
UNIT 2 – CLASSES, METHODS AND DATA FIELDS
UNIT 2 – CLASSES, METHODS AND DATA FIELDS ...1
AN OVERVIEW OF DIGITAL CIRCUITS AND THE BINARY NUMBER SYSTEM ...3

COMPUTER ARCHITECTURE -- AN OVERVIEW OF DIGITAL CIRCUITS...3
THE CPU IS THE “ENGINE” OF THE COMPUTER SYSTEM..3
WHY DO COMPUTERS PROCESS BINARY NUMBERS AND NOT DECIMAL NUMBERS?..3
WHY COMPUTERS COUNT BY “TWOS” INSTEAD OF “TENS” – THE BASIS OF DIGITAL CIRCUITS ...4

Question ...4
CHARACTER ENCODING – HOW BINARY NUMBERS ARE USED TO REPRESENT TEXTUAL INFORMATION..4
AN OLD BINARY CHARACTER ENCODING SCHEME – MORSE CODE ..5

EBCDIC, ASCII, ANSI, ISO-Latin 1 and other Character Sets..5
The Relationship between Storage Space and Characters ...6
An Example of Unicode Character Mappings..6
Examples ..7
Solutions...7

QUESTIONS ..7
BINARY, OCTAL AND HEXADECIMAL ARITHMETIC...8

PLACE VALUES ..8
VARIOUS INTERPRETATIONS OF BINARY CODES..9
THE IEEE754 STANDARD FOR REPRESENTING FLOATING POINT NUMBERS..9

More Information ...9
THE TWOS COMPLEMENT METHOD OF REPRESENTING SIGNED INTEGERS ..10

Example 1 – Positive 8-bit Signed Integers (byte Data Type in Java) ...10
Example 2 – Negative 8-bit Signed Integers (byte Data Type in Java) ..10
Why use the Twos Complement Method to Represent Signed Integers? ..10
Exercises ..10

THE IMPORTANCE OF HEXADECIMAL NUMBERS..11
CONCLUSION ...11
CONVERTING FROM ONE BASE TO ANOTHER ...11

Binary to Octal ...11
Binary to Hexadecimal...11
Octal to Hexadecimal...11
Octal or Hexadecimal to Binary...11
Decimal to Binary ..12
Method 1 (Subtraction) ..12
Method 2 (Division by 2)..12

ELEMENTARY SCHOOL ARITHMETIC REVISITED..12
Decimal Examples..12
Binary Examples ..12
Octal Examples ..12
Hexadecimal Examples ..12

EXERCISES AND PROBLEMS ...13
ASSIGNMENT: EXPLORING PRIMITIVE DATA TYPES IN JAVA ..15
BASIC CLASS STRUCTURE..18
UNDERSTANDING CLASSES AND OBJECTS AT AN INTUITIVE LEVEL...19

WHY USE CLASSES?...19
THE “AUTOMOBILE” CLASS...19

CLASS HIERARCHIES AND INHERITANCE ..20
EXAMPLE OF CLASS INHERITANCE...20
THE “EXTENDS” KEYWORD...20
QUESTION ..20

USING TIME CONVERTER 1.1 TO REVIEW UNIT 1...21
CONCEPTS INTRODUCED AND/OR REVIEWED IN TIME CONVERTER 1.1..21

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-1

PUTTING ALL THIS KNOWLEDGE INTO PRACTICE – BINARY BLASTER..22
DESCRIPTION OF THE “BINARY BLASTER” PROJECT ..22

Note ..23
SIMPLE METHOD OF DATA ENCRYPTION ...24

Exercise ..24
The Encryption Scheme Requires a Special form of Binary Addition and a “Private Key” ..24

SIMPLE DATA RECOVERY METHOD ...25
Description of a One-Bit Correction Method...25

SIMPLE METHOD OF DATA COMPRESSION – RUN-LENGTH ENCODING (RLE) ...26
Rules for Simple Version of RLE for this Project ...26

STOP! DO NOT WRITE ANY CODE YET! THIS IS A BIG PROJECT AND REQUIRES A GREAT DEAL OF PLANNING!!26
APPENDIX – THE UNICODE STANDARD IN DETAIL... ERROR! BOOKMARK NOT DEFINED.

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-2

AN OVERVIEW OF DIGITAL CIRCUITS AND THE BINARY NUMBER SYSTEM
Computer Architecture -- An Overview of Digital Circuits
Although computer circuits are extremely sophisticated, they are based on an extremely elementary concept. Computers
accomplish almost everything by rapidly switching circuits on and off (such circuits are called digital circuits). This
seemingly random activity allows computer users to produce spreadsheets, word processing documents, images,
animation, Web pages and almost anything else that the human imagination can conceive. It may be difficult at first to
understand how switching circuits on and off can accomplish anything at all. Once one appreciates the extreme speed
with which the switching is performed, and the idea that information is encoded as sequences of these simple “flip-
flopping” electrical impulses, the power of digital circuits becomes clear.

The CPU is the “Engine” of the Computer System
You probably have heard people say that the CPU (central processing unit) is the brain of a computer system. Despite the
widespread use of this idea, however, the CPU is very much unlike the human brain. It is completely devoid of any of the
higher order abilities that the human brain possesses such as independent thought and reasoning, a sense of consciousness,
emotions and the ability to learn from experiences. Considering these rather astonishing capabilities, the electrochemical
impulses in the human brain and nervous system are conducted rather slowly (at speeds of up to about 400 km/h).
The CPU, on the other hand, is in a sense a “photographic negative” of the human brain. It outperforms the human brain
in some ways, but it falls miserably short in many other respects. It can perform arithmetic, arrange numbers from least to
greatest and blindly follow instructions at a blazing speed. However, it does not possess any cognitive powers. The CPU
cannot think, understand, interpret or feel. It is merely a rather unintelligent order taker. The latest and most powerful
processors for the home computer market (CPUs are often called processors) can switch circuits on and off at rates of
billions of cycles per second. For example, a processor operating with a clock speed of 3.5 GHz (gigahertz or billions of
cycles per second) can switch circuits on and off three billion five hundred million times per second. In other words,
every time the CPU clock ticks, a computer circuit can switch from on to off or vice versa. Considering how dissimilar
the CPU and the human brain are, it is far more appropriate to think of the CPU as the engine of a computer system.

Why do Computers Process Binary Numbers and not Decimal Numbers?
Throughout the ages, humans have used various number systems. When primitive humans first started to count, they
probably employed the unary number system, which is based on the number one. If you are familiar with counting with
sticks, then you will understand unary numbers. An example is shown below.

This represents the number 19.
Although the unary number sy em is extremely simple, it

” at

 In

 to

ddress these limitations

-

 three hundred and sixty degrees in one revolution, look no further than the
e

of the number sixty.

st
has some serious limitations. Imagine representing the
number 5983456782 in unary. If you could draw “sticks
a rate of five per second, it would take almost thirty-eight
years to complete the unary representation of this number.
addition, in the unary number system there is no way of
representing zero. Of course, one could attempt to use no
sticks to represent zero, however, it would be very difficult
distinguish zero from a blank space.
Eventually, humans learned how to a
by using number systems that are based on numbers greater
than one. An extreme example of this is the sexagesimal
system used by the Babylonian civilization. It was, for
religious, mystical or astronomical reasons, based on the
number sixty. This means that the Babylonians used fifty
nine different numerals to represent the numbers from one through fifty-nine (there was no symbol for zero). The
numbers greater than fifty-nine were represented by using combinations of the first sixty symbols, just as we use
combinations of the Hindu-Arabic numerals from zero through nine to represent numbers greater than nine.
If you have ever wondered why there are

The 59 symbols used by the Babylonians. These symbols are built from
the two basic symbols and , representing one and ten respectively.

Babylonian civilization. The Babylonians believed that one year consisted of three hundred and sixty days. Since on
year was viewed as a complete circle, the circle came to be subdivided into three hundred and sixty equal divisions, which
we now call degrees. Note that three hundred and sixty is a multiple of sixty, which may help to explain the special status

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-3

Other civilizations used a variety of different number systems. At one point, the French used an octal (base eight) number
system. The Romans used a decimal (base 10) number system that was based on Roman numerals, while the Arabs used
a decimal system based on Hindu-Arabic numerals. Eventually, most likely for anatomical reasons (read between the
lines here), all humans decided to adopt a decimal number system. Computers, however, use the binary number system,
which is based on the number two.

