UNIT 2 — CLASSES, METHODS AND DATA FIELDS

UNIT 2 — CLASSES, METHODS AND DATA FIELDS 1
AN OVERVIEW OF DIGITAL CIRCUITS AND THE BINARY NUMBER SYSTEM 3
COMPUTER ARCHITECTURE -- AN OVERVIEW OF DIGITAL CIRCUITS ... iuuttiiitttieiisttisiisssssiistsssiassssssiisessssosessssssssssisserssassessessssessssnereas 3
THE CPU 1S THE “ENGINE” OF THE COMPUTER SY STEM .. utttiiiitttteiiuttisiessssssissstssasesssiossssssossssssassssssssssssossesssassessssossnessosserssansesssssneess 3
WHY DO COMPUTERS PROCESS BINARY NUMBERS AND NOT DECIMAL NUMBERS? ...iiiiiiitttiiiieesiiistieiiisesssiisssesissssssiossesssssessiossseeesaees 3
WHY COMPUTERS COUNT BY “TWOS” INSTEAD OF “TENS” — THE BASIS OF DIGITAL CIRCUITS ...iiuttiiiiieiiiiiiieiiiseessiessieriesiessiisseeeeaes 4
QU SEION ittt ittt sttt e ettt ettt sttt e ettt ettt e ettt ettt ettt et e ettt e ettt et e et e ettt £ oAt e e e et e e Attt £ Attt e e b e e e aabntesesaneeas 4
CHARACTER ENCODING — HOW BINARY NUMBERS ARE USED TO REPRESENT TEXTUAL INFORMATION ...uuutiiiiieiiiiiissiiiiiesiiaissiesieesaaaes 4
AN OLD BINARY CHARACTER ENCODING SCHEME — IMIORSE CODEuuuttiiiiiiiisisuttttttseitsiisssessssssssissssssssssssiassssssssssssionssessssssssiosssssesaees 5
EBCDIC, ASCII, ANSI, ISO-Latin 1 and Other ChalraCter SEES.uiiiiiiieiiitiiiiieieietisieisistiesieesistssseessstsesesesstsssersstesserssstesssensssees 5

The Relationship between Storage SPACE ANA CAIaCES uui ittt iees it s ieieitesseessettsseeeietsssbessabessasessarsssbessbssairessbesassesssesas 6

An Example of UniCOOE CRaraCter IMaDiN0S . .. e ieeiiieiisieiisssessieessssessisessessssssessessssssssssssssssssssssshessanssssbessasssssbssssssassessasesassessasess 6
XIS ..ttt ittt sttt ettt s ettt e et ettt eht e ehb e ehe e e bt e e eht e e et e ehe e e bt e e Rt e e ehteseheeehtseehe e ehbesehe e ehteeeheeeehbesebeeeehbesaberseebesanresartis 7

SO ULI OIS 1.ttt ettt e ettt st e et e et e et e et e et et e et e bt s ekt et e oAbt e bt s oAbt e bt s oAbt s bt s eAbe s bt s ehbe s bt s e Re s besebes ettt sabesenbeseabeessbessanesaies 7
U S TIONS ... uttiteiitttieeitteeeeeteeeesette e e s esteeeesase e e e st e e e emtes e eame s e ettt e e e e bt e s ems e e et e e e e b s s hs e e e 4 At e s e e e s e emb e s e a0t e e e ahmes e e anbeeesansbesesnnnesssnrenasas 7
BINARY, OCTAL AND HEXADECIMAL ARITHMETIC 8
P LA CE W ALUESttttiiiiiii ittt ittt e e e sttt bttt e e e e ettt e e e e e east et e e e e e ettt e e e oo ettt e e e oottt 4 £ 2o et bttt e 2o Attt e £ 4 e oottt e e s e e et be bbb aseesaesbnrres 8
VARIOUS INTERPRETATIONS OF BINARY CODES ... uututttiiiiiiiiitutttttiaesieissstestsaesssisssssssasssstasssssssssssssesssstesssssstesssstessssssssiosssessssssssiosssssesases 9
THE IEEE754 STANDARD FOR REPRESENTING FLOATING POINT NUMBERSuuttttiititiiietttstttsiessiessssessssssisisssestssssisiossestesssssiosssseesae 9
VIO 8 I O AT ION ...ttt ittt iett ettt e e s ettt e ettt e e eese e e ee e e sttt e et e e et e ekttt e e et e £t £ £t e £ £ e £ttt £ £ et e £ et s e et be e s aabnba s sanens 9

THE TwOS COMPLEMENT METHOD OF REPRESENTING SIGNED INTEGERSiiuutttiiieiiieissstetsiessieissssessssssssiossssssssssssiosssesssessssisssseseeaies 10
Example 1 — Positive 8-bit Signed Integers (byte Data TYPE 1N JAVA) ..cuuiiiuuiiiiiiieiiiieisieiieiirsisiessessisesssessissssssessisessasesssessaseeains 10
Example 2 — Negative 8-bit Signed Integers (byte Data TYPE N JAVA) ...uuiiiuuiiieiiisiiiieisieiiesersisissasessisesssessissssssessisessasesssesssseeains 10

Why use the Twos Complement Method to Represent SigNed INTEOEIS? uuiieiiiieiiiiiiiieiiietiisieissiessisesseressiessesessisessasersiessaseraes 10
X IS BS .ttt iutie ittt e ittt ettt e ettt e ittt e ettt ettt e ettt e st e eb e ee e e ee e e et e bt e e b e e he e bt e e ehe e bt e e b e b e e b e Rt e e oAt e Rt e e be s b tsebe e b tseabeseabeseaberesreseanerans 10

