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THE CHECKERBOARD PROBLEM 

Background Research 

Use MSDN or any other resource to learn how to use the Windows Graphics Device Interface within the C# 

development environment.  For the purposes of this course, you will need to understand the following: 

 The “Graphics” class 

 The “Pen” class 

 The “Brush” class and classes derived from it (e.g. “SolidBrush,” 

“TextureBrush,” “HatchBrush,” etc) 

 The “Font” class 

 The “Pens” and “Brushes” structures 

 The “Color” structure 

The Graphics Device Interface used in the .NET framework is usually 

referred to as the Windows GDI+. 

The Problem 

Write a C# program that draws a picture of a checkerboard on a picture box.  

An example is shown at the right. 

 

GDI 

 Short for Graphics Device Interface, a Windows standard for representing graphical objects and transmitting 

them to output devices, such as monitors and printers. 

 Windows GDI+ is a class-based API for C/C++ programmers. 

 It enables applications to use graphics and formatted text on both the video display and the printer. 

 Applications based on the Microsoft Win32 API (i.e. 32-bit Windows) do not access graphics hardware 

directly.  Instead, GDI+ interacts with device drivers on behalf of applications.  GDI+ is also supported by 

Microsoft Win64 (i.e. 64-bit Windows). 

 For languages such as C# and Visual Basic, access to GDI+ is provided through .NET framework classes. 

 Simple games that do not require fast graphics rendering use GDI.  However, GDI is relatively difficult to 

use for advanced animation because it does not provide support for various graphics optimizations that are 

implemented through hardware.  For instance, GDI lacks a mechanism for synchronizing with individual 

video frames in the video card and it also lacks hardware rasterization for 3D.  Graphics-intensive 

applications usually use DirectX or OpenGL instead, which allow programmers to exploit the features of 

modern graphics hardware. 

 

API 

 API, an abbreviation of Application Programming Interface, is a set or library of routines, protocols and 

other tools that allow software components to communicate with one another using a common interface. 

 

Device Driver 

 A small program that acts as an interpreter between an operating system and a device. 

 As such, a device driver simplifies programming because programmers can write the higher-level application 

code independently of whatever specific hardware the end-user is using. 

  

http://en.wikipedia.org/wiki/Video_frame
http://en.wikipedia.org/wiki/Video_card
http://en.wikipedia.org/wiki/Rasterization
http://en.wikipedia.org/wiki/DirectX
http://en.wikipedia.org/wiki/OpenGL
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HINTS FOR CHECKERBOARD DRAWING PROBLEM 

Drawing and Manipulating Shapes and Images 

 
 
Outline of C# Code for Drawing a Checkerboard 

public partial class DrawCheckerboardForm : Form 
{ 
    /** 
     * The class 'Bitmap' encapsulates a GDI+ bitmap. 
     * 
     * A GDI+ bitmap consists of the pixel data for a graphics image, as well as the attributes  
     * of the image. When the 'Bitmap' class is used to create a 'Bitmap' object, space is allocated 
     * in memory to store the bitmap data. Whenever a drawing method is executed, the image data 
     * are updated in memory; however, NOTHING is displayed until the 'Paint' event is fired on the 
     * control on which the drawing is displayed. Drawing images in this way is much faster than  
     * drawing directly to a form, picture box or other control on which images can be drawn. 
     **/ 
    Bitmap checkerBoardBitmap = new Bitmap(400, 400); // Bitmap size set to 400 pixels x 400 pixels. 

 
    private void checkerBoardPictureBox_Paint(object sender, PaintEventArgs e) 
    { 
        e.Graphics.DrawImage(checkerBoardBitmap, 0, 0); 
    } //End of method 

 
    private void drawCheckerBoardButton_Click(object sender, EventArgs e) 
    { 
        // A 'Graphics' object represents a GDI+ drawing surface. 
        Graphics checkerBoard = Graphics.FromImage(checkerBoardBitmap); 
 
        // A 'SolidBrush' object represents a brush of a single colour. 
        // Brushes are used to fill graphics shapes. 
        SolidBrush fillColourBrush = new SolidBrush(Color.Red); 
         
        checkerBoard.Clear(checkerBoardPictureBox.BackColor); 
 
        // Code needs to be inserted here 
        . 
        . 
        . 
        checkerBoardPictureBox.Refresh(); // Fire the 'Paint' event on the picture box. 
 