Why Computers Count by “Twos” instead of “Tens” – The Basis of Digital Circuits
If humans count by ten, why then do computers count by two? If you have read the sections on basic computer
architecture, the answer to this question should be obvious. If computers accomplish everything by switching circuits on
and off, then only two numerals are needed. If ten digits were used instead, a number of electronic complications would
arise. The computer circuits would need to be able to detect ten different possible states as opposed to only two. This
would increase the probability of errors, the complexity of the circuits and the cost. It is relatively easy, however, to
design circuits that detect the difference between “on” and “off.” The table given below lists several interpretations of the
“on” and “off” states.

Circuit State Electronic Representation Binary Logical
Representation Representation

Off Low Voltage (e.g. 0V) 0 False

On Higher Voltage (e.g. 5V) 1 True

The true power of a computer system lies in the electronic signals by which communication takes place, that is, the digital
signals. Instead of forming a continuous wave pattern like analog signals, digital signals are discrete. This means that
they can exist only in a finite number of states, unlike analog signals, which can have an infinite number of states. This
allows data to be sent and received in the “language” of ones and zeros, or binary language.

The main advantage of digital signals is that they are so simple! As long as the hardware is functioning correctly and
there are no sources of interference, it is always possible to make a perfect copy of a digital signal because there are only
two states to detect, “on” and “off.” Analog signals, on the other hand, are impossible to copy perfectly because they are
so complex. A copy of an analog signal always contains some amount of distortion of the original signal.
Imagine trying to copy a friend’s answers on a “true-false” test. It would be very easy to copy your friend’s answers
perfectly because you only need to distinguish between “T” and “F.” Now imagine trying to do the same on an essay test.
Even a meticulously careful person with eagle eye vision could not produce an exact copy of his/her friend’s essay!
Question
Why is the music industry so concerned about digital copies of audio CDs and the downloading of audio files?

Character Encoding – How Binary Numbers are used to represent Textual Information
A character encoding (also called a character set or code page) consists of a code that pairs a sequence of characters
from a given set with a sequence of values that can be easily represented on an electronic device (e.g. integers, sequences
of binary digits, sequences of electrical pulses). This allows text to be stored on computers and transmitted across
telecommunication networks. Common examples of character encodings include
• Morse code, which encodes letters of the Latin alphabet as series of long and short depressions of a telegraph key
• ASCII, which encodes letters, numerals and other symbols as sequences of bits (binary digits)

AN ANALOG SIGNAL

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-4

An Old Binary Character Encoding Scheme – Morse Code
Before telephone technology was developed and became widely available, long
distance electronic communication was accomplished by using a device called a
telegraph (shown below). Instead of using voice, the telegraph was used to create a
series of pulses called “dots” and “dashes.” A dot is created by a quick tap of the

e.

telegraph keying device, resulting in a pulse of very short duration. Holding the key
down for a longer time, on the other hand, would create a pulse of longer duration
known as a dash.

By combining dots and dashes according to the encoding scheme known as Morse
code (shown at the right), messages could be transmitted over long distances.
Morse code was also used for long distance radio communication and until recently,
was a requirement for obtaining an amateur radio (also known as a “Ham” radio)
communications licenc

EBCDIC, ASCII, ANSI, ISO-Latin 1 and other Character Sets

a character set called

“ANSI,” for instance, the sequence for the letter “A” is “off, on, off, off, off, off, off, on” or “01000001” in binary form.
The process is described pictorially below:

Naturally, each character must have a unique binary code. A collection of such codes is called a character set.
Many different character sets are in use today. One of the first to be used was developed decades ago by IBM. It is called
EBCDIC (“Extended Binary- Coded Decimal Interchange Code”) and is still in use today in large IBM mainframe

When you press a key on a keyboard, a certain binary code is transmitted from the keyboard. After some processing, the
video card transmits a signal that causes the character corresponding to the given code to be displayed on the monitor’s
screen. Of course, this process occurs in such a short time that it appears that the computer is doing something intelligent.
All that really happens, however, is that a sequence of “on-off” pulses is transmitted. Using

computers. In the years since EBCDIC first came on the scene, many other character sets have been developed. While
each character set uses a different encoding scheme, they all have one very important element in common. Every
character set uses groups of binary digits or bits to represent each character. Since many character sets use sequences of
eight bits to represent each character, it is convenient to think of such a group as a single unit. A group of eight bits is
known as a byte. The table below summarizes some of the most commonly used character sets.

Character Set
Abbreviation Full Name

Number
of Bits in

Code

Total Number of Characters
that can be Represented Use/Platform

ASCII American Standard Code for Information 7 128 = 2Interchange
7 Early Personal Computers

EBCIDIC Interchange Code 8 256 = 2 IBM MaExtended Binary-Coded Decimal 8 inframe Computers

ANSI American National Standards Institute 8 256 = 28 Windows

ISO-Latin 1 International Standards Organization
8859-1 8 256 = 28 HTTP and HTML (World Wide Web)

DBCS Double Byte Character System 16 65536= 216 Asian Versions of Windows

U pendent nicode Unicode (often 16) Up to 4294967296= 2Variable 32 Platform Inde

The “A” key
is pressed.

Some
processing

is done.

01000001

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-5

The Relationship between Storage Space and Characters

1 byte 8 bits 1 ANSI/ISO-Latin 1 character

1 kilobyte = 1 KB 1024 bytes 1024 ANSI/ISO-Latin 1 characters

1 megabyte = 1 MB 1024 KB 1048576 ANSI/ISO-Latin 1 characters

1 gigabyte = 1 GB 1024 MB 1073741824 ANSI/ISO-Latin 1 characters

1 terabyte =1 TB 1024 GB 1099511627776 ANSI/ISO-Latin 1 characters

An Example of Unicode Character Mappings

The picture at the right, which consists
of characters from the east Indian
language Gujarati, shows a small
portion of the Unicode character set.
Each of the characters in the Unicode
character set has a unique hexadecimal
(base 16) code. For example, the hex
code of the character is 0AB3.
When converted to 16-bit binary form,
0AB3 is written as 0000101010110011.
The actual binary values are not
included in the Unicode code charts
because they are too long. Hexadecimal
form, which is closely related to binary,
is far more “human-friendly.” (See page
CMDF-11 for detailed information on
numbers expressed in hexadecimal
form.)

p to 4

an

ces of

Therefore, in Unicode it is possible to
d 4967296 characters

ile i nly possible to
encod

(It is easy gives
the correct re
of leng e are two choices for
each position in the sequence.
Theref
sequences is .)

Since Unicode consists of various
character encodings that use u
bytes per character, it allows for the
encoding of far more characters th
ANSI. It is very easy to calculate the
number of possible binary sequen
a given length n:

#binary sequences of length n = 2n

e up to 322 =429
n ANSI, it is o

enco
wh

e 82 =256.

 to understand why 2
sult. In a binary sequence

n

th n, ther

ore, the total number of different
2 2 2 2 2n× × × × ="

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-6

Examples
In these questions, that no data compression techniques are u
(a) How many drive that has a storage capac

(b) Assuming that the average English word 60 GB
hard dri

(c) Assuming that the average English no s 50000 wo on a 60 GB
hard driv

= 60(1024)(1024)(1024)
= 64424509440

Since one ANSI character uses one
byte of storage, 6442450944 characters
can be stored.

 ber of words
= 64424509440 ÷ 6

10737418240

Approximately 10737418240 English
words can be stored on a 60 GB hard
drive.

(c) number of novels
= 10737418240 ÷ 50000

ls

assume sed.
 ANSI characters can be stored on a hard ity of 60 GB?

 is six characters long, how many English words can be stored on a
ve?

vel contain rds, how many English novels can be stored
e?

Solutions
(a) number of bytes (b) num

� 214750

Approximately 214750 such nove
can be stored on a 60 GB hard drive.