THE IMPORTANCE OF HEXADECIMAL INUMBERS1 uttttttttttiiitttsttestetsiesssssessessiaissssssssssstasssssssssssstatsssssssssssssinnsssssesesssionssssseeeessinmnrsseeees 11
CONCLUSION L.ttt ittttesittteeitseeeseeteeessstte s e et eesssbeeesesseeeeeame s e oht e s e eas e s e easse s e mb e e e 2 st e s ehse e s e mt e e e e emm e s s eebee e e e e e e e s mteesesmnanesatnbeeesannessasnnenas 11
CONVERTING FROM ONE BASE TO ANOTHERuuutttitiietiiisttetttassssisstessssssssisssssssssssssasssssssssssssesssssssssssssassssssssssssssisssestsessseiossrerseassssins 11
BINAIY T0 O 0 A L.ttt ittt ittt ittt ittt e ettt e s tet et ee sttt sttt e ehe e e e sttt e ettt et ettt £ ettt e e ettt £ ettt e ettt h ettt e et e ettt eesnnee s saneeas 11
BINATY 10 HEXAOECIMIA] ...ttt ittt ittt i s ittt e e sttt ee s ettt e e ese e e e ettt e e et e e eab e e ettt e et e e st £ e ettt £ et 4 et e ettt £ oAbt s e e bt e s s b ba s sanenas 11
OCTAL T0 HEXAUECIMIAL ...ttt ittt ittt ee ittt eeste bt e e seasee e s ettt eeses e e e et e e eet e e ettt e e et e £ et e e e et £ et s £ et e s ettt e e et s e ehbbeesannbesasanns 11
OCtal OF HEXAUECIMA 10 BINAIY utiii ittt iteiie sttt i e seeteeessesetsesesteeesesseeesseseeee e et eeess e e e eht s e et e £ e et s e eh s e e 1t e e e e bt s s s ebbeeasansbseasanns 11
DIBCIMAL £0 BINMAIY ...ueiiitiiiiiii ittt ittt e st e e shee e sttt esteee st eeae e e st eeehe e eht e e bt e b e e b e et e bt e b e e b e o8t e et e et e et e e eb b e et e et b s e bt e s abbssabesaans 12
IMELNOO 1 (SUDEIACTION) ..ttt itiii ittt e sttt e st eese e e st ee et ee st e e st eeehe e e ehteeehe et e e s e e e e bt e eh et e b e b e et e e eh e e bt e b e et e e bt sa bt e ssbbsabesaans 12
IMELNOT 2 (DIVISION Y 2) 1. ttiiitiiiitiis ittt ti sttt e st ee sttt e st es st eesseeses e e eheeethteeehe e e e e e s e e e e ehe e b e e bt e b e et e et e e bt e b bt et e et b s s bt s ssbbssaneeasns 12
ELEMENTARY SCHOOL ARITHMETIC REVISITED ... utuiiiiittttsiitttteiiitttssiesessssestssssasssssssessssssasessssassessssssessssssssssasssssssnsssssanssssssansssssssereas 12
DB ML XA DS .ttt sttt ittt stt ettt st ettt e et e sttt e st eeet e e ea e et e e bt eht e e b e e b e e bttt e bt e b e e bt e b e et e et e e b e eb e e e e et esaaneessbessanessans 12
BNy EXAMIDIES ..ttt ittt ittt st ettt e st e ettt e st e e sttt e et e e es e e e b e e bt e e ebe e et e e b e b e e bt e bt e bt e b e e bt e bt s e be e eb bt eabeeeabbseaberesreseaneraans 12

O CEAI EXAMIPIES ...ttt ittt ittt ittt s ettt e ettt e sttt e ettt e ea e ettt e ettt et e ettt e ettt e ettt ettt e et e e ettt e et s e ebbaeesannbeeasanns 12

H XA O M A XA DI ES ...ttt ittt sttt ettt ettt e sttt s ettt e ese e e ettt e ettt e e et e ettt et e ettt ettt ettt e ettt e et e e bt e e s b e e s s sanneas 12
EXERCISES AND PROBLEMS .ttttiiiiiiittutttttteesieissstestsessteiasstesssasstaiassssessssssstasssesssasestassteessessestanssesssssesssnssesssssesssssssssssssesssosssssesssesssssssstes 13
ASSIGNMENT: EXPLORING PRIMITIVE DATA TYPES IN JAVA 15
BASIC CLASS STRUCTURE 18
UNDERSTANDING CLASSES AND OBJECTS AT AN INTUITIVE LEVEL 19
NV H Y USE LA S SE S 2 it iutttttttie et teittteetteestetastbee e e e e e e sasb bt e e e e e ettt e e e e oot tee s e oo 4ot b e s s e o448ttt e e e e oottt et e 4o e oAbt et e s s e et bbbeeaeaeasannnnben 19
THE AU T OMOBILE" LSS .t tuuttttttieeiieitttteettesstaiesttetsessssstasteeeseeseessaatbeee e e s e e s8tbe e e e s e e o4 4 a8 et e e s e e o4t be b e e e e e o4 e bbb e e e e e e e e tanbbebeeasesssanbbrbsnasas 19
CLASS HIERARCHIES AND INHERITANCE 20
EXAMPLE OF CLASS INHERITANCE ... utttitittttesittttesittsssiotsssssestesssasssssssesessesstesssamssssssassssss1seesessnesesshseessessessesbnessssnsesesannessssansesssssseneaas 20
THE “EXTENDS” KEY VW ORD . .. iutttttttieeiieissstestsassseiasstesssssssetastseeseess e tassbeeeeese e eaas b et e e e s oo 4ot e b e e s oo oottt e e e e o4 e hbt bt ee e e e e e tanb bbbt easesssanbbrbsnasas 20
(UESTION Lutttttttt ittt ittttteeseeestesetetee e e e e s s sttt e e e e e e ettt e e e e oo e sttt et e e oo Attt et e e oot e et e e e o448t e e 4 e oo e e e e s £ 2o 44t b e e e oo e bbbt e et e aee e nnbbeneeaeaaasnn 20
USING TIME CONVERTER 1.1 TO REVIEW UNIT 1 21
CONCEPTS INTRODUCED AND/OR REVIEWED IN TIME CONVERTER L. L. 1ttt itiiiieisieiissieisieiissseissstissseessstssssesssstasssesssssssssesssssssssensssss 21
Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-1

PUTTING ALL THIS KNOWLEDGE INTO PRACTICE — BINARY BLASTER 22

DESCRIPTION OF THE “BINARY BLASTER” PROJECT 1.ttt iuttteiittttetiitttteiesteeetittssetassesstossesssessssesassssesisssesesassseesasssssinsssesasssseesnssesesssseeeans 22
N T 1ttt ettt e e ettt et e ittt e ettt ettt e e e ettt e e ettt e eeeteeeesetteeeeantteeeenneeeeeatteeetannteeeinneeeeattteeetanneeeeinneeeeentteeeensee et ohteeeeanteeeetanneeesthbreeeannreeeanneas 23
SIMPLE METHOD OF DATA ENCRYPTION L..uttttiiittttetitttietetsteesisteeesaatsssesassesesassseesasssssesassssesassseesasssseesssssessssseesanssssesasssesasssseesanssseesansess 24
E X S Lttt ittt ettt ettt ettt ettt e ettt e ettt e ettt e ettt e ettt e et e e et e e ehseeehb e oot e e ehbeeeheeehbeeeheeetteeheeehbeeeheeeheeeeheeehbeeaheeetbeeanee ettt eaneeeabbeeanreearreeanneeans 24
The Encryption Scheme Requires a Special form of Binary Addition and a “Private KeY™cciiiiiiiiiieiiiiiieiieieeiesiessnesnes 24
SIMPLE DATA RECOVERY IVIETHOD ... utttiiittitetitite e ettt e tetttee s sttt e e e ettt e et tte e e e ettt e e e aste e e e ease e e e e et e e e e anteseeenseeeeeetteeeeantbeeesnnneeeaanbeeeaanreeeesnnees 25
Description of a2 ONne-Bit CorreCtion METNOO uiiiiit it e it s it sies it s it seeeseeseeasseaseeereebeaseesssesseestessbeasseasssnseasseassesssenssans 25
SIMPLE METHOD OF DATA COMPRESSION — RUN-LENGTH ENCODING (RLE)viiitiiiiiiiiiiiiii ittt sttt steeeve e sreesnes 26
Rules for Simple Version of RLE fOr thiS PrOJEC.......iiiiitiiiiitiiiiiiiiie it it e it st st se e st e st e eteeetessbestsesteesteesseeeseasesneeasseaseenssenseans 26
STOP! Do NOT WRITE ANY CODE YET! THIS IS A BIG PROJECT AND REQUIRES A GREAT DEAL OF PLANNING!! .vvviiciiiciien, 26
APPENDIX — THE UNICODE STANDARD IN DETAIL ERROR! BOOKMARK NOT DEFINED.