        // Release resources used by the brush and graphics objects. 
        checkerBoard.Dispose(); 
        fillColourBrush.Dispose(); 
 
    } //End of method 
    . 
    . 
    . 
} // End of class 
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Explanation of Various Statements from the Previous Section 

The following statements are used to create new objects: 

 
Bitmap   checkerBoardBitmap   =   new  Bitmap(400, 400); 
 
 
 
 
 
 
 
SolidBrush fillColourBrush  =  new  SolidBrush(Color.Red); 
 
 

The following statement also creates a new object: 

Graphics checkerBoard = Graphics.FromImage(checkerBoardBitmap); 

However, the “new” keyword is conspicuous by its absence!  The reason for this is that the “Graphics” class 

does not expose any constructor methods (i.e. none of its constructors is visible outside the class).  Therefore, 

“Graphics” objects are created by calling various methods such as the static method “FromImage” shown in the 

above example. 

How to use the “Graphics” Class for Drawing 

The material found below is adapted from the following MSDN page: 

How to: Create Graphics Objects for Drawing. 

Before you can draw lines and shapes, render text or display and manipulate images with GDI+, you need to 

create a Graphics object.  The Graphics object represents a GDI+ drawing surface and is the object that is used 

to create graphical images. 

Overview 

1. Create a Graphics object. 

2. Use the Graphics object to draw lines and shapes, render text or display and manipulate images. 

Creating a Graphics Object 

As shown in the following table, there are several ways to create a “Graphics” object: 

Method of Creating “Graphics” Object Example 

1. Receive a reference to a graphics object as part of the 

PaintEventArgs in the Paint event of a form or control.  This 

is usually how you obtain a reference to a graphics object 

when creating painting code for a control.  Similarly, you can 

also obtain a graphics object as a property of the 

PrintPageEventArgs when handling the PrintPage event for a 

PrintDocument. 

private void Form1_Paint(object sender, 
                            PaintEventArgs e) 
{ 
   // Declare the Graphics object 'g' 
   // This is a reference to the object 
   // provided by the parameter 'e' 
   Graphics g=e.Graphics; 
} 

2. Call the CreateGraphics method of a control or form to obtain 

a reference to a Graphics object that represents the drawing 

surface of that control or form.  Use this method if you want 

to draw on a form or control that already exists.  

// Create a Graphics object 'g' for a form 
Graphics g = this.CreateGraphics(); 

// Create a Graphics object 'gr' 
// for a picture box 
Graphics gr =PictureBoxName.CreateGraphics(); 

3. Create a Graphics object from any object that inherits from 

Image.  This approach is useful when you want to alter an 

already existing image.  

Bitmap myBitmap = new Bitmap("myPic.jpg"); 
Graphics g = Graphics.FromImage(myBitmap); 

  

Class 

Name 

Object 

Name 

Constructor 

Method Call 

Create a 

new Object 

Adapted from 

http://en.wikipedia.org/wiki/Constructor_%28obje

ct-oriented_programming%29  

In object-oriented programming, a 

constructor method (often shortened to 

constructor and sometimes shortened to 

ctor) in a class is a special type of 

subroutine called to create an object. It 

prepares the new object for use, often 

accepting parameters that the constructor 

uses to set member variables required for 

the object to reach a valid state. It is 

called a constructor because it constructs 

the values of data members of the class. 

http://msdn.microsoft.com/en-us/library/5y289054.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.painteventargs.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.control.paint.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.printing.printpageeventargs.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.printing.printdocument.printpage.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.printing.printdocument.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.control.creategraphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.image.aspx
http://en.wikipedia.org/wiki/Constructor_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Constructor_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Object_lifetime#Creating_objects
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Member_variable
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USING FRACTALS TO DEEPEN OUR UNDERSTANDING OF CLASSES 

What on Earth is a Fractal? 