�

Questions
1. Explain the basic principles upon which computer circuits are based.
2. What is a digital circuit?
3. What is a CPU? Explain why CPUs are not intelligent. Why do some people
4. What is a CPU clock? What is meant by clock speed?
5. If you could write “sticks” at the rate of ten per second, how long would it tak

number 6734521343?
6. What are the limitations of the unary number system?
7. Why did all humans eventually adopt a decimal number system? What other

other civilizations?
8. Why are there 360 degrees in one full revolution?
9. What are Hindu-Arabic numerals?
10. Why are decimal numbers unsuitable for computer circuitry? Why is the bin
11. What is a bit? What is a byte?
12. What is a character set?
13. Discuss the various ways in which zero and one are represented at the level o y.
14. How many ANSI characters can be stored on a 120 GB hard drive?
15. Convert
 (a) 209477464 bytes to KB (b) 1.44 MB to KB
 (c) 209477464 bytes to MB (d) 1.44 MB to bytes
 (e) 209477464 bytes to GB (f) 147.2 MB to TB
 (g) 209477464 bytes to TB (h) 1 GB to bits

16. A DVD-ROM disk can store 4.38 MB of data.
 (a) How many 50000-word novels can be stored on a single CD-ROM disk?
 (b) Although CD-ROM disks have such an immense storage capacity, why m

disk for the long-term storage of data?
17. In the metric (SI) system of units, the prefix “kilo” means one thousand. Why then, in the world of computers, does

“kilo” mean 1024?

 believe that CPUs are intelligent?

e to write the unary representation of the

 number systems have been used by

ary system a much better choice?

f computer circuitr

ight it be a poor idea to use a CD-ROM

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-7

BINARY, OCTAL AND HEXADECIMAL ARITHMETIC

value of each “place” or “column” is a power of two instead of a power of ten. The examples given below should help

27 26 25 24 23 22 21 20

1 0 0 1
2 1 02 0 2 0 2 1 2 1 2+ × + × × + × + ×

107 106 105 104 103 102 101 10

0 5
03 10 1 10 9 10 7 10 8 10 0 10 5 10+ × + × + × + × + × + × + ×

5 4 3 1 0

0

+ + + + + + +

amples, the onl signif ch case is the base of the power. The table
tant n ber representa ith computers.

Place Values
As we have learned, computers use the binary number system for encoding information. Although at first glance binary
numbers seem strange and confusing, they operate just like numbers in decimal form. The only difference is that the

you understand what this means.
Place Values

0 1 1 1 Binary
7 6 5 4 32 1 2 1 2 0+ × + × +1= ×Example

128 0 0 16 8 0 2 1= + + + + + + +
155=

Place Values 0

Decimal 2 3 1 9 7 8
Example 7 62 10= × 5 4 3 2 1

20000000 3000000 100000 90000 7000 800 0 5= + + + + + + +
23197805=

7 616 16 16 16 16 16 16 16

A 2 E D C F

2

1 9
7 6 5 4 3 2 11 16 9 16 10 16 2 16 14 16 13 16 12 16 15 16= × + × + × + × + × + × + × + ×

26843545= 6 150994944 10485760 131072 57344 3328 192 15

430108111=

As you can see from the above ex y icant difference in ea
below summarizes the most impor um tion systems for use w

Name Base “Digits”
Binary 2 0, 1

Octal 8 0, 1, 2, 3, 4, 5, 6, 7

Decimal 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Hexadecimal 16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

87 8 8 8 8 8 8
7 0 0 5

+ + + + + + +

Place Values 6 5 4 3 2 1 08
2 3 1 5 Octal

7 6 5 4 3 2 1 02 8 3 8 1 8 5 8 7 8 0 8 0 8 5 8= × + × + × + × + × + × + × + ×
4=

Example
194304 786432 32768 20480 3584 0 0 5

5037573=

Place Values

Hexadecimal
Example

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-8

Various Interpreta
One of the reasons that programmers need to declare variables and specify their typ is that a particular binary code can

in many different ways.

tions of Binary Codes
es

be interpreted
The table given below shows how the 16-bit (2 byte) binary number 0000001110100000 can represent two different
values.

 Value
16-bit Signed Integer Unicode Character Raw Binary Data (short Data Type ava) in J (char Data Type in Java)

0000001110100000 Π 928

The next ows how th 32-bit byte) binary number 11000011100110001101000000000000 can represent two
differen

 table sh
t values.

e (4

Value
32-bit Signed Integer IEEE 754 Floating-Point Number Raw Binary Dat a (int Data Type in Java) (float Data Type in Java)

11000011100110001101000000000000 −1013395456 −305.625

The IE andard r Repr Point Numbers
The IEEE 754 standard allows for 32-bit floating point numbers to be expressed correct to seven significant (decimal)
digits and for 64-bit floating point values to be expressed correct to 15 significant (decimal) digits.
The following format is used to store IEEE 754 32-bit floating point numbers:

EE754 St fo esenting Floating

S FFFFFFFFFFFFFFFFFFFFFFF EEEEEEEE Sign Bit
0 positive
1 negative

More Information
For more information on haracter set, t ht the Unicode c visi tp://en.wikipedia.org/wiki/Unicode and http://www.unicode.org. For more
information on the IEEE 754 floating point number standard, visit http://en.wikipedia.org/wiki/IEEE_754,
http://standards.ieee.org/, and http://research.microsoft.com/~hollasch/cgindex/coding/ieeefloat.html.

The value of the floating point number is taken to be
±1.F × 2E−127

The value “1.F” i led the ntissa significand. Note that t hole p f the issa (the most
significant bit) is n stored b use it a ys equ 1. The ctiona rt of th antissa at is “F,” is called the
fraction. Note that the fraction is expressed in binary form. Also, the base of the power, which is always 2 due to the

 values, is also called the radix. In addition, to avoid storing the sign of the ex onent, the exponent is
ed form. That is, the exponent stored is greater than the actual exponent by 1 7.

s cal ma or the he w art o mant
ot eca lwa als fra l pa e m , th

use of binary
stored in bias

p
2

11000011100110001101000000000000 = −1.00110001101000000000000 × 210000111 0111111−

= −305.624999
= −305.6250 (cor t to significant digits)

S E F

 (according to IEEE 754 format)
= −(1+0×2-1+0×2-2+1×2-3+1×2-4+0×2-5+0×2-6+0×2-7+1×2-8+1×2-9+0×2-10+1×2-11)× 2135 − 127

= −(1+.125+.06 390 53125+.000488281) × 2825+.00
9

625+.0019

rec seven

Exponent Bits (8 bits) Fraction Bits (23 Bits)

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-9

The Twos Complement Method of Representing Signed Integers

2 1 0 n

Example 2 – Negative 8-bit Signed Integers (byte Data Type in Java
The representation rs is a l an merely
simplify the logic required ditio m called is used. The
example given be nvert the negative integer −69 into “twos complement binary form.”

h bit of the binary number obtained in step 1 → 10111010
3. Add 00000001 10111011

Sign Bit
1 0 1 1 1 0 1 1

sents −69.
er is negative

Why use the nt Signed Integers?
From a human perspective, the twos complement system is rather awkward. When first introduced to this system, a

imply change the sign bit from 0 to 1 and be done

00 and 10000000
f having two codes to represent zero, the

twos complement system uses the code 10000000 is used to represent −128.

2. Using the twos complement me d ge dditions. This allows engineers
to simplify CPU design because only adder circuits are required to add and subtract integers.

8-bit Signed Binary Integer Decimal Value

Example 1 – Positive 8-bit Signed Integers (byte Data Type in Java)
6 5 4 3Sign Bit 2 2 2 2 2 2 2

0 1 0 1 1 0 1 1
This bit pattern represents +91. (The “0” in the sign bit colum
indicates that the integer is positive.)

)
 of negative intege ittle more complicated th

n and subtraction, a syste
 changing the sign bit to a “1.” To

 the “twos complement”for binary ad
low shows how to co

1. Convert +69 to 8-bit binary form → 01000101
2. Invert eac

→

This bit pattern repre
indicates that the integ

 (The “1” in the sign bit column
.)

Twos Complement Method to Represe

natural question arises in the minds of most students. Why can’t we s
with it? Why is it necessary to invert the bits and add 1? There are two very good answers to these questions.

1. Simply changing the sign bit from 0 to 1 would give two different representations of zero, 000000
because +0 = −0 = 0. This would be both confusing and wasteful. Instead o

tho allows all inte r subtractions to be converted to a

10000000 −128
10000001 −127

.

.

.
.
.

.

11111111 −1
00000000 0
00000001 1

.

.

.

.

.

.
01111111 127

Exercises
1. Using the specified number of bits, write the binary representation of each of the following integers.

(a) −32700 (16-bit signed integer, short in Java, “Word” in Microsoft lingo)
(b) −1470987 (32-bit signed integer, int in Java, “Dword” in Microsoft lingo)
(c) 65535 (16-bit unsigned integer, char in Java)

2. Interpret the bit pattern 11111111100000000000011000000001 as
nicode characters (i.e. two Java char values or two 16-bit unsigned integers)

-1 0 1 2

127 -128

(a) two 16-bit U
(b) a 32-bit signed integer (i.e. an int value in Java)
(c) a 32-bit unsigned integer (no equivalent type in Java)
(d) an IEEE754 32-bit floating point value (a float value in Java)

.

-127

64

.
.

.
.

.

126

. .
. The twos complement

system (8-bit signed) can
be visualized as a circular
number line. When the
highest value of 127 is

1 causes

around the circle.

.
. .