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-2

AN OVERVIEW OF DIGITAL CIRCUITS AND THE BINARY NUMBER SYSTEM

Computer Architecture -- An Overview of Digital Circuits

Although computer circuits are extremely sophisticated, they are based on an extremely elementary concept. Computers
accomplish almost everything by rapidly switching circuits on and off (such circuits are called digital circuits). This
seemingly random activity allows computer users to produce spreadsheets, word processing documents, images,
animation, Web pages and almost anything else that the human imagination can conceive. It may be difficult at first to
understand how switching circuits on and off can accomplish anything at all. Once one appreciates the extreme speed
with which the switching is performed, and the idea that information is encoded as sequences of these simple “flip-
flopping” electrical impulses, the power of digital circuits becomes clear.

The CPU is the “Engine” of the Computer System

You probably have heard people say that the CPU (central processing unit) is the brain of a computer system. Despite the
widespread use of this idea, however, the CPU is very much unlike the human brain. It is completely devoid of any of the
higher order abilities that the human brain possesses such as independent thought and reasoning, a sense of consciousness,
emotions and the ability to learn from experiences. Considering these rather astonishing capabilities, the electrochemical
impulses in the human brain and nervous system are conducted rather slowly (at speeds of up to about 400 km/h).

The CPU, on the other hand, is in a sense a “photographic negative” of the human brain. It outperforms the human brain
in some ways, but it falls miserably short in many other respects. It can perform arithmetic, arrange numbers from least to
greatest and blindly follow instructions at a blazing speed. However, it does not possess any cognitive powers. The CPU
cannot think, understand, interpret or feel. It is merely a rather unintelligent order taker. The latest and most powerful
processors for the home computer market (CPUs are often called processors) can switch circuits on and off at rates of
billions of cycles per second. For example, a processor operating with a clock speed of 3.5 GHz (gigahertz or billions of
cycles per second) can switch circuits on and off three billion five hundred million times per second. In other words,
every time the CPU clock ticks, a computer circuit can switch from on to off or vice versa. Considering how dissimilar
the CPU and the human brain are, it is far more appropriate to think of the CPU as the engine of a computer system.

Why do Computers Process Binary Numbers and not Decimal Numbers?

Throughout the ages, humans have used various number systems. When primitive humans first started to count, they
probably employed the unary number system, which is based on the number one. If you are familiar with counting with
sticks, then you will understand unary numbers. An example is shown below.

—H’H’ —H’H’ —H’H’ | | | | This represents the number 19.

Although the unary number system is extremely simple, it VY | 0 AT | 2 T | T o BT s 4?

has some serious Iimi_tations. Imagine representing the 2 LT | 2 T | W |2 S | = P

number 5983456782 in unary. If you could draw “sticks” at : 15 LTV | 25 KTV | = <l VTV | .o 7T QYYT

a rate of five per second, it would take almost thirty-eight o | s T 2 - s

years to complete the unary representation of this number. In hd «; 2; j; 544“?
25 35 45 554W

addition, in the unary number system there is no way of
o LBE o <O | «(FF - & | o

representing zero. Of course, one could attempt to use no
sticks to represent zero, however, it would be very difficult to B | o AT | | é'ﬁ x:ﬁ?
18 {W 28 «W 38 «W am &W *

distinguish zero from a blank space. 5
Eventually, humans learned how to address these limitations H || T | <« 4géfﬁ 56 ‘@W
by using number systems that are based on numbers greater

than one. An extreme example of this is the sexagesimal S S I S R S - &H
system used by the Babylonian civilization. It was, for The 59 symbols used by the Babylonians. These symbols are built from
re|igious, mystica| or astronomical reasons, based on the the two basic symbols T and <, representing one and ten respectively.
number sixty. This means that the Babylonians used fifty-

nine different numerals to represent the numbers from one through fifty-nine (there was no symbol for zero). The
numbers greater than fifty-nine were represented by using combinations of the first sixty symbols, just as we use
combinations of the Hindu-Arabic numerals from zero through nine to represent numbers greater than nine.

If you have ever wondered why there are three hundred and sixty degrees in one revolution, look no further than the
Babylonian civilization. The Babylonians believed that one year consisted of three hundred and sixty days. Since one
year was viewed as a complete circle, the circle came to be subdivided into three hundred and sixty equal divisions, which
we now call degrees. Note that three hundred and sixty is a multiple of sixty, which may help to explain the special status
of the number sixty.

ﬁ@%é%q%
3

-~

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-3

Other civilizations used a variety of different number systems. At one point, the French used an octal (base eight) number
system. The Romans used a decimal (base 10) number system that was based on Roman numerals, while the Arabs used
a decimal system based on Hindu-Arabic numerals. Eventually, most likely for anatomical reasons (read between the
lines here), all humans decided to adopt a decimal number system. Computers, however, use the binary number system,
which is based on the number two.

Why Computers Count by “Twos” instead of “Tens” — The Basis of Digital Circuits

If humans count by ten, why then do computers count by two? If you have read the sections on basic computer
architecture, the answer to this question should be obvious. If computers accomplish everything by switching circuits on
and off, then only two numerals are needed. If ten digits were used instead, a number of electronic complications would
arise. The computer circuits would need to be able to detect ten different possible states as opposed to only two. This
would increase the probability of errors, the complexity of the circuits and the cost. It is relatively easy, however, to
design circuits that detect the difference between “on” and “off.” The table given below lists several interpretations of the
“on” and “off” states.

Circuit State Electronic Representation SLLELY) : Logical :
Representation Representation
Off Low Voltage (e.g. OV) 0 False
On Higher Voltage (e.g. 5V) 1 True

The true power of a computer system lies in the electronic signals by which communication takes place, that is, the digital
signals. Instead of forming a continuous wave pattern like analog signals, digital signals are discrete. This means that
they can exist only in a finite number of states, unlike analog signals, which can have an infinite number of states. This
allows data to be sent and received in the “language” of ones and zeros, or binary language.