A mathematically precise definition of fractals requires knowledge of mathematics that is far beyond the high 

school level.  Therefore, we shall only consider an intuitive definition, which will allow us to understand the 

essential ideas without being burdened by the complexities of mathematical technicalities. 

The term fractal denotes a shape that is recursively constructed or self-similar, that is, a shape that appears 

similar at all scales of magnification and is therefore often referred to as “infinitely complex.” 

Classification of Fractals 

Adapted from a Wikipedia article 

Fractals can be classified according to their self-similarity.  There are three types of self-similarity found in fractals: 

 Exact Self-Similarity 

This is the strongest type of self-similarity; the fractal appears identical at all scales.  Fractals defined by 

iterated function systems often display exact self-similarity. 

 Quasi-Self-Similarity 

This is a loose form of self-similarity; the fractal appears approximately (but not exactly) identical at all 

scales.  Quasi-self-similar fractals contain small copies of the entire fractal in distorted and degenerate 

forms.  Fractals defined by recurrence relations are usually quasi-self-similar but not exactly self-similar. 

 Statistical Self-Similarity 

This is the weakest type of self-similarity; the fractal has numerical or statistical measures that are preserved  

across all scales.  Random fractals are examples of fractals that are statistically self-similar, but neither 

exactly nor quasi-self-similar. 

Fractals in Nature 

Adapted from a Wikipedia article 

Approximate fractals are easily found in nature.  These objects display self-similar structure over an extended, 

but finite, scale range.  Examples include clouds, snowflakes, mountains, river networks and systems of blood 

vessels.  Trees and ferns are fractal in nature and can be modelled on a computer using recursive algorithms.  

The recursive nature is clear in these examples — a branch from a tree or a frond from a fern is a miniature 

replica of the whole, not identical, but similar in nature. 

 

A fractal is formed when 

pulling apart two glue-

covered acrylic sheets. 

 

High voltage breakdown within a 

4″ block of acrylic creates a 

fractal Lichtenberg figure. 

 

Fractal branching 

occurs on a microwave-

irradiated DVD 

 

Romanesco broccoli 

showing very fine natural 

fractals  

 

A fractal fern computed 

using an Iterated 

function system 

The surface of a mountain can be modelled on a computer using a fractal.  Start with a triangle in 3D space and 

connect the central points of each side by line segments, resulting in 4 triangles.  The central points are then 

randomly moved up or down within a defined range.  The procedure is repeated, cutting the range in half after 

each iteration.  The recursive nature of the algorithm guarantees that the whole is statistically similar to each 

detail. 

     

http://en.wikipedia.org/wiki/Image:Bransleys_fern.png
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A Famous Fractal – The Boundary of the Mandelbrot Set 

The Geometry of the Mandelbrot Set 

 
The Mandelbrot Set 

Notice the self-similarity at several scales. 

 
A Close-up View of the Boundary 

Self-similarity is evident here at a tiny scale. 

 
The Exterior of the Mandelbrot Set Coloured 

using the “Triangle Inequality” Method 

 
The Exterior of the Mandelbrot Set Coloured 

using the “Iterations” Method 

 
The Interior and Exterior of the Mandelbrot Set 

Coloured using the “Trigonometric” Method 

A Primer on Complex Numbers  

To understand how the Mandelbrot set is generated, it is necessary 

to have a basic understanding of complex numbers.  Complex 

numbers are of the form a bi , where ,a b   and 1i   .  The 

real number a is called the real part of a bi  and the real number b 

is called the imaginary part of a bi . 

Since 1i   , it follows that 2 1i   .  Due to our intimate familiarity 

with real numbers, which have the property that 2 0x   for all x , 

this at first appears to be a peculiar or even absurd notion.  However, 

once we become well acquainted with the geometry of complex 

numbers, it becomes easier to accept the “reality” that the square of 

the imaginary number i actually equals 1. 

