
Copyright ©, Nick E. Nolfi ICS4U0 Unit 1 – Using Arrays and Lists in C# UALC#-1

UNIT 1 – UNDERSTANDING ARRAYS AND LISTS IN C#

UNIT 1 – UNDERSTANDING ARRAYS AND LISTS IN C# ... 1

USING ARRAYS IN C# .. 2

THE CONCEPT OF AN ARRAY ... 2
IMPORTANT DETAILS ABOUT ARRAYS IN C# .. 2
SEVERAL EXAMPLES OF ARRAY DECLARATIONS ... 2
EXERCISES INVOLVING ARRAYS .. 4

ICS4U0 – ROMAN CONVERTER PROJECT... 6

ROMAN TO HINDU-ARABIC CONVERTER ... 6
Before setting out to write Code, Consider this… .. 6
STOP! DO NOT WRITE ANY CODE YET! First we need to TRY SPECIFIC EXAMPLES and develop A PLAN! 7
Hindu-Arabic to Roman Algorithm Example ... 7
Roman to Hindu-Arabic Algorithm Example ... 7
Hindu-Arabic to Roman Algorithm Pseudo-Code .. 7
Roman to Hindu-Arabic Algorithm Pseudo-Code .. 7
Exercises... 8

ROMAN CONVERTER EVALUATION GUIDE .. 9

Copyright ©, Nick E. Nolfi ICS4U0 Unit 1 – Using Arrays and Lists in C# UALC#-2

USING ARRAYS IN C#

The Concept of an Array

 An array is a structure that allows you to use a single name to refer to a group of two or

more variables.

 To distinguish one variable in the group from another, a number, called the index or

subscript, is used.

 This concept is similar to the street address of a house. Each house on a given street is

identified by the same street name. However, each house also is identified by a unique

number, which makes it possible to locate any given house.

 For example, shown at the right is an overhead view of a portion of Centre Street North in

Brampton. Since each house on this street is identified by a unique number, there is never any confusion

distinguishing one house from another.

 Arrays are used whenever a program needs to process a group (usually a large group) of related data.

 Arrays help you to create shorter and simpler code in many situations because loops can be used to process

the array elements efficiently, regardless of the size of the array.

Important Details about Arrays in C#

 All the elements in an array have the same data type.

 Because C# must allocate memory for each element of an array, avoid creating very large arrays.

 Arrays have both upper and lower bounds and the elements of the array are contiguous within those bounds.

In C, C++, C# and a host of other languages derived from C, the lowest index is always zero.

 If a program attempts to access an element of an array using an index that is either negative or greater than

the upper bound, an “ArgumentOutOfRangeException” is thrown.

 Arrays can be thought of as fixed-size lists. Once an array has been declared and initialized, the number of

elements in the array remains fixed.

 C# also provides support for Lists, which can be thought of as variable-size arrays or dynamic arrays. Lists

are essentially arrays that can grow and shrink in size while a program is being executed. Lists in C# are

covered later in this unit.

Several Examples of Array Declarations

//Create a one-dimensional, empty array of "double"
//values. The elements of the array exist but
//they have not yet been assigned any values.

double[] temperature = new double[4];

Index 0 1 2 3

Data - - - -

In this example, a variable of array type is

declared, an array object is created and storage

space is allocated for the elements (also called

components) of the array. However, the elements

of the array do not yet have values.

//Create and initialize an array of "double" values.
//Initial values are given in an initializer list.
//An initializer list is a set of values, separated
//by commas and enclosed in braces.

double[] temperature = new double[4] {0,2,4,6};

Index 0 1 2 3

Data 0 2 4 6

In C#, arrays are implemented as objects.

Therefore, the new keyword must be used in the

declaration of an array to create a new array

object. Note that array indices (singular index,

also called subscripts) in C# always start at zero.

Number of elements in the array.

Copyright ©, Nick E. Nolfi ICS4U0 Unit 1 – Using Arrays and Lists in C# UALC#-3

//Create an array of "string" values. No values
//have been assigned yet to the elements of the array.

string[] name = new string[4];

Index 0 1 2 3

Data - - - -

//The following declares a two-dimensional array called
//'distance.' It consists of two rows (horizontal) and
//3 columns (vertical). Its purpose is to store distances
//between points. As with other similar examples, the
//array elements have not yet been assigned values.

double[,] distance = new double[2,3];

 0 1 2

0 - - -

1 - - -

The statements shown at the left can

be used to declare and create a two-

dimensional array of double

values. The row indices run from 0

to 1 and the column indices run from

0 to 2. Without any assignment

statements, however, the two-

dimensional array is empty (i.e. the

elements have not yet been assigned

any values).