4 N
AN ANALOG SIGNAL A DIGITAL SIGNAL
I
Bit0
9. |
High —.
AL UA AT A A LA d
2 FT TV Y V2 LOW_.JLJH.[
e 01 0 0 10 1 1
-1
L 7

The main advantage of digital signals is that they are so simple! As long as the hardware is functioning correctly and
there are no sources of interference, it is always possible to make a perfect copy of a digital signal because there are only
two states to detect, “on” and “off.” Analog signals, on the other hand, are impossible to copy perfectly because they are
so complex. A copy of an analog signal always contains some amount of distortion of the original signal.

Imagine trying to copy a friend’s answers on a “true-false” test. It would be very easy to copy your friend’s answers
perfectly because you only need to distinguish between “T” and “F.” Now imagine trying to do the same on an essay test.
Even a meticulously careful person with eagle eye vision could not produce an exact copy of his/her friend’s essay!

Question
Why is the music industry so concerned about digital copies of audio CDs and the downloading of audio files?

Character Encoding — How Binary Numbers are used to represent Textual Information

A character encoding (also called a character set or code page) consists of a code that pairs a sequence of characters
from a given set with a sequence of values that can be easily represented on an electronic device (e.g. integers, sequences
of binary digits, sequences of electrical pulses). This allows text to be stored on computers and transmitted across
telecommunication networks. Common examples of character encodings include

e Morse code, which encodes letters of the Latin alphabet as series of long and short depressions of a telegraph key
e ASCII, which encodes letters, numerals and other symbols as sequences of bits (binary digits)

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-4

An Old Binary Character Encoding Scheme — Morse Code Morse code key

Before telephone technology was developed and became widely available, long
distance electronic communication was accomplished by using a device called a
telegraph (shown below). Instead of using voice, the telegraph was used to create a
series of pulses called “dots” and “dashes.” A dot is created by a quick tap of the
telegraph keying device, resulting in a pulse of very short duration. Holding the key
down for a longer time, on the other hand, would create a pulse of longer duration
known as a dash.

@
:
g
d

|
|
|
I

.
i
.
L= =R - T R
|
-
.
-
-

By combining dots and dashes according to the encoding scheme known as Morse
code (shown at the right), messages could be transmitted over long distances.
Morse code was also used for long distance radio communication and until recently,
was a requirement for obtaining an amateur radio (also known as a “Ham” radio)

communications licence.

B |
EBCDIC, ASCII, ANSI, ISO-Latin 1 and other Character Sets

When you press a key on a keyboard, a certain binary code is transmitted from the keyboard. After some processing, the
video card transmits a signal that causes the character corresponding to the given code to be displayed on the monitor’s
screen. Of course, this process occurs in such a short time that it appears that the computer is doing something intelligent.
All that really happens, however, is that a sequence of “on-off” pulses is transmitted. Using a character set called
“ANSI,” for instance, the sequence for the letter “A” is “off, on, off, off, off, off, off, on” or “01000001” in binary form.
The process is described pictorially below:

N»cxgczc—]mwo-aozgr'ﬂ‘—“mmﬁimbnwbg
L]
|
L]
L]

,i o ;
The “A” key 01000001 Some .
. processing R
is pressed. . i 5 P
is done.
--_"___'_..-r"

Naturally, each character must have a unique binary code. A collection of such codes is called a character set.

Many different character sets are in use today. One of the first to be used was developed decades ago by IBM. It is called
EBCDIC (“Extended Binary- Coded Decimal Interchange Code”) and is still in use today in large IBM mainframe
computers. In the years since EBCDIC first came on the scene, many other character sets have been developed. While
each character set uses a different encoding scheme, they all have one very important element in common. Every
character set uses groups of binary digits or bits to represent each character. Since many character sets use sequences of
eight bits to represent each character, it is convenient to think of such a group as a single unit. A group of eight bits is
known as a byte. The table below summarizes some of the most commonly used character sets.

Character Set Number Total Number of Characters

Abbreviation Full Name ofBitsin | that can be Representea | Use/Platform
American Standard Code for Information A7
ASCII Interchange 7 128=2 Early Personal Computers
Extended Binary-Coded Decimal _ A8 .
EBCIDIC Interchange Code 8 256 =2 IBM Mainframe Computers
ANSI American National Standards Institute 8 256 = 2° Windows
ISO-Latin1 | 'Mernational Sgag‘gg“fs Organization 8 256 = 2° HTTP and HTML (World Wide Web)
DBCS Double Byte Character System 16 65536= 21° Asian Versions of Windows
Unicode Unicode Variable Up to 4294967296= 2% | Platform Independent
(often 16)

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-5

The Relationship between Storage Space and Characters

1 byte
1 kilobyte = 1 KB
1 megabyte = 1 MB
1 gigabyte =1 GB
1 terabyte =1 TB

8 bits

102

4 bytes

1024 KB
1024 MB
1024 GB

An Example of Unicode Character Mappings

0AS80 Gujarati
 EHEREIRE
(HEH A HE
o BER A
EEEEA A
AN
EEEEE
MEEE
HERAE B
EHEREE B
Al AE 2
8]
HER E B
R 3
FERAR B
EEIE A
folz[ae e\

The Unicode Standard 5.0, Copyright © 1991-2006 Unicode, Inc. All rights reserved.

Copyright ©, Nick E. Nolfi

1 ANSI/ISO-Latin 1 character
1024 ANSI/ISO-Latin 1 characters
1048576 ANSI/ISO-Latin 1 characters
1073741824 ANSI/ISO-Latin 1 characters
1099511627776 ANSI/ISO-Latin 1 characters

0AFF

69

ICS4MO Classes, Methods and Data Fields

The picture at the right, which consists
of characters from the east Indian
language Gujarati, shows a small
portion of the Unicode character set.
Each of the characters in the Unicode
character set has a unique hexadecimal
(base 16) code. For example, the hex
code of the character “1 is 0AB3.
When converted to 16-bit binary form,
0AB3 is written as 0000101010110011.
The actual binary values are not
included in the Unicode code charts
because they are too long. Hexadecimal
form, which is closely related to binary,
is far more “human-friendly.” (See page
CMDF-11 for detailed information on
numbers expressed in hexadecimal
form.)

Since Unicode consists of various
character encodings that use up to 4
bytes per character, it allows for the
encoding of far more characters than
ANSI. Itis very easy to calculate the
number of possible binary sequences of
a given length n:

#binary sequences of length n =2"

Therefore, in Unicode it is possible to
encode up to 2% =4294967296 characters
while in ANSI, it is only possible to
encode 2°=256.

(It is easy to understand why 2" gives
the correct result. In a binary sequence
of length n, there are two choices for
each position in the sequence.
Therefore, the total number of different

sequences is 2x2x2x---x2=2")

CMDF-6

Examples

In these questions, assume that no data compression techniques are used.

(a) How many ANSI characters can be stored on a hard drive that has a storage capacity of 60 GB?

(b) Assuming that the average English word is six characters long, how many English words can be stored on a 60 GB
hard drive?

(c) Assuming that the average English novel contains 50000 words, how many English novels can be stored on a 60 GB
hard drive?