Complex numbers are plotted by making use of the Cartesian plane.  

We only need to become accustomed to a few minor modifications. 

 The Cartesian plane is renamed the complex plane. 

 The x-axis is renamed the real axis. 

 The y-axis is renamed the imaginary axis. 

Using this framework, it becomes possible to give a geometric meaning to multiplication by the imaginary 

number i: 

Multiplication by i is equivalent to a counter-clockwise rotation by 90 about the origin. 

  

Re 

Im 
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Let’s examine how this works by starting at the complex number 1 on the real axis and following the unit circle. 

1i i    (i.e. (1,0) (0,1) ) 2( ) 1i i i      (i.e. (0,1) ( 1,0)  ) 

1i i     (i.e. ( 1,0) (0, 1)   ) 2( ) ( 1) 1i i i        (i.e. (0, 1) (1,0)  ) 

 

Operations on Complex Numbers 

Addition Subtraction Multiplication Division 

( ) ( )

( ) ( )

a bi c di

a c b d i

  

   
 

e.g. 

(2 3 ) ( 5 )

(2 ( 5)) ( 3 ( 1))

3 4

i i

i

i

   

      

  

 

( ) ( )

( ) ( )

a bi c di

a c b d i

  

   
 

e.g. 

(2 3 ) ( 5 )

(2 ( 5)) ( 3 ( 1))

7 2

i i

i

i

   

      

 

 

2

( )( )

( ) ( )

a bi c di

ac adi bci bdi

ac bd ad bc i

 

   

   

 

e.g. 

(2 3 )( 5 )

2( 5) 2( ) 3 ( 5) 3 ( )

13 13

i i

i i i i

i

  

       

  

 
2 2

( ) ( )

a bi

c di

a bi c di

c di c di

ac bd bc ad i

c d





   
   

   

  




 

The Modulus (Absolute Value) of a Complex Number 

The modulus or absolute value of a complex number is an extremely 

important operation that is used to measure the “size” of a complex number.  

As shown in the diagram to the right, the modulus of a complex number z, 

denoted z , is equal to the distance from the origin to z. 

The following are some formal definitions, including the definition of z . 

 

The Mandelbrot Sequence 

For any fixed value c , consider the Mandelbrot sequence, which is defined recursively as follows for all 

n : 

2

1

0,  if  1

if  ,  2

n

n n

z n

z z c n

 


  
. 

For a particular value of c, there are two possibilities. 

1. The value of nz  grows larger and larger indefinitely as n gets larger.  That is, nz  “blows up” to infinity. 

2. There is a constant D such that the value of nz D  no matter how large n is made.  In other words, in this 

case the value of nz  remains bounded.  It does not “blow up” to infinity. 

The Mandelbrot set consists of all the values of c  for which the Mandelbrot sequence does not “blow up” 

to infinity. 

  

Definitions 

1. The symbol  is used to denote the set of complex numbers. 

2. Suppose that z , where , ,z x iy x y    .  Then Re( )z x  

denotes the real part of z and Im( )z y  denotes the imaginary part of z. 

3. The modulus or absolute value of z x iy   is denoted z  

and is equal to 2 2 2 2Re( ) Im( )x y z z    

 

 

I

m 

R

e 

 2 26 8 10z   
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Generating a Picture of the Mandelbrot Set 

To generate a picture of the Mandelbrot set, the following is done: 

1. If the chosen value of c causes nz  to “blow up” to infinity, then c is not plotted on the complex plane. 

2. If the chosen value of c does not cause nz  to “blow up” to infinity, then c is plotted on the complex plane. 

As usual, a specific example should help to clarify matters.  Suppose that we choose 0.5 0.5c i  .  The 

following table, constructed using Microsoft Excel, gives the values of nz  and nz  for 1, ,14n  . 