-64
reached, adding
a “wrap-around” back to
the lowest value of -128.

Thus, adding causes a
clockwise movement

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-10

The Importance of Hexadecimal Numbers
Although at the level of a computer’s circuitry all information is represe
professionals like engineers and software developers very

nted using binary numbers, computer

far too long to be read and interpreted by hum ns. e
ber an rep er of characters. In

4 vert from binary to hexadecimal and vice

 rarely read information in this form. Binary codes are generally
 hexadecimal number system, on the other hand, is far easier for
resented using a relatively small numb

a Th
s c be humans to understand because large num

addition, since 16 is a power of 2 (2 = 16), it is very easy for a computer to con
versa.

The table shown below helps you to gain some insight into the usefulness of hexadecimal numbers. It compares the
binary and hexadecimal representations of a few integers ranging from 0 to 255.

Decimal 0 10 20 30 40 50 100 200 255
Binary 0 1010 10100 11110 101000 110010 1100100 11001000 11111111
Hexadecimal 0 A 14 1E 28 32 64 C8 FF

A se , the exad ima esentation is the sh

Because of this, ma co uter an s, s h a em es, are often specified using
hexadecimal notation. For example, if a computer has 512 MB of RAM installed, the memory locations are numbered as

s you can e h ec l repr ortest.

ory location addresses and colour codny mp qu titie uc s m

shown in the following table.

1 KB 1 MB 512 MB Memory Location Address
Decimal Form 0 1024 10242 = 148576 … 2512(1024) = 512(1048576) =536870912 283547695

Hexadecimal Form 0 400 100000 10E6982F 20000000

nclusion Co
Although digital circuits are based on the binary number system, binary numbers are generally too long to be understood
and manipulated easily by humans. The hexadecimal number system, on the other hand, is far more “human-friendly”
be er, since 16 is a power of cause large numbers can be represented using a relatively small number of characters. Moreov
2 (24 on ry to hexadecimal and vice versa. This makes the hexadecimal number = 16), it is very easy to c vert from bina
system idea ssing computer issues such as memory addresses, error codes, colour codes s. l for discu and character set code
The decima base 10) is not is not a simple power of two. As l system (at all suitable because ten a result, conversions
between base 2 and base 10 are more mplicated and require greater amounts of processing timco e.

Converting Base to Anothe

Binary to O Binary to Hexadecimal O Hex

1. Starting at th ost end of the
binary number, form groups of 3
bits.

of 3 bits to octal

from one r

ctal adecimal ctal to

e rightm

2. Convert each group
form.

Example 1
1 0 1 1 1 1 0 1

2 7 5

1. Starting at the rightmost end of the
binary number, form groups of 4
bits.

2. Convert each group of 4
hexadecimal form.

1. Convert from

2. Convert from binary to
hexadecimal.

2 1 7

 octal to binary.

bits to

Example 3 Example 2
1 0 1 1 1 1 0 1

B D 1 0 0 0 1 1 1 1

Now convert 10001111 to hex using
xample 2.

Oct
Use inary. To convert from hex to binary, arrange the bits in
grou eros whenever they are needed!

the method of e

al or Hexadecimal to Binary
 the method shown in example 3 to convert from octal to b
ps of four instead of three. Do not forget to include any leading z

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-11

Decimal to Binary
As you will soon see, this conversion requires a great deal more processing than the ones shown on the previou
Example
Convert 123

s page.

32 8
1 1

(10) to binary form. Assume that the given value is stored as a Java byte value (8-bit signed integer).

Method 1 (Subtraction) Method 2 (Division by 2)

Begin at the left end of the binary number and proceed to
the rightmost bit.

S 64 16
1

 4
 0

2

1
1 0 1 1

 123-64
=59

59–32
=27

27-16
=11

11-8
=3

3-0
=3

3-2
=1

1-1
=0 7

S 64 32 16 8 4 2 1

binary number ends in 1 (i.e. it’s odd)
61 ÷ 2 0 R 1 ∴ number e n 1 (i.e. it’s odd)

0 ÷ 0 umb (i.e.
15 ÷ 2 R 1 ∴bi number en 1 (i.e. it’s odd)

 ÷ 2 = 3 R 1 ∴binary number ends in 1 (i.e. it’s odd)

 Revisited
A o n al s for a nd subtrac ng since school, few of us understand
why th produce rre er g h he
you were taught in elementary y work!
Deci

 1 1000 100 10 1
 0 9 9 10

7 ones + 6 ones = 13 ones

0 1 1 1 1 0 1 1

123 ÷ 2 = 61 R 1 ∴
nds i = 3 binary

3 2 = 15 R ∴binary n er ends in 0 it’s even)
 = 7 nary ds in

3 ÷ 2 = 1 R 1 ∴binary number ends in 1 (i.e. it’s odd)
1 ÷ 2 = 0 R 1 ∴binary number ends in 1 (i.e. it’s odd)

Elementary School Arithmetic
lthough most of us have kn w gorithm dding a ti elementary

ese algorithms co ct answ s. The followin examples s ould lp you understand why the steps that
 school actuall

mal Examples
1000 100 10

1 1 1
 9 8 7 1 0 0 0
+ 8 9 6 − 6 4 3
1 8 8 3

= 1 ten + 3 ones
1 ten + 8 tens + 9 tens = 18 tens

= 1 hundred + 8 tens
1 hund. + 9 hund. + 8 hund. = 18 hund.

= 1 thousand + 8 hund.
3 5 7

1 thousand is borrowed from the thousands
column

1 thousand = 9 hundreds + 10 tens + 10 ones

Binary Examples
8 4 2 1 8 4 2 1
1 1 1 0 1 1 10

 1 1 1 1 0 0 0

1 one + 1 one = 2

+ 1 0 1
1 1 0 0

= 1 fo
1 four +1 four + 1 fo

− 1 1 1
1 two + 1 two + 1 two = 3 twos

ur + 1 two
ur = 3(10) fours

= 1 eigh
 1

 the “eights”
column

1 eight = 1 four + 1 two + 10 ones

(10) ones
= 1 two + 0 ones 1 “eight” is borrowed from

t + 1 four
(2)

Octal Examples
512 64 8 1 512 64 8 1

13
3

4 7 4 7 7
3

4 ones + 7 ones = 13 on
i

3 “8s” + 6 “8s” + 4 “8s”
= 1 “6

1 “64” +7 “64s” + 7 “ 4s”
1 “51 4

5 3 5 4

1 “8” is borrowed from the “8s” column
3

1 “5 from the “512s”
c
1 ” + 4 “8s” =7 “64s” + 14(8) “8s”

1 1 1
 7 6 4
+ 7

(8)
= 1 e 5 7 14

6 0 5
−

1 7 3

es
ght +3 ones

= 13(8) eights
4” + 3 “8s”

64s” = 17(8) “6
= 2” + 7 “6 s”

 “ones” + 1 “eight” =13(8) ones

12” is borrowed
olumn
“512

Hexadecimal Examples
4096 256 16 1 4096 256 16

1 1 1 E F 1D
F 0 E 0

E ones + 9 ones = 17(16) ones
= 1 “16” +7 ones

s” + F “16s” = 1C(16) “16s”

 the “16s”

0 “ones” + 1 “16” =10 ones

6s”

1 “4096” =F “256s” + 10(16) “16s”

1
10

1 “16” is borrowed from
column

 A C E 1 “16” + C “16
+ 7 F 9 − 4 F 7
1 2 C 7

= 1 “256” + C “16s”
1 “256” +A “256s” + 7 “256s” = 12(16) “256s”

= 1 “4096” + 2 “256s”
E B E 9

(16)

1 “4096” is borrowed from the “409
column

Recall that this means “2 ” in binary. (10)

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-12

Exercises and Problems

321(8)

1. Evaluate without using a calculator. Show all carrying or borrowing!

11001111111 A3FAE 765411001100111(2) (2) (16)
+ 10111100011 + 10111101111 + 9FFBC + 6775322(2) (2) (16) (8)

6) 00 00 (2) 11001111111(2)
00111(2) A3FAE(16)

11011101111 FFFBC 11 11 111(2) (1
110111 – 10111100011 – 10111101111(2) (2)

+ 11001111111(2) + 9FFBC(16)

 A3FAE(16)
 – 9FFBC

7654321(8)

– 6775322(16) (8)

10000000000(2)
 – 1

2. Explain why a “1” is borrowed from the “1024” (210) place. In addition, explain how this “1” is redistributed to the
other places.

 (2)

3. o th o n umbers that ar xp se -decimal form, try the following
u pl tio u

10011(2) 3AE(16) 765(8)

 N w at y u k ow how to add and subtract using n e e res d in non
m lti ica n q estions.