Solutions

(a) number of bytes (b) number of words (c) number of novels
= 60(1024)(1024)(1024) = 64424509440 + 6 = 10737418240 + 50000
= 64424509440 =10737418240 =214750

Since one ANSI character uses one Approximately 10737418240 English | Approximately 214750 such novels
byte of storage, 6442450944 characters = words can be stored on a 60 GB hard | can be stored on a 60 GB hard drive.
can be stored. drive.

Questions
Explain the basic principles upon which computer circuits are based.

What is a digital circuit?
What is a CPU? Explain why CPUs are not intelligent. Why do some people believe that CPUs are intelligent?
What is a CPU clock? What is meant by clock speed?

If you could write “sticks” at the rate of ten per second, how long would it take to write the unary representation of the
number 67345213437

What are the limitations of the unary number system?

ok wn=

7. Why did all humans eventually adopt a decimal number system? What other number systems have been used by
other civilizations?

8. Why are there 360 degrees in one full revolution?
What are Hindu-Arabic numerals?
10. Why are decimal numbers unsuitable for computer circuitry? Why is the binary system a much better choice?
11. What is a bit? What is a byte?
12. What is a character set?
13. Discuss the various ways in which zero and one are represented at the level of computer circuitry.
14. How many ANSI characters can be stored on a 120 GB hard drive?

15. Convert
(a) 209477464 bytes to KB (b) 1.44 MB to KB
(c) 209477464 bytes to MB (d) 1.44 MB to bytes
(e) 209477464 bytes to GB (f) 147.2 MB to TB
(g) 209477464 bytes to TB (h) 1 GB to bits

16. A DVD-ROM disk can store 4.38 MB of data.
(a) How many 50000-word novels can be stored on a single CD-ROM disk?

(b) Although CD-ROM disks have such an immense storage capacity, why might it be a poor idea to use a CD-ROM
disk for the long-term storage of data?

17. In the metric (SI) system of units, the prefix “kilo” means one thousand. Why then, in the world of computers, does
“kilo” mean 1024?

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-7

BINARY, OCTAL AND HEXADECIMAL ARITHMETIC

Place Values

As we have learned, computers use the binary number system for encoding information. Although at first glance binary
numbers seem strange and confusing, they operate just like numbers in decimal form. The only difference is that the
value of each “place” or “column” is a power of two instead of a power of ten. The examples given below should help
you understand what this means.

27 26 25 24 93 52 51 50 Place Values
. 1 0 0 1 1 0 1 1
Binary
Example =1x2" +0x2° +0x2° +1x2* +1x 22 + 0x 2% +1x 2t +1x 2°
=128+0+0+16+8+0+2+1
=155
Place Values
10’ 10° 10° 10* 10° 10 10" 10°
Decimal 2 3 1 9 7 8 0 5
Example 7 6 5 4 3 2 1 0
=2x10" +3x10°% +1x10° +9x10* + 7x10° + 8x10* + 0x 10" + 5x10
= 20000000 + 3000000 +100000 + 90000 + 7000 + 800 + 0+ 5
= 23197805
8’ g6 85 gt 83 g? 8! g0 Place Values
Octal 2 3 1 5 7 0 0 5
Example =2x8" +3x8° +1x8 +5x8* +7x8% +0x8% +0x8 +5x8°
= 4194304 + 786432 + 32768 + 20480 + 3584+ 0+0+5
=5037573
16 16° 16° 16 16° 162 16! 16° Place Values
1 9 A 2 E D C F
Hexadecimal | =1x16" +9x16° +10x16° +2x16" +14x16° +13x 167 +12x16" +15x16°
Example = 268435456 + 150994944 +10485760 + 131072 + 57344 + 3328 +192 +15
=430108111

As you can see from the above examples, the only significant difference in each case is the base of the power. The table
below summarizes the most important number representation systems for use with computers.

Name Base | “Digits”

Binary 2 0,1

Octal 8 0,1,2,34,5,6,7

Decimal 10 0,1,2,34,5,6,7,8,9

Hexadecimal 16 0,1,2,3,4,56,7,89,A,B,C,D,E, F

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-8

Various Interpretations of Binary Codes

One of the reasons that programmers need to declare variables and specify their types is that a particular binary code can
be interpreted in many different ways.

The table given below shows how the 16-bit (2 byte) binary number 0000001110100000 can represent two different
values.

Value
Raw Binary Data 16-bit Signed Integer Unicode Character
W binary (short Data Type in Java) (char Data Type in Java)
0000001110100000 928 1T

The next table shows how the 32-bit (4 byte) binary number 11000011100110001101000000000000 can represent two
different values.

Value
Raw Bi Dat 32-bit Signed Integer IEEE 754 Floating-Point Number
aw Binary Lata (int Data Type in Java) (float Data Type in Java)
11000011100110001101000000000000 —1013395456 —305.625

The IEEE754 Standard for Representing Floating Point Numbers
The IEEE 754 standard allows for 32-bit floating point numbers to be expressed correct to seven significant (decimal)
digits and for 64-bit floating point values to be expressed correct to 15 significant (decimal) digits.

The following format is used to store IEEE 754 32-bit floating point numbers:

Sign Bit S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

0 positive
1 negative

Exponent Bits (8 bits) Fraction Bits (23 Bits)

The value of the floating point number is taken to be

+1.F x 257

The value “1.F” is called the mantissa or the significand. Note that the whole part of the mantissa (the most
significant bit) is not stored because it always equals 1. The fractional part of the mantissa, that is “F,” is called the
fraction. Note that the fraction is expressed in binary form. Also, the base of the power, which is always 2 due to the
use of binary values, is also called the radix. In addition, to avoid storing the sign of the exponent, the exponent is
stored in biased form. That is, the exponent stored is greater than the actual exponent by 127.

11000011100110001101000000000000 = —1.00110001101000000000000 x 2000011 =1L (according to IEEE 754 format)
—(1+0% 2140 22+1x23+1 % 240 % 25+0x 2 0+0x 2 7+1 % 28+ 1 % 2 9+0 % 21041 x 2 11) x 21~ 127
\ \ f —(1+.125+.0625+.00390625+.001953125+.000488281) x 2°
S E = —305.6249999
= —305.6250 (correct to seven significant digits)

More Information

For more information on the Unicode character set, visit http://en.wikipedia.org/wiki/Unicode and http://www.unicode.org. For more
information on the IEEE 754 floating point number standard, visit http://en.wikipedia.org/wiki/IEEE 754,
http://standards.ieee.org/, and http://research.microsoft.com/~hollasch/cgindex/coding/ieeefloat.html.

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-9

The Twos Complement Method of Representing Signed Integers
Example 1 — Positive 8-bit Signed Integers (byte Data Type in Java)

SignBit 2° 27 2* 2' 22 2" 2" Thisbit pattern represents +91. (The “0” in the sign bit column
0 1 0 1 1 0 1 1 indicates that the integer is positive.)