n nz  nz  

1 0 0 

2 0.5 + 0.5i 0.70711 

3 0.5 + i 1.11803 

4 -0.25 + 1.5i 1.52069 

5 -1.6875  0.25i 1.70592 

6 3.28515625 + 1.34375i 3.54935 

7 9.48658752441406 + 9.328857421875i 13.305 

8 3.46776206069622 + 177.498044870794i 177.53192 

9 -31493.0305592448 + 1231.54197170139i 31517.10122 

10 990294278.677464  77569977.3995685i 993327669.9 

11 9.74665656987549E+017  1.53634209631866E+017i 9.867E+17 

12 9.26369672541763E+035  2.99483975733211E+035i 9.73577E+35 

13 7.68470118484163E+071  5.5486574506296E+071i 9.47851E+71 

14 2.8267032795879E+143  8.52795489702672E+143i 8.9842E+143 

For 0.5 0.5c i  , we see that the Mandelbrot sequence is not bounded.  After 6 iterations, nz  is already greater 

than 2 and by 14 iterations, nz  explodes to a value greater than 1043 googols!  Therefore, 0.5 0.5c i   is not in 

the Mandelbrot set and so, it is not plotted on the complex plane. 

Now let’s see if 0.2 0.1c i   fares any better than 0.5 0.5c i  . 

n nz  nz  

1 0 0 

2 0.2 + 0.1i 0.22361 

3 0.23 + 0.14i 0.26926 

4 0.2333 + 0.1644i 0.28541 

5 0.22740153 + 0.17670904i 0.28799 

6 0.220485371028619 + 0.180367812121662i 0.28486 

7 0.216081251188073 + 0.17953692795453i 0.28094 

8 0.214457598615653 + 0.177589128053755i 0.27844 

9 0.2144541632011 + 0.176170675885312i 0.27754 

10 0.214954481072396 + 0.175561069755114i 0.27754 

11 0.215383739719543 + 0.175475277291451i 0.27782 

12 0.215598582395064 + 0.175589042902713i 0.27805 

13 0.21565123674327 + 0.175713497467862i 0.27817 

14 0.215630222716514 + 0.17578566608286i 0.27820 

In this case, after 14 iterations nz  remains very small, which makes it very likely that 0.1 0.2c i   is a member 

of the Mandelbrot set.  Since the Mandelbrot sequence appears to be bounded for 0.1 0.2c i  , then this point is 

plotted on the complex plane. 
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Colouring the Exterior of the Mandelbrot Set 

When it comes to colouring, the exterior of the Mandelbrot set is where all the action is!  This is particularly 

true near the boundary of the set.  The points lying outside the boundary of the Mandelbrot set all have 

something in common; nz  eventually “blows up” to infinity.  More importantly for these points, however, is 

that nz  does not always “blow up” to infinity at the same rate.  For some points, nz  goes to infinity rather 

slowly.  For others, nz  approaches infinity very rapidly.  We can use this as the basis for colouring (e.g. 

iterations method). 

The following is a description of just a few colouring methods. 

Iterations Method Modulus Method Exponential Smoothing Method 

The Mandelbrot 

sequence is generated 

until nz  exceeds a 

certain fixed value.  The 

number of iterations 

required to exceed this 

value is then used to 

determine the colour of 

the pixel located at c on 

the complex plane. 

The Mandelbrot 

sequence is generated 

until nz  exceeds a 

certain fixed value.  

The value of nz  is 

then used to determine 

the colour of the pixel 

located at c on the 

complex plane. 

On a small scale (i.e. high degree of magnification), the 

“iterations” method can lead to colour “banding” due to the 

rather abrupt transition from one colour to another.  To 

prevent this problem, a second sequence is computed at the 

same time as the Mandelbrot sequence is generated: 

1

1
nz

n ns s e 

    

The value of ns is used to determine the colour of the pixel 

located at c on the complex plane.  This allows for 

smoother colour transitions on a minute scale. 

Other colouring methods include decomposition, binary decomposition, orbit traps, direct orbit traps, distance 

estimator, Gaussian integer, gradient, triangle inequality average and lighting. 