× 10111 × C9F(2) (16) × 677(8)

4. Co puters do not he manner described above (i.e. using borrow
voids in o ig r

ad ion Th o e subt cti a − :

 pr − n
ii. Perform a + (−b)
Perform the following subtraction using the method described above. Use the rowing” to verify that

ame answer. Assume that the integers are stored in 8-bit signed form (e.g. byte in Java).

111010
100101

 perform binary subtraction in tm ing). Instead, the
cuitry for subtraction as well as adder circuits are used to “add the negative.” This a hav g t des n ci

 bdit . e f llowing steps are used to perform th ra on

b ii. Ex ess the “twos complement” binary form.

method of “bor
both methods produce the s

01(2)
 – 00

Recall tha
the leftmost

t

(2)bit is the
“sign” bit.

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-13

5. Convert each of the following to decimal form. (Assume that no sign bits are used.)

(c) FACE(16)

6. Convert each of the following to binary form

(a) 74675(8) (b) 452(10)

7. ng to octal form

(a) 11011010011 (b) FACE(16) (c) 34512(10)

8.
 (b) 74675(8) (c) 74675(10)

(a) 110110100111(2) (b) 74675(8)

 FACE(16) (c) 32

Convert each of the followi

1(2)

Convert each of the following to hexadecimal form

(a) 110110100111(2)

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-14

ASSIGNMENT: EXPLORING PRIMITIVE DATA TYPES IN JAVA

You have already encountered various primitive Java data types (e.g. int, short, float, char)1. In this assignment, you will have a
further opportunity to obtain and demonstrate a better grasp of their various representations and interpretations. Note: There will be
up to 10 communication marks awarded for the clarity of your answers.

1. Complete the following chart. (9 KU)

Data Type Description Size/Format Range

KU APP COM

/19 /21 /10

byte Byte-length signed integer 8-bit twos complement −128 … 127

long

double

boolean

Once you have completed the chart, you should understand both what these types are and their structure.

2. Choose 2 different negative integers which can be converted into (signed) 8-bit twos complement form. Convert them.
Show your work. Do it cleanly and concisely! (6 APP)

N t g r: −89
Positive Binary 01011001 n of +89)
Bit Inversion: 10100110
Addition of 1: 10100111
1)

2

Examples
ega ive Decimal Inte e

 Representation: (representatio

)

1 See http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html for additional reference.

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-15

3. a) Does t

b w 64 bits of ta can be interpret point number. Note his question you
will need to do some research on the 64-bit version of IEEE 754. (9 KU)

c) Can a double type (64 bits) represent values greater than 264? Why or why not? (5 APP)

he double data type use the twos complement method to represent negative numbers? (1 KU)

) Explain ho raw binary da ed as a floating that for t

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-16

d) Choose a floating-point value greater than or equal to 3.5E38 (3.5×1038) and show how it would be represented in
IEEE 754 64-bit format. (10 APP)

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-17

BASIC CLASS STRUCTURE
//Beginning of class declaration
public|private|protected [abstract] [final] [static] class ClassName
 [extends SuperClassName | implements InterfaceName]
{

//DATA FIELDS should be declared first. As with all members of a class, the data
//fields should be public, private or protected. Public data fields are visible
//everywhere their corresponding classes are visible. A protected data field is
//only visible within its class, within its subclasses or within the class package.
//Note that the subclasses may reside within different packages. Using the private
//modifier in the declaration of a data field hides it in such a way that it cannot
//be directly referenced outside of the class in which it is declared.

| type initialValue

public|private|protected [final Class dataFieldName [=new callToConstructor(…)];//object

//CONSTRUCTOR METHODS, which are used to initialize objects, should be declared
//next. Note that constructor methods ARE NOT considered members of a class.
//Therefore, even if a class is derived from (i.e. is a subclass of) an existing
//class, it must have its own set of constructor methods. Note that the name of
//each constructor method MUST MATCH the name of the class. Note also that
//constructors may be overloaded.
public ClassName(parameterList)
{
 //Constructor code goes here.
}

//Finally, all other methods should be declared using the format described below.
//Note that the instance methods of a given class may override instance methods
//with the same signature in any of its superclasses. In addition, static (class)
//methods of a given class may hide static methods with the same signature in any
//of its superclasses. Like constructors, methods may be overloaded.

public|private|protected] [static] returnType

throws Exception1, Exception2, …]

}

}//End of class declaration

public|private protected [final] [static] dataFieldName [=]; //variable

] [static]

[abstract] [native] [synchronized] [final
methodName(parameterList) [

{

Exactly one of these
modifiers must be

used. (The “|” symbol
means “or.”)

These modifiers are optional. If “final” is
used, then “static” should also be used
because it is wasteful to create instances of

constants! (The “[]” mean “optional.”)

Data type of
variable.

(e.g. int,
float, …)

Name of
variable.

Initial Value
of variable.
(Optional)

Call to
Constructor

Method

Name of
object.

Class Name
(e.g. String,
Array …)

Exactly one of these
modifiers must be

used. (The “|” symbol
means “or.”)

A “throws” clause is also optional. It is
used to list any exceptions that a method
can throw that are not derived from the
classes “Error” or “RuntimeException.”

The method can contain a “try …
catch” block for detecting and possibly

handling any caught exceptions.

These modifiers are optional. The keywords
“final” and “static” have the same meaning

as with data fields. The other keywords are
usually used only in advanced applications. Note
that not all combinations of these keywords are
allowed. See chapter 8 of the “Java Language

Specification” for more information.

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-18

UNDERSTANDING C N INTUITIVE LEVEL

Class
⇒

The “A
We sha
on certa

Data Fields Constructor Methods Other (Public) Methods
private String colour
Stores the colour of the automobile
as a string.

private
Stores
car is moving (in degrees, from 0
to 360).

private String engine
Stores the type of engine as a
string.

private
Stores
as a fl

private
Stores
Litres)

private
Stores
the transmission (1, 2, 3, 4, etc.
for for
and 0 f

private
Stores
as a st

private
Stores the model name of the
automobile as a string.

private float power
Stores the maximum power (in kW).

private float torque
Stores the maximum torque (in Nm).

private float speed
Stores the speed of the car (in
km/h).

rite a st three more data fields

Automobile()
Sets the initial values
of the data fields to
default values. Numeric

"".

Write at least three more
constructors for the
Automobile class.

void accelerate(float, float)
Gradually changes the speed of the
car from the current value to value
specified by the first float

float

String getColour()
Returns the value of the "colour"
data field.

float getDirection()

"

Returns the value of the
"engineSize" data field.

float getFuelCapacity()
Returns the value of the
"fuelCapacity" data field.

data

data

a

Write at least three more public
methods for the Automobile class.

LASSES AND OBJECTS AT A

Why use Classes?
• A class can be used as a template for modelling and creating objects. (e.g. “Form” class)

⇒ We DO create instances of such classes by using the “new” keyword and calling a constructor.
es can also be used as a convenient structure for storing related methods and data fields (e.g. “Math” class) •
We DO NOT create instances of such classes.

utomobile” Class
ll design a class that models a real-world automobile. For the sake of simplicity and brevity, we shall focus only
in key characteristics of car objects.

omobile Aut

 float direction
the direction in which the

fields are set to 0 and
String fields are set to

argument. The second argument
specifies the rate of acceleration
that should be used.

 float engineSize
String getEngine()

Returns the value of the "direction"
data field.

the engine size (in Litres)
oat value. Returns the value of the "engine

 float fuelCapacity float getEngineSize()

data field.

the fuel capacity (in
 as a float value.

 byte gear
 gear that is engaged in the

ward gears, -1 for reverse
or neutral).

byte getGear()
"

 String make
field.
Returns the value of the "gear

the make of the automobile String getMake()
ue of the "make" ring. Returns the val

field.

 String model String getModel()
Sets the value of the "model" dat
field.

W
fo

t lea
r the Automobile class.

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-19

CLASS HIERARCHIES AND INHERITANCE
Example of Class Inheritance

The “extends” Keyword
enever you would like to create a class that is based on an existing class. Whenever

rm in J++, you are actually defining a new class based on the “Form” c

e.g. public class FormTest extends Fo

s” keyword, the “FormTest” class inherits all the public and
s that it is easy to build new classes that are bui

classes, thereby eliminating the problem of “reinventing the wheel.”

l classes. Some classes, such as the String class, are defined as “final,” which
 be used as the basis for a new class.

the difference between a c and a protected member of a class?