Example 2 — Negative 8-bit Signed Integers (byte Data Type in Java)

The representation of negative integers is a little more complicated than merely changing the sign bitto a “1.” To
simplify the logic required for binary addition and subtraction, a system called the “twos complement” is used. The
example given below shows how to convert the negative integer —69 into “twos complement binary form.”

1. Convert +69 to 8-bit binary form — 01000101
2. Invert each bit of the binary number obtained in step 1 — 10111010
3. Add 00000001 — 10111011

Sign Bit This bit pattern represents —69. (The “1” in the sign bit column
1 0 1 1 1 0 1 1 indicates that the integer is negative.)

Why use the Twos Complement Method to Represent Signed Integers?

From a human perspective, the twos complement system is rather awkward. When first introduced to this system, a
natural question arises in the minds of most students. Why can’t we simply change the sign bit from 0 to 1 and be done
with it? Why is it necessary to invert the bits and add 1? There are two very good answers to these questions.

1. Simply changing the sign bit from 0 to 1 would give two different representations of zero, 00000000 and 10000000
because +0 = -0 = 0. This would be both confusing and wasteful. Instead of having two codes to represent zero, the
twos complement system uses the code 10000000 is used to represent —128.

2. Using the twos complement method allows all integer subtractions to be converted to additions. This allows engineers
to simplify CPU design because only adder circuits are required to add and subtract integers.

8-bit Signed Binary Integer Decimal Value . -1 01 2
10000000 128 . The twos complement
10000001 _127 ; . system (8-bit signed) can
. be visualized as a circular
number line. When the
. . -64 64 highest value of 127 is
11111111 -1 reached, adding 1 causes
00000000 0 . . a “wrap-around” back to
00000001 1 . the lowest value of -128.
. . : Thus, adding causes a
. clockwise movement
: : -127 around the circle.
01111111 127 128 17 126
Exercises

1. Using the specified number of bits, write the binary representation of each of the following integers.
(a) —32700 (16-bit signed integer, short in Java, “Word” in Microsoft lingo)
(b) —1470987 (32-bit signed integer, int in Java, “Dword” in Microsoft lingo)
(c) 65535 (16-bit unsigned integer, char in Java)

2. Interpret the bit pattern 11111111100000000000011000000001 as
(a) two 16-bit Unicode characters (i.e. two Java char values or two 16-bit unsigned integers)

(b) a 32-bit signed integer (i.e. an int value in Java)
(c) a 32-bit unsigned integer (no equivalent type in Java)
(d) an IEEE754 32-bit floating point value (a float value in Java)

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDEF-10

The Importance of Hexadecimal Numbers

Although at the level of a computer’s circuitry all information is represented using binary numbers, computer
professionals like engineers and software developers very rarely read information in this form. Binary codes are generally
far too long to be read and interpreted by humans. The hexadecimal number system, on the other hand, is far easier for
humans to understand because large numbers can be represented using a relatively small number of characters. In
addition, since 16 is a power of 2 (2* = 16), it is very easy for a computer to convert from binary to hexadecimal and vice
versa.

The table shown below helps you to gain some insight into the usefulness of hexadecimal numbers. It compares the
binary and hexadecimal representations of a few integers ranging from 0 to 255.

Decimal 0 10 20 30 40 50 100 200 255
Binary 0 1010 10100 11110 101000 110010 1100100 11001000 11111111
Hexadecimal 0 A 14 1E 28 32 64 C8 FF

As you can see, the hexadecimal representation is the shortest.

Because of this, many computer quantities, such as memory location addresses and colour codes, are often specified using
hexadecimal notation. For example, if a computer has 512 MB of RAM installed, the memory locations are numbered as
shown in the following table.

Memory Location Address 1 KB 1 MB 512 MB
Decimal Form 0 1024 1024? = 148576 283547695 . 512(1024%) = 512(1048576) =536870912
Hexadecimal Form 0 400 100000 10E6982F 20000000
Conclusion

Although digital circuits are based on the binary number system, binary numbers are generally too long to be understood
and manipulated easily by humans. The hexadecimal number system, on the other hand, is far more “human-friendly”
because large numbers can be represented using a relatively small number of characters. Moreover, since 16 is a power of
2 (2 = 16), it is very easy to convert from binary to hexadecimal and vice versa. This makes the hexadecimal number
system ideal for discussing computer issues such as memory addresses, error codes, colour codes and character set codes.
The decimal system (base 10) is not at all suitable because ten is not a simple power of two. As a result, conversions
between base 2 and base 10 are more complicated and require greater amounts of processing time.

Converting from one Base to Another

Binary to Octal Binary to Hexadecimal Octal to Hexadecimal

1. Starting at the rightmost end of the 1. Starting at the rightmost end of the 1. Convert from octal to binary.
binary number, form groups of 3 binary number, form groups of 4
bits. bits.

2. Convert each group of 3 bits to octal 2. Convert each group of 4 bits to 2. Convert from binary to
form. hexadecimal form. hexadecimal.

Example 1 Example 2 Example 3

1 0 1 1 11 0 1 1 0.1 1]1 1 0 1 2 1 _ 7

2" 775 B D 1 0 0 0 1 1 1 1

Now convert 10001111 to hex using
the method of example 2.

Octal or Hexadecimal to Binary
Use the method shown in example 3 to convert from octal to binary. To convert from hex to binary, arrange the bits in
groups of four instead of three. Do not forget to include any leading zeros whenever they are needed!

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-11

Decimal to Binary
As you will soon see, this conversion requires a great deal more processing than the ones shown on the previous page.

Example
ConveF;t 12310y to binary form. Assume that the given value is stored as a Java byte value (8-bit signed integer).
Method 1 (Subtraction) Method 2 (Division by 2)
S 64 32 16 8 4 2 1
Begin at the left end of the binary number and proceed to 0 IN A Al 41 402121
the rightmost bit. 123+2=61R 1 Kinary number ends in 1 (i.e. it’s odd)

Binary number ends in 1 (i.e. it’s odd)

S 64 32 16 8 4 2 1 f1+2=308

0o 1 1 1 1 0 1 1 30 + 2 =15 R @ binary number ends in 0 (i.e. it’s even)
123-64 59-32 27-16 118 3-0 32 1-1] .binary number ends in 1 (i.e. it’s odd)
=9 =27 =11 =3 =3 =1 =0 7+2=3R{ ..binary number ends in 1 (i.e. it’s odd)

3+2=1 Rl -.binary number ends in 1 (i.e. it’s odd)
1+2=0R1 ..binary number ends in 1 (i.e. it’s odd)
Elementary School Arithmetic Revisited
Although most of us have known algorithms for adding and subtracting since elementary school, few of us understand

why these algorithms produce correct answers. The following examples should help you understand why the steps that
you were taught in elementary school actually work!