Writing a C# Program to Generate the Mandelbrot Set 

The Mandelbrot set lies in a region of the complex plane that is very close to the origin.  Generally, the points in 

the Mandelbrot set and its immediate exterior are plotted for real values ranging from 2.5 to 1.5 and for 

imaginary values ranging from 1.5 to 1.5.  This poses a slight problem when writing computer programs 

because screen co-ordinates do not correspond to the ranges given above.  Therefore, it is necessary to find 

equations that can transform between screen co-ordinates and actual complex plane co-ordinates. 

 

  

y 

x 

To render the Mandelbrot set on a computer screen, co-ordinates in the 

range shown at the left must be translated to screen co-ordinates. 

Re 

Im 

The Mandelbrot set lies in this region of the complex plane. 
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Transforming between Co-ordinates in the Complex Plane and Screen Co-Ordinates 

The following tables show correspondences between specific screen co-ordinates  ,x y  and co-ordinates in the 

complex plane  Re( ), Im( )z z  (z represents a point in the complex plane). 

x Re(z)  y Im(z) 

0 −2.5  0 1.5 

800 1.5  600 −1.5 

 

 

When transforming between co-ordinate systems, it is important that proportions be preserved.  In other words, 

the rendering of a picture in one co-ordinate system should look exactly the same as the rendering in any other 

co-ordinate system.  To ensure that the change of co-ordinate systems does not distort the image in any way, the 

transformation between co-ordinate systems must be linear! 

This makes it very easy to find equations that relate Re(z) to x and Im(z) to y.  A little bit of reflection back to 

grade 9 mathematics should immediately bring to mind the familiar form y mx b  .  As shown below, the 

required equations are obtained by making a simple observation and by performing some simple calculations. 

2.5b    

 1.5 2.5 4

800 0 800
m

 
 


 

x Re(z)  y Im(z) 1.5b   

1.5 1.5 3

600 0 600
m

 
  


 

0 −2.5  0 1.5 

800 1.5  600 −1.5 

 

 
4

Re 2.5
800

z x    and  
3

Im 1.5
600

z y    

 
How to Express this in C# 

//Instantiation of the 'Complex' class. The 'Complex' object 'c' is created. 
Complex c =new Complex(0,0);  

. 

. 

. 
//The real and imaginary parts of the 'Complex' object 'c' are determined 
//using the above equations translated into C#. (x and y represent screen co-ordinates of course) 
c = new Complex(4.0d / mandelbrotSetBitmap.Width*x - 2.5d, -3.0d / mandelbrotSetBitmap.Height*y + 1.5d); 

  

y 

x 

 

 0,0

 800,600

Re 

 

Im 

 

 2.5,1.5

 1.5, 1.5
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Deciding whether a Point c in the Complex Plane belongs to the Mandelbrot Set 

private void displayMandelbrotSetButton_Click(object sender, EventArgs e) 
{ 
    Graphics mandelbrotSetImage = Graphics.FromImage(mandelbrotSetBitmap); 
 
    //Instantiations of the 'Complex' class. Create two complex objects, 'c' and 'z.' 
    //For both 'Complex' objects, the real and imaginary parts are initially set to 0. 
    Complex z = new Complex(0, 0); 
    Complex c =new Complex(0,0); 
 
    //For efficiency reasons, copy the 'Width' and 'Height' properties to variables. 
    //This is called "caching" the values of properties. 
    int width = mandelbrotSetBitmap.Width; 
    int height = mandelbrotSetBitmap.Height; 
 
    mandelbrotSetImage.Clear(mandelbrotSetPictureBox.BackColor); 
    mandelbrotSetPictureBox.Refresh(); 
     
    //Traverse the bitmap one pixel at a time, column by column. Screen co-ordinates are (x,y). 
    for (int x = 0; x < width; x++) 
    { 
        for (int y = 0; y < height; y++) 
        { 
            //Transform screen co-ordinates (x,y) to co-ordinates in the complex plane 
            c = new Complex(4.0d/width*x - 2.5d, -3.0d/height*y + 1.5d); 
            z = 0; 
            int iterations=0; 
             
