
Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Graphics to Understand Classes and Structures in C# UGUCSCS -1

ICS4U0 UNIT 1 – USING GRAPHICS TO UNDERSTAND CLASSES AND STRUCTURES IN C#

ICS4U0 UNIT 1 – USING GRAPHICS TO UNDERSTAND CLASSES AND STRUCTURES IN C# ... 1

THE CHECKERBOARD PROBLEM .. 2

BACKGROUND RESEARCH .. 2
THE PROBLEM .. 2

HINTS FOR CHECKERBOARD DRAWING PROBLEM .. 3

DRAWING AND MANIPULATING SHAPES AND IMAGES ... 3
OUTLINE OF C# CODE FOR DRAWING A CHECKERBOARD .. 3
EXPLANATION OF VARIOUS STATEMENTS FROM THE PREVIOUS SECTION ... 4
HOW TO USE THE “GRAPHICS” CLASS FOR DRAWING .. 4

Overview... 4
Creating a Graphics Object ... 4

USING FRACTALS TO DEEPEN OUR UNDERSTANDING OF CLASSES ... 5

WHAT ON EARTH IS A FRACTAL? ... 5
Classification of Fractals ... 5

FRACTALS IN NATURE ... 5
A FAMOUS FRACTAL – THE BOUNDARY OF THE MANDELBROT SET .. 6

The Geometry of the Mandelbrot Set .. 6
A Primer on Complex Numbers .. 6
Operations on Complex Numbers .. 7
The Mandelbrot Sequence .. 7
Generating a Picture of the Mandelbrot Set .. 8
Colouring the Exterior of the Mandelbrot Set .. 9

WRITING A C# PROGRAM TO GENERATE THE MANDELBROT SET .. 9
Transforming between Co-ordinates in the Complex Plane and Screen Co-Ordinates ... 10
How to Express this in C# .. 10
Deciding whether a Point c in the Complex Plane belongs to the Mandelbrot Set .. 11

UNDERSTANDING THE COLOURING METHODS USED IN THE MANDELBROT PROGRAM .. 12
CREATING YOUR OWN FRACTAL .. 13

USING ROBOTS TO UNDERSTAND HOW TO WRITE YOUR OWN CLASSES ... 16

Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Graphics to Understand Classes and Structures in C# UGUCSCS -2

THE CHECKERBOARD PROBLEM

Background Research

Use MSDN or any other resource to learn how to use the Windows Graphics Device Interface within the C#

development environment. For the purposes of this course, you will need to understand the following:

 The “Graphics” class

 The “Pen” class

 The “Brush” class and classes derived from it (e.g. “SolidBrush,”

“TextureBrush,” “HatchBrush,” etc)

 The “Font” class

 The “Pens” and “Brushes” structures

 The “Color” structure

The Graphics Device Interface used in the .NET framework is usually

referred to as the Windows GDI+.

The Problem

Write a C# program that draws a picture of a checkerboard on a picture box.

An example is shown at the right.

GDI

 Short for Graphics Device Interface, a Windows standard for representing graphical objects and transmitting

them to output devices, such as monitors and printers.

 Windows GDI+ is a class-based API for C/C++ programmers.

 It enables applications to use graphics and formatted text on both the video display and the printer.

 Applications based on the Microsoft Win32 API (i.e. 32-bit Windows) do not access graphics hardware

directly. Instead, GDI+ interacts with device drivers on behalf of applications. GDI+ is also supported by

Microsoft Win64 (i.e. 64-bit Windows).

 For languages such as C# and Visual Basic, access to GDI+ is provided through .NET framework classes.

 Simple games that do not require fast graphics rendering use GDI. However, GDI is relatively difficult to

use for advanced animation because it does not provide support for various graphics optimizations that are

implemented through hardware. For instance, GDI lacks a mechanism for synchronizing with individual

video frames in the video card and it also lacks hardware rasterization for 3D. Graphics-intensive

applications usually use DirectX or OpenGL instead, which allow programmers to exploit the features of

modern graphics hardware.

API

 API, an abbreviation of Application Programming Interface, is a set or library of routines, protocols and

other tools that allow software components to communicate with one another using a common interface.

Device Driver

 A small program that acts as an interpreter between an operating system and a device.