The “extends” keyword is used wh
you create a fo lass.

rm

By using the “extend protected members of the
lt upon the foundation of existing “Form” class. The advantage of this i

Note that it is not possible to extend al
means that they cannot

Question
What is publi

Object

Throwable

The Java class “Object” is the
y.
”

as a superclass. This means that
every Java class inherits the

Every Java class is said to be
derived from the “Object” class.

The Java class “Throwable” is a root of the Java class hierarch
All other classes have “Objectsubclass of the “Object” class.

This means that it inherits the
 public and protected

members of the “Object” class. public and protected
members of the “Object” class.

Exception

RuntimeException

ArithmeticException

The “Throwable” class is said to
be derived from the “Object”

class.

The Java class
“RuntimeException” is a

subclas tion”
it inherits

f the “Exception”
ption”

The Java class “Exception” is a
subclass of the “Throwable” s of the “Excep

class. This means that it inherits class. This means that
the public and protected
members of the “Throwable”

class. The “Exception” class is
said to be derived from the

“Throwable” class.

the public and protected
members o

class. The “RuntimeExce
class is said to be derived from

the “Exception” class.

The Java class “Arithmetic e “RuntimeEx
erits the pub embers of the “Ru

The “ArithmeticException ed from the “Runt

Exception” is a subclass of th
lic and protected m
” class is said to be deriv

ception” class. This
means that it inh ntimeException” class.

imeException” class.

Note
Constructor methods
not considered mem

 are
bers of

they are
lasses.

ve its
tructor methods.

The class “ArithmeticException” is
found within the “java.lang” package.
The J++ object browser can be used to

show the hierarchical relationships of the
“ArithmeticException” class.

a class. Therefore,
not inherited by subc
Each subclass must ha
own cons

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-20

USI T 1
viewed in Time Converter 1.1

Studying the “Time Converter 1.1” program is a great way to review many of the concepts introduced in unit 1. You will
find all the necessary files for “Time Converter 1.1” in the folder I:\Out\Nolfi\Ics4mo\Time Converter 1.1 (or you can
download all programming examples). In order for this program to work correctly, you must copy the “Time Converter
1.1” folder to your g: drives. Do not try to run the program directly from the “I” drive!

The “Time Converter 1.1” program is designed to introdu iew the following concepts:

1. Declaring a variable (e.g. long secondsElapsed;)
2. Declaring and initializing a variable in the sam e.g. long secondsElapsed=0;)
3. Declaring objects (e.g. String secondsText;). Note that in this statement, “String” is the name of the class and

“secondsText” is the name of the object. In this example, an instance of the class (i.e. the object) has not yet been created. All that has
occurred is that the name “secondsText” has been associat -be-created object.

4. Declaring an object and instantiating (creating an instance of) a class in the same statement
 (e.g. String secondsText=new String();)

5. Importing packages and classes.
6. The “extends” keyword (used to create a new subclass that inherits the fields and methods of its superclass)
7. Cast operator (This is used to coerce (force) type conversions. e.g. char keyPress=(char)0;)
8. Using the ternary conditional operator “?:”
9. Exception handling using a try…catch…finally structure
10. Java operators and primitive data types
11. Event handling (including the routing of events for a group of objects to same even
12. Classes
13. Using the Java String class
14. Defining methods
15. Creating menus in J++
16. Creating keyboard shortcuts for menus in J++

ntrols in J++

20. Using “Rich Edit” control
21. Using the Java “Date”

ce methods (non-static methods)

n

30. Overriding (Single Polymorphism)
31. Overloading and Hiding

NG TIME CONVERTER 1.1 TO REVIEW UNI

Concepts Introduced and/or Re

ce or rev

e statement (

ed with a yet-to

Name of Class
Name of Object

(i.e. name of new
instance of class)

Java Keyword

t handler)

17. Using “Timer” co
18. Creating J++ programs that use more than one form (owner forms and owned forms)
19. Using “ColorDialog” controls in J++

s in J++
class (java.util.Date)

22. Using arrays whose elements are objects (e.g. Color[] colorAttribute = new Color[3];)
23. Class fields (also called static fields) versus instance fields (non-static fields)
24. Class methods (also called static methods) versus instan
25. Modifiers (e.g. public, protected, private, static, final)
26. The return keyword
27. Encapsulatio
28. Information Hiding
29. Inheritance

(indicates the creation of a
new instance of the class)

Call to one of the Eleven Constructor
Methods of the String Class

(A constructor is used to initialize an
object)

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-21

PUTTING BLASTER

2.

3.

4. Given a Unicode character code expressed in hexadecimal form, display the character.

5.
h

6. the equivalent IEEE754 value. (See

ALL THIS KNOWLEDGE INTO PRACTICE – BINARY

Description of the “Binary Blaster” Project

Working as a team, our class shall develop software that can perform the following functions:

1. Convert integers expressed in binary/octal/decimal/hexadecimal form to binary/octal/decimal/hexadecimal form.
Negative integers should be expressed in twos complement form.

Add and subtract integers expressed in binary/octal/decimal/hexadecimal form.

Given a colour code expressed in hexadecimal form, display the colour (24-bit colour).

Given a Unicode character entered using the keyboard or pasted from another program, display its Unicode code in
bot hexadecimal and decimal forms.

Given 32 or 64 bits of raw binary data, display
http://en.wikipedia.org/wiki/IEEE_754, page 9 and I:\4Students\OUT\Nolfi\Ics4m0\ieee754 for more information.)

7. a encryption described below to send and receive encrypted messages. Your program
e as well as decode an encrypted text message.

8. error correction) described below to check messages for random
” is changed spontaneously to a “1” or a “1” is changed spontaneously to a

 be caused by cosmic radiation, lightning and many

9. oding) to reduce the amount of
s containing plain text (text stored in Unicode format).

Eac d this software. A project manager will collect the individual parts and
asse

Use the simple method of dat
should be able to encode an unencrypted text messag

Use the simple method of data recovery (i.e.
spontaneous bit inversion errors (i.e. a “0
“0.”). Random spontaneous bit inversion errors are known to
other sources of interference (“noise”).

Use the simple method of data compression described below (called run-length enc
storage space required for file

h stu ent will develop a specific portion of
am. mble them into a working progr

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-22

Note
n page 24 is much simpler and much less effective than the methods used in

tion is used. Examples of
.

i

1. The method of data encryption described o

practice. For example, for secure Web connections (i.e. “https”), 128-bit (or greater) encryp
such encryption algorithms include TwoFish, BlowFish, Serpent, RC6, MARS and Rijndael

Such methods are either asymmetric or symmetric. Asymmetric methods use a “public-key/private-key” pair, as
llustrated in the following diagrams.

Symmetric methods use a shared private key as illustrated in the following diagrams.

2. The method of data recovery described on page 25 is also much simpler and much less effective than those used in
ractice. The most commonly used methods are called checksum algorithms. Examples of these inclp ude CRC-8,

CRC-ARC, CRC-16 and CRC-32 (“CRC” stands for cyclic redundancy check). Cryptographic hash functions are
related to checksums but include additional security features.

3. Not at all surprisingly, the method of data compression described on page 26 is very crude and ineffective compared to

a
m

the methods used in practice. The most commonly used lossless methods of compression are variants of the LZ
lgorithm. MPEG (which includes both JPEG and MP3) is a lossy method of compression that is used to compress
ovie files.

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-23

Simple Method of Data Encryption
it binary code, it is possible to encode all the letters of the alphabet and a few punctuation symbols as shown below.

G 00110
H 00111

N 01101
O 01110
P 01111

V 10101
W 10110
X 10111

1010

, 11101
" 11110

space 11111

Using this system, the first three words of the message “DO YOUR WORK OR I’LL WRAP THIS KEYBOARD
AROUND YOUR NECK!” would be encoded as follows:

D O Y O U R W O R K
00011 01110 11111 11000 01110 10100 10001 11111 10110 01110 10001 01010

Exercise
Using the table of codes given above, complete the binary representation of the message given above.

Th y”
Anyone who has knowledge of this encoding scheme, however, can intercept messages and read them. Even without
knowledge of the scheme, it is possible to write computer programs that scan raw binary data and look for patterns that
can help to match the data to known words.

To ensure the privacy of the information, therefore, it is necessary to encrypt the message. Although it is extremely
difficult to design an encryption method that is “uncrackable,” encrypting data greatly reduces the probability that
sensitive information will be read by unauthorized parties.