            //For the value of c corresponding to screen co-ordinates (x,y),  
            //generate terms of the Mandelbrot sequence. The loop terminates  
            //as soon as |z| exceeds 'maxModulus' or at the 100th term. 
            do 
            { 
                z = Complex.Add(Complex.Pow(z, 2),c); //z=z^2+c 
                iterations++; 

            }while(Complex.Abs(z) < maxModulus && iterations<=100); 
 
             
            mandelbrotSetBitmap.SetPixel(x, y, pixelColour(colouringMethod, iterations-1, z)); 
             
        }//end inner for 
    }//end outer for 
 
    ////Display the Mandelbrot set by firing the 'Paint' event on 'mandelbrotSetPictureBox.' 
    mandelbrotSetPictureBox.Refresh(); 
} 
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Understanding the Colouring Methods used in the Mandelbrot Program 

The colours that are displayed on computer monitor screens and mobile-device screens are “mixtures” of 

various intensities of the primary colours red, green and blue.  For a colour model known as “RGB 24-bit,” the 

intensity of each primary colour is represented by an integer whose value is between 0 and 255.  (This would be 

between 00000000 and 11111111 in binary.) 

   

   

Intensity of Red for Trig Method 

   255 255 sin Re( )RI z z   

z x iy   

 

Intensity of Green for Trig Method 

      min 255 255 sin Re( ) , 255 255 cos Im( )GI z z z  

z x iy   

 

Intensity of Blue for Trig Method 

   255 255 cos Im( )BI z z   

z x iy   

 

 

 

  

  23.3 277RI z z    
2

10 136 465GI z z z     25.3 50BI z z 

  255RI n n

 n  n  n

  255GI n n   255 255BI n n 
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Creating your own Fractal 

Listed below are some examples of fractals that are appropriate for our fractal project.  If you don’t like any of these 

suggestions, you are free to choose any other fractal provided that your project can be completed in a reasonably short 

time.  It would be a good idea to ask me about the appropriateness of your choice before forging ahead. 

Fractal 

Name 
Description Sample Picture(s) 

Julia Sets 

Julia sets are closely related to the Mandelbrot set.  As with the Mandelbrot set, the 

border of a Julia set is a fractal and its exterior can be coloured in a variety of interesting 

ways.  Unlike the Mandelbrot set, there are an infinite number of different Julia sets.  

The black and white pictures at the right are three examples of different Julia sets.  The 

fourth picture is a coloured version of the third Julia set.  Only points that are just outside 

the Julia set are coloured. 

To generate a Julia set use the following algorithm: 

1. Choose a point in the Mandelbrot set or just outside the Mandelbrot set.  Call this 

value c.  (The value chosen for c is known as the index of the Julia set.) 

2. Choose z1 in the complex plane in such a way that 12 Re( ) 2z    and 

11.5 Im( ) 1.5z   . 

3. Using the value of z1 chosen in step 2 and the value of c chosen in step 1, generate the 

resulting Mandelbrot sequence until nz  exceeds 2 or a maximum number of 

iterations is exceeded. 

4. If 2nz  , then colour the pixel corresponding to z1 black.  Otherwise, set the colour 

according to the colouring scheme that you have chosen. 

5. Repeat steps 2 to 4 until all pixels in the range have been coloured.  (It is very 

important to understand that the value of c remains the same throughout the process.) 

 

 

Fractal 

Mountains 

1. Begin with a triangle in 3-D space. 

2. Find the co-ordinates of the midpoint of each side of the triangle. 

3. Use line segments to connect the midpoints to each other.  This produces 4 triangles. 

4. Move each midpoint up or down by a randomly selected amount. 

5. Repeat the same process on each of the four resulting triangles. 

6. Stop when the triangles become “smaller” than some fixed value. 

Note: To display a 3-D object on a 2-D screen, some knowledge of projective geometry 

is required.  In essence, each point  , ,x y z  in 3-D space must be projected onto a point 

 ,u v  in 2-D space. 