 As such, a device driver simplifies programming because programmers can write the higher-level application

code independently of whatever specific hardware the end-user is using.

http://en.wikipedia.org/wiki/Video_frame
http://en.wikipedia.org/wiki/Video_card
http://en.wikipedia.org/wiki/Rasterization
http://en.wikipedia.org/wiki/DirectX
http://en.wikipedia.org/wiki/OpenGL

Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Graphics to Understand Classes and Structures in C# UGUCSCS -3

HINTS FOR CHECKERBOARD DRAWING PROBLEM

Drawing and Manipulating Shapes and Images

Outline of C# Code for Drawing a Checkerboard

public partial class DrawCheckerboardForm : Form
{
 /**
 * The class 'Bitmap' encapsulates a GDI+ bitmap.
 *
 * A GDI+ bitmap consists of the pixel data for a graphics image, as well as the attributes
 * of the image. When the 'Bitmap' class is used to create a 'Bitmap' object, space is allocated
 * in memory to store the bitmap data. Whenever a drawing method is executed, the image data
 * are updated in memory; however, NOTHING is displayed until the 'Paint' event is fired on the
 * control on which the drawing is displayed. Drawing images in this way is much faster than
 * drawing directly to a form, picture box or other control on which images can be drawn.
 **/
 Bitmap checkerBoardBitmap = new Bitmap(400, 400); // Bitmap size set to 400 pixels x 400 pixels.

 private void checkerBoardPictureBox_Paint(object sender, PaintEventArgs e)
 {
 e.Graphics.DrawImage(checkerBoardBitmap, 0, 0);
 } //End of method

 private void drawCheckerBoardButton_Click(object sender, EventArgs e)
 {
 // A 'Graphics' object represents a GDI+ drawing surface.
 Graphics checkerBoard = Graphics.FromImage(checkerBoardBitmap);

 // A 'SolidBrush' object represents a brush of a single colour.
 // Brushes are used to fill graphics shapes.
 SolidBrush fillColourBrush = new SolidBrush(Color.Red);

 checkerBoard.Clear(checkerBoardPictureBox.BackColor);

 // Code needs to be inserted here
 .
 .
 .
 checkerBoardPictureBox.Refresh(); // Fire the 'Paint' event on the picture box.

 // Release resources used by the brush and graphics objects.
 checkerBoard.Dispose();
 fillColourBrush.Dispose();

 } //End of method
 .
 .
 .
} // End of class

Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Graphics to Understand Classes and Structures in C# UGUCSCS -4

Explanation of Various Statements from the Previous Section

The following statements are used to create new objects:

Bitmap checkerBoardBitmap = new Bitmap(400, 400);

SolidBrush fillColourBrush = new SolidBrush(Color.Red);

The following statement also creates a new object:

Graphics checkerBoard = Graphics.FromImage(checkerBoardBitmap);

However, the “new” keyword is conspicuous by its absence! The reason for this is that the “Graphics” class

does not expose any constructor methods (i.e. none of its constructors is visible outside the class). Therefore,

“Graphics” objects are created by calling various methods such as the static method “FromImage” shown in the

above example.

How to use the “Graphics” Class for Drawing

The material found below is adapted from the following MSDN page:

How to: Create Graphics Objects for Drawing.

Before you can draw lines and shapes, render text or display and manipulate images with GDI+, you need to

create a Graphics object. The Graphics object represents a GDI+ drawing surface and is the object that is used

to create graphical images.

Overview

1. Create a Graphics object.

2. Use the Graphics object to draw lines and shapes, render text or display and manipulate images.

Creating a Graphics Object

As shown in the following table, there are several ways to create a “Graphics” object:

Method of Creating “Graphics” Object Example

1. Receive a reference to a graphics object as part of the

PaintEventArgs in the Paint event of a form or control. This

is usually how you obtain a reference to a graphics object

when creating painting code for a control. Similarly, you can

also obtain a graphics object as a property of the

PrintPageEventArgs when handling the PrintPage event for a

PrintDocument.

private void Form1_Paint(object sender,
 PaintEventArgs e)
{
 // Declare the Graphics object 'g'
 // This is a reference to the object
 // provided by the parameter 'e'
 Graphics g=e.Graphics;
}

2. Call the CreateGraphics method of a control or form to obtain

a reference to a Graphics object that represents the drawing

surface of that control or form. Use this method if you want

to draw on a form or control that already exists.