Decimal Examples

1000 100 10 1 7 ones+ 6 ones=13ones 1000 100 10 1
1 1 1 _ 0 9 9 10
=1ten+3ones 1 thousand is borrowed from the thousands
9 8 7 1ten + 8 tens + 9 tens = 18 tens A o column
+ 8 9 6 =1 hundred + 8 tens - 6 4 3
7 8 8 3 1hund.+9hund.+8hund. = 18 hund. 3 5 7 1thousand =9 hundreds + 10 tens + 10 ones

=1 thousand + 8 hund.
Binary Examples

8 4 21 1one+1one=2qgo0nes 8 4 2 1
! i i 1 =1two + 0 ones /10/ 5/ /é/ /190/ 1 “eight” is borrowed from the “eights”
1two + 1 two + 1 two = 3 twos column
+ 1 0 1 =1 four + 1 two - 11 1 .
1 1 0 0 1four+1four+ 1 four =3y fours 1 leight=1four+1two + 10, ones
=1 eight + 1 four
Recall that this means “2(,q)” in binary.
Octal Examples
512 64 8 1 4ones+7ones=13g ones 512 64 8 1 1“8”isborrowed from the “8s” column
' ; gl; 4 = 1 eight +3 ones g/ /é/ /154/ /133/ 3 “ones” + 1 “eight” =133, ones
3“8s” + 6 “8s” + 4 “8s” = 134 eights .
+ 7 4 7 =1“64” + 3 “8s” - 4 7 7 1%512”isborrowed from the “512s”
1 7 3 3 1“4"+7%64s"+7“64s"=17g“64s" 5 3 5 4 column
=1%512” + 7 “64s” 1“512” + 4 “8s” =7 “64s” + 14 “8s”
Hexadecimal Examples
409(15 2?6 116 1 Eones + 9 ones = 17 Ones 409?E 2'5;6 llg 110 1 “16” is borrowed from the “16s”
=1%16" +7 ones column
A C E 1 111611 + C ll16511 + F “168” = 1C(16) 55165” /ﬁ /6 /E/ K O “Ones” + 1 LL16” :10(16) Ones
+ 7 F 9 =1%256” + C “165” - 4 F 7T))
1 2 C 7 1“256"+A“256s"+7%2565" =124 “256s" E B [E 9 1"40967isborrowed from the “4096s
=14096” + 2 “2565” column

1%4096” =F “256s” + 1016 “16s”

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-12

Exercises and Problems

1.

Evaluate without using a calculator. Show all carrying or borrowing!

11001100111, 11001111111, A3FAE 15, 76543214,
+10111100011, +10111101111 + 9FFBC ¢ + 6775322,
11011101111, FFFBC e, 11001100111, 11001111111,
11011100111, A3FAE 5, — 10111100011 — 10111101111
+11001111111, + 9FFBC e
A3FAE 15, 76543214,
— 9FFBC e — 6775322,

Explain why a “1” is borrowed from the “1024” (2'°) place. In addition, explain how this “1” is redistributed to the
other places.

10000000000,
—1p

Now that you know how to add and subtract using numbers that are expressed in non-decimal form, try the following
multiplication questions.

10011 3AE 765¢)
x 10111 X 9FCs) x 677

Computers do not perform binary subtraction in the manner described above (i.e. using borrowing). Instead, the
adder circuits are used to “add the negative.” This avoids having to design circuitry for subtraction as well as
addition. The following steps are used to perform the subtraction a — b:

i. Express —b in the “twos complement” binary form.

ii. Perform a + (-b)

Perform the following subtraction using the method described above. Use the method of “borrowing” to verify that
both methods produce the same answer. Assume that the integers are stored in 8-bit signed form (e.g. byte in Java).

Recall that

the leftmost ééigéggi(a
bit is the — VULUULUL2)
“sign” bit.

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-13

5. Convert each of the following to decimal form. (Assume that no sign bits are used.)

(a) 110110100111, (b) 746754,

6. Convert each of the following to binary form
(a) 74675(8) (b) FACE(le)

7. Convert each of the following to octal form
(@) 110110100111, (b) FACE (s

8. Convert each of the following to hexadecimal form
(a) 110110100111 (b) 74675,

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields

(c) FACE)

(C) 32452(10)

(C) 34512(10)

(C) 74675(10)

CMDF-14

ASSIGNMENT: EXPLORING PRIMITIVE DATA TYPES IN JAVA
KU APP COM
/19 121 /10

You have already encountered various primitive Java data types (e.g. int, short, float, char)®. In this assignment, you will have a
further opportunity to obtain and demonstrate a better grasp of their various representations and interpretations. Note: There will be

up to 10 communication marks awarded for the clarity of your answers.
1. Complete the following chart. (9 KU)

Data Type Description Size/Format Range
byte Byte-length signed integer 8-bit twos complement =128 ... 127
long

double

boolean

Once you have completed the chart, you should understand both what these types are and their structure.

2. Choose 2 different negative integers which can be converted into (signed) 8-bit twos complement form. Convert them.

Show your work. Do it cleanly and concisely! (6 APP)

Examples
Negative Decimal Integer: —89
Positive Binary Representation: 01011001 (representation of +89)

Bit Inversion: 10100110
Addition of 1: 10100111
1)
2)

1 See http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html for additional reference.

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields

CMDF-15

3. a) Does the double data type use the twos complement method to represent negative numbers? (1 KU)

b) Explain how 64 bits of raw binary data can be interpreted as a floating point number. Note that for this question you
will need to do some research on the 64-bit version of IEEE 754. (9 KU)

c) Can a double type (64 bits) represent values greater than 2°*? Why or why not? (5 APP)

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-16

d) Choose a floating-point value greater than or equal to 3.5E38 (3.5%10%) and show how it would be represented in
IEEE 754 64-bit format. (10 APP)

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-17

BAsiC CLASS STRUCTURE

//Beginning of class declaration
public]private|protected [abstract] [final] [static] class ClassName

{

[extends SuperClassName | implements InterfaceName]

//DATA FIELDS should be declared first. As with all members of a class, the data
//fields should be public, private or protected. Public data fields are visible
//everywhere their corresponding classes are visible. A protected data field is
//only visible within its class, within its subclasses or within the class package.
//Note that the subclasses may reside within different packages. Using the private
//modifier in the declaration of a data field hides it in such a way that it cannot
//be directly referenced outside of the class in which it is declared.

public|private]|protected [final] [static] type dataFieldName [=initialvalue]; //variable

Exactly one of these These modifiers are optional. If “Final” is Data type of
modifiers must be used, then “static” should also be used variable. _
used. (The “|” symbol because it is wasteful to create instances of (e.g. Int, variable. .
means “or.”) constants! (The “[]” mean “optional.”) float, ...) (Optional)

Name of Initial Value
of variable.

public]private]protected [final] [static] Class dataFieldName [=new callToConstructor(.)];//object

A A\

(CIaSSStNra'nrq]E; Name of Coﬁ?tlrlljgtor
e.g. ing, .
Array ...) object Method

//CONSTRUCTOR METHODS, which are used to initialize objects, should be declared
//next. Note that constructor methods ARE NOT considered members of a class.
//Therefore, even if a class is derived from (i.e. is a subclass of) an existing
//class, i1t must have its own set of constructor methods. Note that the name of
//each constructor method MUST MATCH the name of the class. Note also that
//constructors may be overloaded.

public ClassName(parameterList)

//Constructor code goes here.