//'distance[i,j]' stores the distance from point 'i' to
//point 'j.' For example, the distance from point 0 to
//point 1 is 10.7.

distance[0,0] = 0;
distance[0,1] = 10.7;
distance[0,2] = 25.3;
distance[1,0] = 10.7;
distance[1,1] = 0;
distance[1,2] = 16.3;

 0 1 2

0 0 10.7 25.3

1 10.7 0 16.3

Once the assignment statements at

the left are executed, the two-

dimensional array (also known as a

matrix) will contain the values

shown above.

//Use an initializer list of initializer lists to initialize the
//two-dimensional array 'distance.'

double[,] distance = new double[2,3] { { 0, 10.7, 25.3 },
 { 10.7, 0, 16.3 } };

This statement is an alternative (and

preferable) method of declaring,

creating and initializing the two-

dimensional array shown above.

Each row of the matrix is enclosed

in braces and listed in the desired

order.

//A two-dimensional array used as a height map for an algorithm
//such as the "diamond-square" algorithm. For the sake of
//simplicity, the array is only 5x5. In reality, it would be
//much larger.

double[,] height = new double[5,5] { { 10, 0, 0, 0, 10 },
 { 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0 },
 { 10, 0, 0, 0, 10 } };

We shall study the diamond-square

algorithm in detail later in this unit.

Number of Rows Number of Columns

Copyright ©, Nick E. Nolfi ICS4U0 Unit 1 – Using Arrays and Lists in C# UALC#-4

Exercises involving Arrays

1. Create a memory map for each code segment. In addition, determine the problem that is solved in each

case. (Some variables have intentionally been given silly names to disguise their purpose.)

Code Segment Memory Map (Trace Chart) Problem Solved?

int[] a = { -1, 5, 3, -6, 3 };
int moe = a[0];

for (int x = 1; x < a.Length; x++)
{
 if (a[x] < moe)
 moe = a[x];
}

By the time the

loop has finished

executing, the

variable “moe”

stores

Random randomGenerator = new Random();
int[] a = new int[6];

for (int i = 0; i < a.Length; i++)
{
 bool rep = false;
 int r;

 do
 {
 r = randomGenerator.Next(1, 70);
 rep = false;

 for (int j = 0; j < i; j++)
 {
 if (a[j] == r)
 {
 rep = true;
 break; //exit 'for' loop
 }
 }//end inner for

 } while (rep);

 a[i] = r;

}//end outer for

By the time the

outer for loop has

finished

executing, the

array “a” stores

Copyright ©, Nick E. Nolfi ICS4U0 Unit 1 – Using Arrays and Lists in C# UALC#-5

2. The following table lists answers to question 1. Check your answers to ensure that they are correct.

Code Segment Memory Map (Trace Chart) Problem Solved?

int[] a = { -1, 5, 3, -6, 3 };
int moe = a[0];

for (int x = 1; x < a.Length; x++)
{
 if (a[x] < moe)
 moe = a[x];
}

Data stored in the array “a.”

Index 0 1 2 3 4

Data 1 5 3 6 3

x moe
- -1
1 -1
2 -1
3 -6
4 -6
- -6

By the time the

loop has finished

executing, the

variable “moe”

stores the

smallest value

stored in the

array.

Random randomGenerator = new Random();
int[] a = new int[6];

for (int i = 0; i < a.Length; i++)
{
 bool rep = false;
 int r;

 do
 {
 r = randomGenerator.Next(1, 70);
 rep = false;

 for (int j = 0; j < i; j++)
 {
 if (a[j] == r)
 {
 rep = true;
 break; //exit 'for' loop
 }
 }//end inner for

 } while (rep);

 a[i] = r;

}//end outer for

Since the given code produces random

integers, it is not possible to predict

exactly what will occur when the code is

executed. The following is an example

of what could happen.

Array

Index

i

0 1 2 3 4 5 r

- - - - - - - -

0 27 - - - - - 27

1 27 3 - - - - 3

2 27 3 51 - - - 51

3 27 3 51 - - - 3

3 27 3 51 - - - 16

4 27 3 51 16 - - 27

4 27 3 51 16 - - 51

4 27 3 51 16 42 42

5 27 3 51 16 42 9 9

Notice the numbers displayed in red.

Since each of these numbers already

occurred for a previous value of “i,” a

new value of “r” needs to be generated.