// Create a Graphics object 'g' for a form
Graphics g = this.CreateGraphics();

// Create a Graphics object 'gr'
// for a picture box
Graphics gr =PictureBoxName.CreateGraphics();

3. Create a Graphics object from any object that inherits from

Image. This approach is useful when you want to alter an

already existing image.

Bitmap myBitmap = new Bitmap("myPic.jpg");
Graphics g = Graphics.FromImage(myBitmap);

Class

Name

Object

Name

Constructor

Method Call

Create a

new Object

Adapted from

http://en.wikipedia.org/wiki/Constructor_%28obje

ct-oriented_programming%29

In object-oriented programming, a

constructor method (often shortened to

constructor and sometimes shortened to

ctor) in a class is a special type of

subroutine called to create an object. It

prepares the new object for use, often

accepting parameters that the constructor

uses to set member variables required for

the object to reach a valid state. It is

called a constructor because it constructs

the values of data members of the class.

http://msdn.microsoft.com/en-us/library/5y289054.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.painteventargs.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.control.paint.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.printing.printpageeventargs.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.printing.printdocument.printpage.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.printing.printdocument.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.control.creategraphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.image.aspx
http://en.wikipedia.org/wiki/Constructor_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Constructor_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Object_lifetime#Creating_objects
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Member_variable

Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Graphics to Understand Classes and Structures in C# UGUCSCS -5

USING FRACTALS TO DEEPEN OUR UNDERSTANDING OF CLASSES

What on Earth is a Fractal?

A mathematically precise definition of fractals requires knowledge of mathematics that is far beyond the high

school level. Therefore, we shall only consider an intuitive definition, which will allow us to understand the

essential ideas without being burdened by the complexities of mathematical technicalities.

The term fractal denotes a shape that is recursively constructed or self-similar, that is, a shape that appears

similar at all scales of magnification and is therefore often referred to as “infinitely complex.”

Classification of Fractals

Adapted from a Wikipedia article

Fractals can be classified according to their self-similarity. There are three types of self-similarity found in fractals:

 Exact Self-Similarity

This is the strongest type of self-similarity; the fractal appears identical at all scales. Fractals defined by

iterated function systems often display exact self-similarity.

 Quasi-Self-Similarity

This is a loose form of self-similarity; the fractal appears approximately (but not exactly) identical at all

scales. Quasi-self-similar fractals contain small copies of the entire fractal in distorted and degenerate

forms. Fractals defined by recurrence relations are usually quasi-self-similar but not exactly self-similar.

 Statistical Self-Similarity

This is the weakest type of self-similarity; the fractal has numerical or statistical measures that are preserved

across all scales. Random fractals are examples of fractals that are statistically self-similar, but neither

exactly nor quasi-self-similar.

Fractals in Nature

Adapted from a Wikipedia article

Approximate fractals are easily found in nature. These objects display self-similar structure over an extended,

but finite, scale range. Examples include clouds, snowflakes, mountains, river networks and systems of blood

vessels. Trees and ferns are fractal in nature and can be modelled on a computer using recursive algorithms.

The recursive nature is clear in these examples — a branch from a tree or a frond from a fern is a miniature

replica of the whole, not identical, but similar in nature.

A fractal is formed when

pulling apart two glue-

covered acrylic sheets.

High voltage breakdown within a

4″ block of acrylic creates a

fractal Lichtenberg figure.

Fractal branching

occurs on a microwave-

irradiated DVD

Romanesco broccoli

showing very fine natural

fractals

A fractal fern computed

using an Iterated

function system

The surface of a mountain can be modelled on a computer using a fractal. Start with a triangle in 3D space and

connect the central points of each side by line segments, resulting in 4 triangles. The central points are then

randomly moved up or down within a defined range. The procedure is repeated, cutting the range in half after

each iteration. The recursive nature of the algorithm guarantees that the whole is statistically similar to each

detail.

http://en.wikipedia.org/wiki/Image:Bransleys_fern.png

Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Graphics to Understand Classes and Structures in C# UGUCSCS -6

A Famous Fractal – The Boundary of the Mandelbrot Set

The Geometry of the Mandelbrot Set

The Mandelbrot Set

Notice the self-similarity at several scales.

