examples of how Strong Typing is enforced in C#
	Type Safety

	Primitive Data Types
	Comparison of Primitive Data Types in Java and C#

	Primitive Data Types in C#
	Exercises

	What the Heck is the .NET Framework?
	Overview of the .NET Framework
	Visual Overview of the .NET Framework
	See Also
	Overview of .NET Program Compilation and Execution
	What .NET CIL Code (aka Bytecode or p-code) Looks Like
	What Assembly Code Looks Like