See page 5 

Sierpinski 

Triangle 

If you are interested in this one, do a search on “Sierpinski Triangle” to find out more.  

This one is more interesting if the user is allowed to choose the vertices of the triangle 

(the triangle need not be equilateral).  An even more interesting variation is to begin with 

other polygons such as quadrilaterals, pentagons, etc. 

 

Koch 

Snowflake 

Begin with a single line segment and then recursively alter each line segment as follows: 

1. Divide the line segment into three segments of equal length. 

2. Draw an equilateral triangle that has the middle segment from step 1 as its base. 

3. Remove the line segment that is the base of the triangle from step 2. 

 

The Koch Curve 
 

The first four iterations of the 

Koch Snowflake 
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Fractal 

Name 
Description Sample Picture(s) 

Newton 

Fractals 

Like the Mandelbrot set, the Newton fractal is based on a recursive formula: 

 

 1
n

n n
n

p z
z

p z
z   


, 

where  p z  is a complex polynomial function (i.e. p takes as “input” a 

complex value z and produces a complex “output”  p z ) and  p z  is the 

derivative of  p z . 

For any complex polynomial function  p z , the above equation defines a 

sequence 1 2 3, , ,z z z  in the complex plane.  For some choices of the point 

1z , the sequence will converge toward a root of the polynomial function.  For 

other choices of 1z , the sequence will not converge toward a root. 

Newton fractals can be coloured in a variety of ways including the 

following… 

 The colour is determined by the number of iterations required for nz  to 

come within a specified distance from a root. 

 The colour is determined by the root toward which the sequence converges. 

 

The equation given above is used as the basis of what is known as Newton’s 

method or the Newton-Raphson method.  This method provides us with a 

powerful algorithm for finding approximations of solutions of equations. 

 

  3 1p z z   

The colour is determined by which root 

is reached. 
 

 

 

  3 1p z z   

The colour is determined by the number 

of iterations required to reach a root. 
 

 

 

  8 415 16p z z z    

This polynomial has 8 complex roots, 

allowing for 8 colours when the 

iterations method is used. 

Nova 

Fractal 

The Nova fractal is a generalization of the Newton fractal.  It is based on the 

following recursive formula, which reduces to the Newton fractal recursive 

formula when R = 1 and c = 0: 

 

 1
n

n n
n

p z
z R c

p z
z    


, R  , c  

For the Nova fractal,   1np z z  , where n can have any complex value but 

is usually set to 3 or a value close to 3. 
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Fractal 

Name 
Description Sample Picture(s) 

Pythag-

oras Tree 

The Pythagoras tree is a plane (2-D) fractal constructed from squares.  

Invented by the Dutch mathematics teacher Albert E. Bosman in 1942, it is 

named after the ancient Greek mathematician Pythagoras because each triple 

of touching squares encloses a right triangle. 

The construction of the Pythagoras tree begins with a square.  Upon this 

square are constructed two squares, each scaled down by a linear factor in 

such a way that the corners of the squares coincide pairwise.  The same 

procedure is then applied recursively to the two smaller squares, ad infinitum. 

The illustrations below show the first few iterations in the construction 

process. 

The first row shows the construction process for the case in which the 

enclosed right triangle is isosceles.  This leads to a “balanced” tree, that is, a 

tree exhibiting bilateral (“left-right”) symmetry.  In the second row, the 

enclosed right triangle is not isosceles, leading to a tree that does not exhibit 

bilateral symmetry. 

 

Many other variations are possible. 
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USING ROBOTS TO UNDERSTAND HOW TO WRITE YOUR OWN CLASSES 

Complete the following table.  List as many properties (characteristics, attributes) and methods (actions, 

services) that you can imagine could be ascribed to the robot shown below. 

 

 

Properties 

(Characteristics) 

Methods 

(Actions) 
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