A Close-up View of the Boundary

Self-similarity is evident here at a tiny scale.

The Exterior of the Mandelbrot Set Coloured

using the “Triangle Inequality” Method

The Exterior of the Mandelbrot Set Coloured

using the “Iterations” Method

The Interior and Exterior of the Mandelbrot Set

Coloured using the “Trigonometric” Method

A Primer on Complex Numbers

To understand how the Mandelbrot set is generated, it is necessary

to have a basic understanding of complex numbers. Complex

numbers are of the form a bi , where ,a b and 1i . The

real number a is called the real part of a bi and the real number b

is called the imaginary part of a bi .

Since 1i , it follows that 2 1i . Due to our intimate familiarity

with real numbers, which have the property that 2 0x for all x ,

this at first appears to be a peculiar or even absurd notion. However,

once we become well acquainted with the geometry of complex

numbers, it becomes easier to accept the “reality” that the square of

the imaginary number i actually equals 1.

Complex numbers are plotted by making use of the Cartesian plane.

We only need to become accustomed to a few minor modifications.

 The Cartesian plane is renamed the complex plane.

 The x-axis is renamed the real axis.

 The y-axis is renamed the imaginary axis.

Using this framework, it becomes possible to give a geometric meaning to multiplication by the imaginary

number i:

Multiplication by i is equivalent to a counter-clockwise rotation by 90 about the origin.

Re

Im

Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Graphics to Understand Classes and Structures in C# UGUCSCS -7

Let’s examine how this works by starting at the complex number 1 on the real axis and following the unit circle.

1i i (i.e. (1,0) (0,1)) 2() 1i i i (i.e. (0,1) (1,0))

1i i (i.e. (1,0) (0, 1)) 2() (1) 1i i i (i.e. (0, 1) (1,0))

Operations on Complex Numbers

Addition Subtraction Multiplication Division

() ()

() ()

a bi c di

a c b d i

e.g.

(2 3) (5)

(2 (5)) (3 (1))

3 4

i i

i

i

() ()

() ()

a bi c di

a c b d i

e.g.

(2 3) (5)

(2 (5)) (3 (1))

7 2

i i

i

i

2

()()

() ()

a bi c di

ac adi bci bdi

ac bd ad bc i

e.g.

(2 3)(5)

2(5) 2() 3 (5) 3 ()

13 13

i i

i i i i

i

2 2

() ()

a bi

c di

a bi c di

c di c di

ac bd bc ad i

c d

The Modulus (Absolute Value) of a Complex Number

The modulus or absolute value of a complex number is an extremely

important operation that is used to measure the “size” of a complex number.

As shown in the diagram to the right, the modulus of a complex number z,

denoted z , is equal to the distance from the origin to z.

The following are some formal definitions, including the definition of z .

The Mandelbrot Sequence

For any fixed value c , consider the Mandelbrot sequence, which is defined recursively as follows for all

n :

2

1

0, if 1

if , 2

n

n n

z n

z z c n

.

For a particular value of c, there are two possibilities.

1. The value of nz grows larger and larger indefinitely as n gets larger. That is, nz “blows up” to infinity.

2. There is a constant D such that the value of nz D no matter how large n is made. In other words, in this

case the value of nz remains bounded. It does not “blow up” to infinity.

The Mandelbrot set consists of all the values of c for which the Mandelbrot sequence does not “blow up”

to infinity.

Definitions

1. The symbol is used to denote the set of complex numbers.

2. Suppose that z , where , ,z x iy x y . Then Re()z x

denotes the real part of z and Im()z y denotes the imaginary part of z.