For the purposes of this assignment, we shall use a simple method of encryption that is easy to implement. (It is,
ho ak method of encryption, meaning that it is relatively easy to crack.) In this method, addit and
subtraction are defined as follows:

0+0=0
0+1=1
1+0=1

0-0=0
0-1=1
1-0=1

Notice that addition and subtraction are
identical! Also note that there is no carrying
or borrowing, as there is in true binary

Using a 5-b

A 00000
B 00001
C 00010
D 00011
E 00100
F 00101

I 01000
J 01001
K 01010
L 01011
M 01100

Q 10000
R 10001
S 10010
T 10011
U 10100

Y 11000
Z 11001
! 1
? 11011
. 11100

e Encryption Scheme Requires a Special form of Binary Addition and a “Private Ke

wever, a we ion

1+1=0 1-1=0 addition and subtraction.

In key
is
sp rivate key 10101 is used to encrypt the message
“DO YOUR WORK.”

 addition to the operations defined above, this encryption method requires a 5-bit code known as a private key. The
known to the sender and the recipient but not to anyone else. To encrypt a message, the key is used, along with the
ecial operations defined above. In the following example, the p

D O Y O U R W O R K Original Message in Text Form

Original Message in Binary Form 00011 01110 11111 11000 01110 10100 10001 11111 10001 01110 10001 01010

“Add” Private Key +10101 +10101 +10101 +10101 +10101 +10101 +10101 +10101 +10101 +10101 +10101 +10101

Encrypted Message in Binary Form 10110 11011 01010 01101 11011 00001 00100 01010 00100 11011 00100 11111
Encrypted Message in Text Form W ? K N ? B E K E ? E (Message sent to recipient)

To decrypt the message, simply reverse the above steps.

W ? K N ? B E K E ? E En n Text Form crypted Message i

Encrypted Message in Binary Form 10110 11011 01010 01101 11011 00001 00100 01010 00100 11011 00100 11111

“Subtract” Private Key −10101 −10101 −10101 −10101 −10101 −10101 −10101 −10101 −10101 −10101 −10101 −10101

Decrypted Message in Binary Form 00011 01110 11111 11000 01110 10100 10001 11111 10001 01110 10001 01010

D O Y O U R W O R K Decrypted Message in Text Form

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-24

Simple Data Recovery Method
When digital signals are in transit between a point of transmission and a point of reception, they are subject to
spontaneous bit inversion errors. This me ” can be spon hanged to a “ can be
spontaneously cha .” If the digi e transmitted waves (i.e. w transfers), then
they are especially to such “inte ources of int at are know t taneous bit
inversion errors include cosmic radiation (r comes from ning, power trong
electromagnetic fie

Fortunately, computer scientists have devel hms that allow spontaneous bit inversion errors to be detected and
even corrected. A such method ally by NAS correc It cannot correct

above,

Description a One it Corr ction M
This meth s c a o e o h ple below shows how to app dot

 two 7-dimensional binary vectors (using the special form of addition defined above).

 Vector

ans that a “1 taneously c 0” and a “0”
nged to a “1 tal signals ar using radio ireless data
 susceptible rference.” S erference th o cause spon

adiation that space), light surges and s
lds.

oped algorit
 very simple , used origin A, is able to t one-bit errors. (

errors of two or more bits.) It is based on the same type of addition used in the simple encryption method describe
as well as the vector operations vector addition and dot product of two vectors.

 of -B e ethod
 dot pr duct. Tod relie on a ve tor oper tion kn wn as th e exam ly the

product to

(1001101) (0010111)i
1(0) 0(0) 0(1) 1(0) 1(1) 0(1) 1(1)= + + + + + +
0 0 0 0 1 0 1= + + + + + +
0=

Number
of Bits in

Code

Error
Correcting

Matrix

Fifteen Possible
Data Vectors Error Correcting Property Interpretation of Received Data

7 0101011
0010111

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 0100101
0101011
0110010

1100110
1101000

row of the error correcting
matrix must be zero. When

received vector is considered c
If not, the error can be correcte

1001101⎛ ⎞

0001110
0010111
0011001

1001101
1010100
1011010

Each of the fifteen data
vectors has the property that
its dot pr

The received data vector is “dotted
with each row of the error correc

0111
1

1110001
1111

oduct with each

a data vector is received, it is
“dotted” with each row of the

”
ting

matrix. If each dot product is zero, the
orrect.
d (if

only one bit is incorrect) by using the
ns of the error correcting matrix

ple below). error correcting matrix.
colum
(see exam

111 100
000011

Suppose that the vector (101 tra fr e signal travels toward the Earth,
it passes through a stream of ne tic which causes a spontaneous bit inversion

1010) is
 highly e

nsmitted
rgetic par

om a spacecraft orbiting Mars. As th
les from the solar wind,

error. The vector received at an Earth monitoring station is (1010010). By “dotting” this received vector with each row
of the error correcting matrix, we obtain

(1001101) (1010010) 1=i
(0101011) (1010010) 1=i
(0010111) (1010010) 0=i

Since we have at least one dot pr at an error has taken place.

0

⎞
⎟
⎟

⎜ ⎟
 matches the four olum f the ror co cting trix. eref , we k w tha e fou h

oduct that is not zero, we know th Where is the error? Notice

that the column vector 1⎜⎜

1⎛
th c n o er rre ma Th ore no t th rt

⎝ ⎠
bit of the received vector must be wrong.

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-25

Simple Method of Data Compression – Run-Length Encoding (RLE)
a

ethod

ple scheme is not of much practical value because it does not allow for the encoding of numbers.

cters is encoded by using two characters. The first character is the length of
ed

aracters is encoded
separately.

2. Any sequence of characters that does not contain consecutive repetitions of any characters is represented by a “1”
character followed by the sequence of characters and terminated with another “1.” If a “1” appears as part of the
sequence, it is preceded with a “1.” In this case, the rst “1” acts as an escape character (in the same way that the “\”
is used as an escape character in C, C++ and Java).

 me g ddddddddcbbbbabc234444def,,,,51

d7d1c14b1abc231541def14,15

STOP! Do NOT Write An t! b a

Run-Length Encoding is a very simple method of lossless data compression. It forms the basis of the GIF dat
compression algorithm and is also used in the final stages of more sophisticated algorithms such as JPEG. This m
of compression involves searching for runs of consecutive data and storing the number of repetitions of the data. For
example, the string “aaaaaaa” could be stored as “7a” since there are 7 repetitions of the character “a.” Similarly, the
string “abcddddddcbbbbabcdef” could be stored as “abc6dc4babcdef.”

Obviously, this very sim
Since the digits from 2 to 9 are used to represent the length of a run of consecutive characters, it is not possible to
distinguish between a number that is used for this purpose and one that is actually part of the data. To overcome this
obstacle, we can use a slightly modified version of the scheme described above.

Rules for Simple Version of RLE for this Project
1. Any sequence of two to nine identical chara

the sequence, represented by one of the characters “2” through “9.” The second character is the value of the repeat
character. If a sequence consists of more than nine identical characters, each group of nine ch

fi

Using this thod, the strin “abc11111dddddddd

1abc1519

0234” would be stored as follows

1102341

y Code Ye This is a ig Project and Requires a Gre t Deal of Planning!!

By this stage in your programming education, it should be deeply engrained in your grey matter that you should not write
any code for a project of this scope until you first complete several extremely important preliminary steps. The
following is a list of strongly recommended steps that you should follow before you attempt to write even a single line of

1. First you must ensure that you understand fully all the problems that need to be solved. In addition, it is essential that

understanding, reread pages 3 – 13 and answer all questions. In addition, answer the supplementary questions given
below.

 What is lossy data compression? Give examples of each.
(b) List all the escape sequences used in C, C++ and Java. (For example, the new line character is represented as

'\n' and '\0' represents the string terminating character.)
(c) What is the maximum compression ratio achievable with the simple method of RLE described above? What is

the minimum compression ratio achievable?

code!

you understand and are able to apply what we have learned about binary numbers. To ensure that you have a good

(a) What is lossless data compression?

These “1’s” are used to mark the beginning
and end of a sequence that d

secutive repetitions o
oes
f ch

 not contain
con aracters.

Numbe
to

rs from 2 to 9 (shown in blue) are
 store the length of sequences of

identical characters.
used

In this case, the “1” is used as an escape
character, not as a delimiter. It indicates

that the “1” that follows it is part of the data.

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-26

2. Once step one is completed, you should begin planning the user interface for your program. Do not begin creating
d that

 and of course, yours truly, Mr. Nolfi. These

d
 the course.

 series of smaller and simpler sub-problems. A “block diagram” is

6.

hat

8. etails to follow)

focus on one method at a time. Before Once you are confident
that the method is error free, you ethod.

10. While you write your code, remember to adhere to all the positive programming practices that we have been
discussing since grade ten.