By the time the

outer for loop has

finished

executing, the

array “a” stores

six random

integers ranging

from 1 to 69,

without

repetition (i.e.

each random

integer is

different from

all the others).

3. On paper, write C# code to perform each of the following tasks. Do not use a computer for this question

except for verifying that your code is correct.

(a) Find the largest value stored in an array.

(b) Find the average of the values stored in an array.

(c) Find the median of the values stored in an array.

(d) Copies the values stored in an array to another array. (Avoid this in practice because it uses a great deal

of memory.)

(e) Fill an array of 52 elements with random integers ranging from 0 to 51 without repetition. (This is

equivalent to shuffling a deck of 52 cards. Use a diagram to illustrate this.) See question 1 for a hint.

4. Write a C# program for a word “jumble” game (also known as word scramble). The user is given a word in

“jumbled” form (the letters are randomly rearranged) and the user is given a limited number of guesses

and/or a time limit to figure out the word. For example, if the user is given the string “bmejul,” the correct

answer would be “jumble.”

Copyright ©, Nick E. Nolfi ICS4U0 Unit 1 – Using Arrays and Lists in C# UALC#-6

ICS4U0 – ROMAN CONVERTER PROJECT

Roman to Hindu-Arabic Converter

Write a program that can convert a number expressed in Roman form to a number expressed in Hindu-Arabic

form and vice versa. Your program must

 be able to convert any value from 1 to 3999999 from Hindu-Arabic to Roman or vice versa

 respond intelligently to any user input

 conform to the usual conventions of good coding

Before setting out to write Code, Consider this…

1. What are the rules for writing numbers using Roman numerals?

2. How can you design an algorithm that converts from Hindu-Arabic to Roman?

3. How can you design an algorithm that converts from Roman to Hindu-Arabic?

4. How are numbers greater than 3999 represented using Roman numerals?

5. How can you make your program recognize invalid values such as “XXMMMM?”

The look

on Mr. Nolfi’s face

whenever…

1. …students install software

or change computer

settings without asking for

permission!

2. …students try to write

programs to solve

problems that they do not

know how to solve!

Copyright ©, Nick E. Nolfi ICS4U0 Unit 1 – Using Arrays and Lists in C# UALC#-7

STOP! DO NOT WRITE ANY CODE YET! First we need to TRY SPECIFIC EXAMPLES and develop A PLAN!

The table below shows the basic “building blocks” of Roman numbers less than 4000 and their respective

values. That is, any Hindu-Arabic number less than 4000 can be written as a Roman number that uses some

combination of the symbols listed below. The best way to store the Roman symbols and their values is to use

two arrays. (Keep in mind that in C, C++ and C#, array indices always begin at zero. This is not the case in

VB, where indices can range from any Integer value to any other Integer value.)

 Index (Subscript)

Array Name
0 1 2 3 4 5 6 7 8 9 10 11 12

romanSymbol "M" "CM" "D" "CD" "C" "XC" "L" "XL" "X" "IX" "V" "IV" "I"

romanSymbolValue 1000 900 500 400 100 90 50 40 10 9 5 4 1

Hindu-Arabic to Roman Algorithm Example

Convert 1642 to Roman form.

Operation Remainder Quotient Roman String

 1642 - “”

÷1000 642 1 “M”

÷900 642 0 “M”

÷500 142 1 “MD”

÷400 142 0 “MD”

÷100 42 1 “MDC”

÷90 42 0 “MDC”

÷50 42 0 “MDC”

÷40 2 1 “MDCXL”

÷10 2 0 “MDCXL”

÷9 2 0 “MDCXL”

÷5 2 0 “MDCXL”

÷4 2 0 “MDCXL”

÷1 0 2 “MDCXLII”

Roman to Hindu-Arabic Algorithm Example

Convert “MCMXLIV” to Hindu-Arabic form.

i
Character

at Index i

Character at

Index i+1
Operation

Hindu-Arabic

Form

- - - - 0

0 “M” “C” +1000 1000

1 “C” “M” 100 900

2 “M” X +1000 1900

3 “X” “L” 10 1890

4 “L” “I” +50 1940

5 “I” “V” 1 1939

6 “V” - +5 1944

Hindu-Arabic to Roman Algorithm Pseudo-Code
store all possible one character and two

 character Roman symbol combinations in

 descending order in an array

store Hindu-Arabic values of above in descending

 order in another array

set roman to null string

set remainder to value of Hindu-Arabic number

for (i=0; i<number elements of array; i++)