3. The modulus or absolute value of z x iy is denoted z

and is equal to 2 2 2 2Re() Im()x y z z

I

m

R

e

 2 26 8 10z

Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Graphics to Understand Classes and Structures in C# UGUCSCS -8

Generating a Picture of the Mandelbrot Set

To generate a picture of the Mandelbrot set, the following is done:

1. If the chosen value of c causes nz to “blow up” to infinity, then c is not plotted on the complex plane.

2. If the chosen value of c does not cause nz to “blow up” to infinity, then c is plotted on the complex plane.

As usual, a specific example should help to clarify matters. Suppose that we choose 0.5 0.5c i . The

following table, constructed using Microsoft Excel, gives the values of nz and nz for 1, ,14n .

n nz nz

1 0 0

2 0.5 + 0.5i 0.70711

3 0.5 + i 1.11803

4 -0.25 + 1.5i 1.52069

5 -1.6875 0.25i 1.70592

6 3.28515625 + 1.34375i 3.54935

7 9.48658752441406 + 9.328857421875i 13.305

8 3.46776206069622 + 177.498044870794i 177.53192

9 -31493.0305592448 + 1231.54197170139i 31517.10122

10 990294278.677464 77569977.3995685i 993327669.9

11 9.74665656987549E+017 1.53634209631866E+017i 9.867E+17

12 9.26369672541763E+035 2.99483975733211E+035i 9.73577E+35

13 7.68470118484163E+071 5.5486574506296E+071i 9.47851E+71

14 2.8267032795879E+143 8.52795489702672E+143i 8.9842E+143

For 0.5 0.5c i , we see that the Mandelbrot sequence is not bounded. After 6 iterations, nz is already greater

than 2 and by 14 iterations, nz explodes to a value greater than 1043 googols! Therefore, 0.5 0.5c i is not in

the Mandelbrot set and so, it is not plotted on the complex plane.

Now let’s see if 0.2 0.1c i fares any better than 0.5 0.5c i .

n nz nz

1 0 0

2 0.2 + 0.1i 0.22361

3 0.23 + 0.14i 0.26926

4 0.2333 + 0.1644i 0.28541

5 0.22740153 + 0.17670904i 0.28799

6 0.220485371028619 + 0.180367812121662i 0.28486

7 0.216081251188073 + 0.17953692795453i 0.28094

8 0.214457598615653 + 0.177589128053755i 0.27844

9 0.2144541632011 + 0.176170675885312i 0.27754

10 0.214954481072396 + 0.175561069755114i 0.27754

11 0.215383739719543 + 0.175475277291451i 0.27782

12 0.215598582395064 + 0.175589042902713i 0.27805

13 0.21565123674327 + 0.175713497467862i 0.27817

14 0.215630222716514 + 0.17578566608286i 0.27820

In this case, after 14 iterations nz remains very small, which makes it very likely that 0.1 0.2c i is a member

of the Mandelbrot set. Since the Mandelbrot sequence appears to be bounded for 0.1 0.2c i , then this point is

plotted on the complex plane.

Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Graphics to Understand Classes and Structures in C# UGUCSCS -9

Colouring the Exterior of the Mandelbrot Set

When it comes to colouring, the exterior of the Mandelbrot set is where all the action is! This is particularly

true near the boundary of the set. The points lying outside the boundary of the Mandelbrot set all have

something in common; nz eventually “blows up” to infinity. More importantly for these points, however, is

that nz does not always “blow up” to infinity at the same rate. For some points, nz goes to infinity rather

slowly. For others, nz approaches infinity very rapidly. We can use this as the basis for colouring (e.g.

iterations method).

The following is a description of just a few colouring methods.

Iterations Method Modulus Method Exponential Smoothing Method

The Mandelbrot

sequence is generated

until nz exceeds a

certain fixed value. The

number of iterations

required to exceed this

value is then used to

determine the colour of

the pixel located at c on

the complex plane.

The Mandelbrot

sequence is generated

until nz exceeds a

certain fixed value.

The value of nz is

then used to determine

the colour of the pixel

located at c on the

complex plane.

On a small scale (i.e. high degree of magnification), the

“iterations” method can lead to colour “banding” due to the

rather abrupt transition from one colour to another. To

prevent this problem, a second sequence is computed at the

same time as the Mandelbrot sequence is generated:

1

1
nz

n ns s e

The value of ns is used to determine the colour of the pixel

located at c on the complex plane. This allows for

smoother colour transitions on a minute scale.

Other colouring methods include decomposition, binary decomposition, orbit traps, direct orbit traps, distance

estimator, Gaussian integer, gradient, triangle inequality average and lighting.