□ Indent all code properly.
□ Use descriptive, meaningful names and follow all naming conventions.

y a comment

□ Document all abstruse (difficult-to-understand) lines of code.
□ Do not document any self-explanatory lines of code.
□ Insert blank lines in strategic places to prevent the code from having a sloppy and cluttered appearance.
□ Include exception handling to ensure that your program will behave gracefully even when the user doesn’t.

11. Test your software rigor sly. Ensure th t performs w nder a variety f different conditions. Do not orget to

the user interface until you have a good design laid out on paper. While planning your interface, keep in min
the program will have a large number of features that are in some way related to binary numbers but not necessarily
closely related to one another. Give a great deal of thought to how you will integrate all these features into one
piece of software in a coherent and unified manner.

3. Show your design for your user interface to your classmates, friends
people should provide you with objective feedback about your interface.

4. Once you are satisfied with your interface design, use the Visual J++ form editor (and any other tools that you
require) to create your interface. During this process, ensure that all objects are named in a descriptive manner an
that all object names adhere to the conventions that we have used throughout

5. Break up the large problems to be solved into a
very useful for this step.

 Begin writing pseudo-code for the algorithms that you will be using to solve all the sub-problems. During this
process, always remember to give thought to possible ways of improving the algorithms that you have chosen.

7. Design the class structure of your program. Each student will be given a copy of the SuperStringMethods class
to assist in the processing of strings. What other classes will you need to design? What will be their structure? W
methods and/or data fields will they contain?

Design the file structure of your program. (More d

9. Once steps one to eight have been completed to the best of your ability, you may begin to write code. You should
you add a method to a class, test it fully in isolation.

 may add it to the class and move on to the next m

□ Document (comment) all methods clearly and accurately. Each method should be introduced b
that explains the purpose of the method and the meaning/purpose of each parameter.

ou at i ell u o f
test the boundary/extreme cases! It is essential that you allow other people, especially non-programmers, to test your
software!

12. If you have completed steps 1 – 11 in a highly proficient manner, you deserve a break! Have a coffee, eat a doughnut
and watch “The Simpsons.” While watching “The Simpsons,” continuously repeat the phrase “I never want to
become like Homer” until the episode is over! You may also need some well-deserved sleep!

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-27

Binary Blaster Master Plan
 heart of Binary Blaster will be a class called “NumericString.” Since our software will input numbers in string form
ill be necessary to design a variety of methods that can manipulate numbers that are stored as strings.

The ,
it w
/**
 * The following is a template for the "NumericString" class. All required data fields and

n.

 *

{

 * are bundled with the methods that operate on the data. This allows for the construction

 ;

he variable data fields are declared

 16 for integers

s

 /
 t
 t
 t
 t

 t
 this.base=base;

public

 this.size=n.size;
 }

 //INSTANCE METHODS
 public byte byteValue()
 {
 //Return the "byte" value of this NumericString object

 }

 public char charValue()
 {
 //Return the "char" value of this NumericString object

 }

 * constructors are given. However, only the signatures of most of the remaining methods are give
 * You will write the code to implement the static methods and instance methods for which code is

not given.
 */
public class NumericString

/**
 * CONSTANT DATA FIELDS
 * In keeping with the principle of ENCAPSULATION, the data fields (both constant and variable)

 * of logical, cohesive structures.
 */

public final static byte BYTE_SIZE=8, SHORT_SIZE=16, CHAR_SIZE=16, INT_SIZE=32, LONG_SIZE=64
 public final static byte FLOAT_SIZE=32, DOUBLE_SIZE=64, COLOR_SIZE=24;
 public final static byte BINARY=2, OCTAL=8, DECIMAL=10, HEX=16;

public final static short IEEE754=754;

/**
 * VARIABLE DATA FIELDS
 * In keeping with the principle of INFORMATION HIDING, t
 * as "private." This prevents them from being exposed needlessly to the outside world.
 */

private String number=new String();
private int base;//2, 8, 10, 16, 754->IEEE754; custom bases allowed: 2 ->

 private boolean signed;//false->unsigned, true->signed (IEEE754 values must be signed)
 private int size;//# of bits: 8, 16, 24, 32, 64; custom sizes allowed: 1 -> 64 for integer

//CONSTRUCTORS
public NumericString()
{

/Set default values of the variable data fields
his.number="00000000";
his.base=BINARY;
his.signed=true;
his.size=BYTE_SIZE;

}

public NumericString(String number, int base, boolean signed, int size)
{

his.number=number;

 this.signed=signed;
 this.size=size;
}

 NumericString(NumericString n)
 {

 this.number=n.number;
 this.base=n.base;

this.signed=n.signed;

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-28

 public short shortValue()

eturn the "long" value of this NumericString object

 NumericString object

)

tring object

ertTo(int base, boolean signed, int size)

vertTo(NumericString n)

String object converted to the format of the NumericString object 'n'

int size)

tring object converted to the format of the NumericString object 'n'

determined by the individual student.

 {
 //Return the "short" value of this NumericString object

 }

 public int intValue()
 {
 //Return the "int" value of this NumericString object

 }

 public long longValue()
 {

 //R

 }

public float floatValue()
 {

/Return the "float" value of this /

 }

 public double doubleValue()
 {

umericString object //Return the "double" value of this N

 }

 public int rgbValue()
 {

/Return the rgb colour value of this NumericString object /

 }

l public ong unsignedValue()
 {
 //Return the unsigned integer value of this NumericString object

 }

blic long signedValue(pu
 {

ger value of this NumericS //Return the signed inte

 }

 public NumericString conv
 {
 //Return this NumericString object converted to the given base

 }

 public NumericString con
 {
 //Return this Numeric

 }

 pub lic NumericString resize(NumericString n,
 {
 //Return this NumericS

 }

 be //Static Methods To

}//end of class

Copyright ©, Nick E. Nolfi ICS4M0 Classes, Methods and Data Fields CMDF-29

	Unit 2 – Classes, Methods and Data Fields
	 An Overview of Digital Circuits and the Binary Number System
	Computer Architecture -- An Overview of Digital Circuits
	The CPU is the “Engine” of the Computer System
	Why do Computers Process Binary Numbers and not Decimal Numbers?
	Why Computers Count by “Twos” instead of “Tens” – The Basis of Digital Circuits
	Question

	Character Encoding – How Binary Numbers are used to represent Textual Information
	 An Old Binary Character Encoding Scheme – Morse Code
	EBCDIC, ASCII, ANSI, ISO-Latin 1 and other Character Sets
	 The Relationship between Storage Space and Characters
	An Example of Unicode Character Mappings
	 Examples
	Solutions

	Questions

	 Binary, Octal and Hexadecimal Arithmetic
	Place Values
	 Various Interpretations of Binary Codes
	The IEEE754 Standard for Representing Floating Point Numbers
	More Information

	 The Twos Complement Method of Representing Signed Integers
	Example 1 – Positive 8-bit Signed Integers (byte Data Type in Java)
	Example 2 – Negative 8-bit Signed Integers (byte Data Type in Java)
	Why use the Twos Complement Method to Represent Signed Integers?
	Exercises

	 The Importance of Hexadecimal Numbers
	Conclusion
	Converting from one Base to Another
	Binary to Octal
	Binary to Hexadecimal
	Octal to Hexadecimal
	Octal or Hexadecimal to Binary
	 Decimal to Binary
	Method 1 (Subtraction)
	Method 2 (Division by 2)

	Elementary School Arithmetic Revisited
	Decimal Examples
	Binary Examples
	Octal Examples
	Hexadecimal Examples

	 Exercises and Problems

	 Assignment: Exploring Primitive Data Types in Java
	 Basic Class Structure
	 Understanding Classes and Objects at an Intuitive Level
	Why use Classes?
	The “Automobile” Class

	 Class Hierarchies and Inheritance
	Example of Class Inheritance
	The “extends” Keyword
	Question

	 Using Time Converter 1.1 to Review Unit 1
	Concepts Introduced and/or Reviewed in Time Converter 1.1

	 Putting all this Knowledge into Practice – Binary Blaster
	Description of the “Binary Blaster” Project
	Note

	 Simple Method of Data Encryption
	Exercise
	The Encryption Scheme Requires a Special form of Binary Addition and a “Private Key”

	 Simple Data Recovery Method
	Description of a One-Bit Correction Method

	 Simple Method of Data Compression – Run-Length Encoding (RLE)
	Rules for Simple Version of RLE for this Project

	STOP! Do NOT Write Any Code Yet! This is a big Project and Requires a Great Deal of Planning!!
	 Binary Blaster Master Plan