{

 set quotient to quotient of remainder divided

 by element "i" of the array storing divisors

 set remainder to remainder of remainder

 divided by element "i" of the same array

 concatenate quotient Roman symbols (of type

 found at element "i" of Roman symbol array)

 to roman

}

Roman to Hindu-Arabic Algorithm Pseudo-Code
set len to length of the Roman number string

for (i=0; i<len; i++)

{

 set char to character at position "i"

 set value to Hindu-Arabic value of char

 if (i<len-1)

 {

 set nextChar to character at position "i+1"

 set valueNext to Hindu-Arabic value of nextChar

 }

 if (valueNext<=value)

 set HinduArabic to HinduArabic + value

 else

 set HinduArabic to HinduArabic - value

}

Copyright ©, Nick E. Nolfi ICS4U0 Unit 1 – Using Arrays and Lists in C# UALC#-8

Exercises

Convert 2007 to Roman form.

Operation Remainder Quotient Roman String

Convert “MCMXCVIII” to Hindu-Arabic form.

i
Character

at Index i

Character at

Index i+1
Operation

Hindu-Arabic

Form

Convert 3999 to Roman form.

Operation Remainder Quotient Roman String

Convert MMMCDXLIV” to Hindu-Arabic form.

i
Character

at Index i

Character at

Index i+1
Operation

Hindu-Arabic

Form

Copyright ©, Nick E. Nolfi ICS4U0 Unit 1 – Using Arrays and Lists in C# UALC#-9

ROMAN CONVERTER EVALUATION GUIDE

Victim: ______________________________

Categories Criteria
Descriptors

Mark
Level 4 Level 3 Level 2 Level 1 Level 0

Knowledge

and

Understanding

(KU)

Degree of Completeness

 be able to convert any value from 1 to 3999999

from Hindu-Arabic to Roman or vice versa

Very High
(All

features

imple-
mented)

High
(Most

features

imple-
mented)

Moderate

(Some

important
features

imple-

mented)

Minimal
(A few

features

imple-
mented)

Insufficient
(Little to

nothing

imple-
mented)

20

Application

(APP)

Correctness

To what degree does the program produce correct

output?

Very High High Moderate Minimal Insufficient

20

Avoidance of Code Duplication

To what degree has the student used methods (i.e

functions) to avoid duplication of code? (i.e. to avoid

copy & paste coding)

Very High High Moderate Minimal Insufficient

Data Validation and Exception Handling

To what degree are exceptions caught and handled?

To what degree can the program detect invalid input?

Very High High Moderate Minimal Insufficient

Thinking,

Inquiry and

Problem

Solving

(TIPS)

Independence

To what degree has the student been able to implement

the solution without asking for assistance?

Very High High Moderate Minimal Insufficient

30

Research

When problems are encountered during the design,

implementation and validation phases, to what degree

has the student consulted resources before asking for

help?

Very High High Moderate Minimal Insufficient

Algorithm/Implementation Efficiency

 To what level does the algorithm use resources

(memory, processor time, etc) efficiently?

 To what degree are appropriate data types used?

Very High High Moderate Minimal Insufficient

Communication

(COM)

Indentation of Code

Insertion of Blank Lines in Strategic Places

(to make code easier to read)

Very Few

or no

Errors

A Few

Minor

Errors

Moderate

Number of

Errors

Large

Number of

Errors

Very Large

Number of

Errors

30

Comments (Internal Documentation)

 Effectiveness of explaining abstruse (difficult-to-

understand) code

 Effectiveness of introducing major blocks of code

 Avoidance of comments for self-explanatory code

Very High High Moderate Minimal Insufficient

Descriptiveness of Identifier Names

Variables, Constants, Objects, Methods, Classes, etc

Method and Class Design

 Methods are self-contained (can be used in other

programs without modification)

 Parameters and return types are logical

 Class structure is logical and efficient

Clarity of Code

How easy is it to understand, modify and debug code?

Adherence to Naming Conventions

 lowerCamelCase used for variable, object, methods

 UpperCamelCase used for classes and constructors

 ALL_UPPER_CASE used for constants

Masterful Good Adequate Passable Insufficient

	Unit 1 – Understanding Arrays and Lists in C#
	Using Arrays in C#
	The Concept of an Array
	Important Details about Arrays in C#
	Several Examples of Array Declarations
	Exercises involving Arrays

	ICS4U0 – Roman Converter Project
	STOP! DO NOT WRITE ANY CODE YET! First we need to TRY SPECIFIC EXAMPLES and develop A PLAN!
	Exercises

	Roman Converter Evaluation Guide