Writing a C# Program to Generate the Mandelbrot Set

The Mandelbrot set lies in a region of the complex plane that is very close to the origin. Generally, the points in

the Mandelbrot set and its immediate exterior are plotted for real values ranging from 2.5 to 1.5 and for

imaginary values ranging from 1.5 to 1.5. This poses a slight problem when writing computer programs

because screen co-ordinates do not correspond to the ranges given above. Therefore, it is necessary to find

equations that can transform between screen co-ordinates and actual complex plane co-ordinates.

y

x

To render the Mandelbrot set on a computer screen, co-ordinates in the

range shown at the left must be translated to screen co-ordinates.

Re

Im

The Mandelbrot set lies in this region of the complex plane.

Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Graphics to Understand Classes and Structures in C# UGUCSCS -10

Transforming between Co-ordinates in the Complex Plane and Screen Co-Ordinates

The following tables show correspondences between specific screen co-ordinates ,x y and co-ordinates in the

complex plane Re(), Im()z z (z represents a point in the complex plane).

x Re(z) y Im(z)

0 −2.5 0 1.5

800 1.5 600 −1.5

When transforming between co-ordinate systems, it is important that proportions be preserved. In other words,

the rendering of a picture in one co-ordinate system should look exactly the same as the rendering in any other

co-ordinate system. To ensure that the change of co-ordinate systems does not distort the image in any way, the

transformation between co-ordinate systems must be linear!

This makes it very easy to find equations that relate Re(z) to x and Im(z) to y. A little bit of reflection back to

grade 9 mathematics should immediately bring to mind the familiar form y mx b . As shown below, the

required equations are obtained by making a simple observation and by performing some simple calculations.

2.5b

 1.5 2.5 4

800 0 800
m

x Re(z) y Im(z) 1.5b

1.5 1.5 3

600 0 600
m

0 −2.5 0 1.5

800 1.5 600 −1.5

4

Re 2.5
800

z x and
3

Im 1.5
600

z y

How to Express this in C#

//Instantiation of the 'Complex' class. The 'Complex' object 'c' is created.
Complex c =new Complex(0,0);

.

.

.
//The real and imaginary parts of the 'Complex' object 'c' are determined
//using the above equations translated into C#. (x and y represent screen co-ordinates of course)
c = new Complex(4.0d / mandelbrotSetBitmap.Width*x - 2.5d, -3.0d / mandelbrotSetBitmap.Height*y + 1.5d);

y

x

 0,0

 800,600

Re

Im

 2.5,1.5

 1.5, 1.5

Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Graphics to Understand Classes and Structures in C# UGUCSCS -11

Deciding whether a Point c in the Complex Plane belongs to the Mandelbrot Set

private void displayMandelbrotSetButton_Click(object sender, EventArgs e)
{
 Graphics mandelbrotSetImage = Graphics.FromImage(mandelbrotSetBitmap);

 //Instantiations of the 'Complex' class. Create two complex objects, 'c' and 'z.'
 //For both 'Complex' objects, the real and imaginary parts are initially set to 0.
 Complex z = new Complex(0, 0);
 Complex c =new Complex(0,0);

 //For efficiency reasons, copy the 'Width' and 'Height' properties to variables.
 //This is called "caching" the values of properties.
 int width = mandelbrotSetBitmap.Width;
 int height = mandelbrotSetBitmap.Height;

 mandelbrotSetImage.Clear(mandelbrotSetPictureBox.BackColor);
 mandelbrotSetPictureBox.Refresh();

 //Traverse the bitmap one pixel at a time, column by column. Screen co-ordinates are (x,y).
 for (int x = 0; x < width; x++)
 {
 for (int y = 0; y < height; y++)
 {
 //Transform screen co-ordinates (x,y) to co-ordinates in the complex plane
 c = new Complex(4.0d/width*x - 2.5d, -3.0d/height*y + 1.5d);
 z = 0;
 int iterations=0;

 //For the value of c corresponding to screen co-ordinates (x,y),
 //generate terms of the Mandelbrot sequence. The loop terminates
 //as soon as |z| exceeds 'maxModulus' or at the 100th term.
 do
 {
 z = Complex.Add(Complex.Pow(z, 2),c); //z=z^2+c
 iterations++;

 }while(Complex.Abs(z) < maxModulus && iterations<=100);

 mandelbrotSetBitmap.SetPixel(x, y, pixelColour(colouringMethod, iterations-1, z));

 }//end inner for
 }//end outer for

 ////Display the Mandelbrot set by firing the 'Paint' event on 'mandelbrotSetPictureBox.'
 mandelbrotSetPictureBox.Refresh();
}

Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Graphics to Understand Classes and Structures in C# UGUCSCS -12

Understanding the Colouring Methods used in the Mandelbrot Program

The colours that are displayed on computer monitor screens and mobile-device screens are “mixtures” of

various intensities of the primary colours red, green and blue. For a colour model known as “RGB 24-bit,” the

intensity of each primary colour is represented by an integer whose value is between 0 and 255. (This would be

between 00000000 and 11111111 in binary.)

Intensity of Red for Trig Method

 255 255 sin Re()RI z z

z x iy

Intensity of Green for Trig Method

 min 255 255 sin Re() , 255 255 cos Im()GI z z z

z x iy

Intensity of Blue for Trig Method

 255 255 cos Im()BI z z

z x iy

 23.3 277RI z z
2

10 136 465GI z z z 25.3 50BI z z

 255RI n n

 n n n

 255GI n n 255 255BI n n

Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Graphics to Understand Classes and Structures in C# UGUCSCS -13

Creating your own Fractal

Listed below are some examples of fractals that are appropriate for our fractal project. If you don’t like any of these

suggestions, you are free to choose any other fractal provided that your project can be completed in a reasonably short

time. It would be a good idea to ask me about the appropriateness of your choice before forging ahead.

Fractal

Name
Description Sample Picture(s)

Julia Sets

Julia sets are closely related to the Mandelbrot set. As with the Mandelbrot set, the

border of a Julia set is a fractal and its exterior can be coloured in a variety of interesting

ways. Unlike the Mandelbrot set, there are an infinite number of different Julia sets.

The black and white pictures at the right are three examples of different Julia sets. The

fourth picture is a coloured version of the third Julia set. Only points that are just outside

the Julia set are coloured.

To generate a Julia set use the following algorithm:

1. Choose a point in the Mandelbrot set or just outside the Mandelbrot set. Call this

value c. (The value chosen for c is known as the index of the Julia set.)

2. Choose z1 in the complex plane in such a way that 12 Re() 2z and

11.5 Im() 1.5z .

3. Using the value of z1 chosen in step 2 and the value of c chosen in step 1, generate the

resulting Mandelbrot sequence until nz exceeds 2 or a maximum number of

iterations is exceeded.

4. If 2nz , then colour the pixel corresponding to z1 black. Otherwise, set the colour

according to the colouring scheme that you have chosen.

5. Repeat steps 2 to 4 until all pixels in the range have been coloured. (It is very

important to understand that the value of c remains the same throughout the process.)

Fractal

Mountains

1. Begin with a triangle in 3-D space.

2. Find the co-ordinates of the midpoint of each side of the triangle.

3. Use line segments to connect the midpoints to each other. This produces 4 triangles.

4. Move each midpoint up or down by a randomly selected amount.

5. Repeat the same process on each of the four resulting triangles.

6. Stop when the triangles become “smaller” than some fixed value.

Note: To display a 3-D object on a 2-D screen, some knowledge of projective geometry

is required. In essence, each point , ,x y z in 3-D space must be projected onto a point

 ,u v in 2-D space.

See page 5

Sierpinski

Triangle

If you are interested in this one, do a search on “Sierpinski Triangle” to find out more.

This one is more interesting if the user is allowed to choose the vertices of the triangle

(the triangle need not be equilateral). An even more interesting variation is to begin with

other polygons such as quadrilaterals, pentagons, etc.

Koch

Snowflake

Begin with a single line segment and then recursively alter each line segment as follows:

1. Divide the line segment into three segments of equal length.

2. Draw an equilateral triangle that has the middle segment from step 1 as its base.

3. Remove the line segment that is the base of the triangle from step 2.

The Koch Curve

The first four iterations of the

Koch Snowflake

Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Graphics to Understand Classes and Structures in C# UGUCSCS -14

Fractal

Name
Description Sample Picture(s)

Newton

Fractals

Like the Mandelbrot set, the Newton fractal is based on a recursive formula:

 1
n

n n
n

p z
z

p z
z

,

where p z is a complex polynomial function (i.e. p takes as “input” a

complex value z and produces a complex “output” p z) and p z is the

derivative of p z .

For any complex polynomial function p z , the above equation defines a

sequence 1 2 3, , ,z z z in the complex plane. For some choices of the point

1z , the sequence will converge toward a root of the polynomial function. For

other choices of 1z , the sequence will not converge toward a root.

Newton fractals can be coloured in a variety of ways including the

following…

 The colour is determined by the number of iterations required for nz to

come within a specified distance from a root.

 The colour is determined by the root toward which the sequence converges.

The equation given above is used as the basis of what is known as Newton’s

method or the Newton-Raphson method. This method provides us with a

powerful algorithm for finding approximations of solutions of equations.

 3 1p z z

The colour is determined by which root

is reached.

 3 1p z z

The colour is determined by the number

of iterations required to reach a root.

 8 415 16p z z z

This polynomial has 8 complex roots,

allowing for 8 colours when the

iterations method is used.

Nova

Fractal

The Nova fractal is a generalization of the Newton fractal. It is based on the

following recursive formula, which reduces to the Newton fractal recursive

formula when R = 1 and c = 0:

 1
n

n n
n

p z
z R c

p z
z

, R , c

For the Nova fractal, 1np z z , where n can have any complex value but

is usually set to 3 or a value close to 3.

Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Graphics to Understand Classes and Structures in C# UGUCSCS -15

Fractal

Name
Description Sample Picture(s)

Pythag-

oras Tree

The Pythagoras tree is a plane (2-D) fractal constructed from squares.

Invented by the Dutch mathematics teacher Albert E. Bosman in 1942, it is

named after the ancient Greek mathematician Pythagoras because each triple

of touching squares encloses a right triangle.

The construction of the Pythagoras tree begins with a square. Upon this

square are constructed two squares, each scaled down by a linear factor in

such a way that the corners of the squares coincide pairwise. The same

procedure is then applied recursively to the two smaller squares, ad infinitum.

The illustrations below show the first few iterations in the construction

process.

The first row shows the construction process for the case in which the

enclosed right triangle is isosceles. This leads to a “balanced” tree, that is, a

tree exhibiting bilateral (“left-right”) symmetry. In the second row, the

enclosed right triangle is not isosceles, leading to a tree that does not exhibit

bilateral symmetry.

Many other variations are possible.

Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Graphics to Understand Classes and Structures in C# UGUCSCS -16

USING ROBOTS TO UNDERSTAND HOW TO WRITE YOUR OWN CLASSES

Complete the following table. List as many properties (characteristics, attributes) and methods (actions,

services) that you can imagine could be ascribed to the robot shown below.

Properties

(Characteristics)

Methods

(Actions)

	ICS4U0 Unit 1 – Using Graphics to Understand Classes and Structures in C#
	The Checkerboard Problem
	Background Research
	The Problem

	Hints for Checkerboard Drawing Problem
	Drawing and Manipulating Shapes and Images
	Outline of C# Code for Drawing a Checkerboard
	Explanation of Various Statements from the Previous Section
	How to use the “Graphics” Class for Drawing
	Overview
	Creating a Graphics Object

	Using Fractals to Deepen our Understanding of Classes
	What on Earth is a Fractal?
	Classification of Fractals

	Fractals in Nature
	A Famous Fractal – The Boundary of the Mandelbrot Set
	The Geometry of the Mandelbrot Set
	A Primer on Complex Numbers
	Operations on Complex Numbers
	The Mandelbrot Sequence
	Generating a Picture of the Mandelbrot Set
	Colouring the Exterior of the Mandelbrot Set

	Writing a C# Program to Generate the Mandelbrot Set
	Transforming between Co-ordinates in the Complex Plane and Screen Co-Ordinates
	How to Express this in C#
	Deciding whether a Point c in the Complex Plane belongs to the Mandelbrot Set

	Understanding the Colouring Methods used in the Mandelbrot Program
	Creating your own Fractal

	Using Robots to Understand how to Write your own Classes