}

//Finally, all other methods should be declared using the format described below.
//Note that the instance methods of a given class may override instance methods
//with the same signature in any of its superclasses. In addition, static (class)
//methods of a given class may hide static methods with the same signature in any
//0f its superclasses. Like constructors, methods may be overloaded.

public|private]protected [abstract] [native] [synchronized] [final] [static] returnType

methodName(parameterList) [throws Exceptionl, Exception2, ..]
) "
These modifiers are optional. The keywords A “throws” clause is also optional. It is
Exactly one of these “Final” and “static” have the same meaning used to list any exceptions that a method
modifiers must be as with data fields. The other keywords are can throw that are not derived from the
used. (The “[” symbol usually used only in a_dvanced applications. Note classes “Error” or “Runti_meException.”
means “or.”) that not all combinations of thefe keywords are The method can conta_ln a“try e
allowed. See chapter 8 of the “Java Language catch” block for detecting and possibly
Specification” for more information. handling any caught exceptions.
}

}//End of class declaration

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-18

UNDERSTANDING CLASSES AND OBJECTS AT AN INTUITIVE LEVEL

Why use Classes?

o A class can be used as a template for modelling and creating objects. (e.g. “Form” class)
— We DO create instances of such classes by using the “new” keyword and calling a constructor.

e Classes can also be used as a convenient structure for storing related methods and data fields (e.g. “Math” class)
— We DO NOT create instances of such classes.

The “Automobile” Class

We shall design a class that models a real-world automobile. For the sake of simplicity and brevity, we shall focus only
on certain key characteristics of car objects.
Automobile

Data Fields Constructor Methods Other (Public) Methods
private String colour Automobile() void accelerate(float, float)
Stores the colour of the automobile Sets the initial values Gradually changes the speed of the
as a string. of the data fields to car from the current value to value

specified by the first float

default values. Numeric argument. The second float argument

private float direction fields are set to 0 and e i
Stores the direction in which the String fields are set to specifies the rate of acceleration
car is moving (in degrees, from O o -
to 360). i String getColour()
. Returns the value of the "colour"
private String engine Write at least three more data field.
Stores the type of engine as a constructors for the Float getDirection()
String. Automobi le class. Returns the value of the "direction”
- - - data field.
private float engineSize
Stores the engine size (in Litres) String getEngine()
as a float value. Returns the value of the "engine"
data field.
private float fuelCapacity float getEngineSize()
Stores the fuel capacity (in Returns the value of the
Litres) as a float value. "engineSize" data Ffield.

Ffloat getFuelCapacity()

Stores the gear that is engaged in Returns the value of the
the transmission (1, 2, 3, 4, etc. fuelCapacity™ data field.
for forward gears, -1 for reverse byte getGear()

and 0 for neutral).

private byte gear

Returns the value of the "gear" data
field.

private String make
String getMake()

Stores the make of the automobile

as a string. Returns the value of the "make'" data
field.

private String model String getModel ()

Stores the model name of the Sets the value of the "model" data

automobile as a string. field.

private float pover Write at least three more public

Stores the maximum power (in kW). -
P ¢) methods for the Automobi le class.

private float torque
Stores the maximum torque (in Nm).

private float speed
Stores the speed of the car (in
km/h) .

Werite at least three more data fields
for the Automobi I e class.

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-19

CLASS HIERARCHIES AND INHERITANCE

Example of Class Inheritance

The Java class “Throwable” is a
subclass of the “Object” class.
This means that it inherits the

public and protected

The Java class “Object” is the
root of the Java class hierarchy.
All other classes have “Object”
as a superclass. This means that

. i every Java class inherits the
members of the “Object” class. Object .
The “Throwable” class is said to eupliCe e Ero_te(ited
be derived from the “Object” members of the “Object” class.
class Throwable Every Java class is said to be
‘ derived from the “Object” class.
The Java class) —
“RuntimeException” is a Exception The Java class “Exception” is a
subclass of the “Exception” subclass of the “Throwable”
class. This means that it inherits class. This means that it inherits
the public and protected RuntimeException the public and protected
members of the “Exception” members of the “Throwable”
class. The “RuntimeException” Class_.d Thg “Exc_epg(;n" class is
class is said to be derived from c : . said to be derived from the
ArithmeticException ol 5 (@ A,

the “Exception” class.

The Java class “ArithmeticException” is a subclass of the “RuntimeException” class. This
means that it inherits the publ ic and protected members of the “RuntimeException” class.
The “ArithmeticException” class is said to be derived from the “RuntimeException” class.

- java.lang
+-%1# AbstractMethodError Note

--## ArithmeticException e class “ArithmeticExceptioniie Constructor methods are
—|-Superclasses found within the “java.lang” package. not considered members of
=% RuntimeException The J++ object browser can be used to aclass. Therefore, they are
=% Exception show the hierarchical relationships of the not inherited by subclasses.
=% Throwable “ArithmeticException” class. Each subclass must have its

#2 Object own constructor methods.

The “extends” Keyword

The “extends” keyword is used whenever you would like to create a class that is based on an existing class. Whenever
you create a form in J++, you are actually defining a new class based on the “Form” class.

e.e. public class FormTest extends Form

By using the “extends” keyword, the “FormTest” class inherits all the publ ic and protected members of the
“Form” class. The advantage of this is that it is easy to build new classes that are built upon the foundation of existing
classes, thereby eliminating the problem of “reinventing the wheel.”

Note that it is not possible to extend all classes. Some classes, such as the String class, are defined as “final,” which
means that they cannot be used as the basis for a new class.

Question
What is the difference between a publ ic and a protected member of a class?

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-20

USING TIME CONVERTER 1.1 TO REVIEW UNIT 1

Concepts Introduced and/or Reviewed in Time Converter 1.1

Studying the “Time Converter 1.1” program is a great way to review many of the concepts introduced in unit 1. You will
find all the necessary files for “Time Converter 1.1” in the folder I:\Out\Nolfi\Ics4mo\Time Converter 1.1 (or you can
download all programming examples). In order for this program to work correctly, you must copy the “Time Converter
1.1” folder to your g: drives. Do not try to run the program directly from the “I” drive!

The “Time Converter 1.1” program is designed to introduce or review the following concepts:

Declaring a variable (e.g. long secondsElapsed;)
Declaring and initializing a variable in the same statement (e.g. long secondsElapsed=0;)

Declaring objects (e.g. String secondsText;). Note that in this statement, “String” is the name of the class and
“secondsText” is the name of the object. In this example, an instance of the class (i.e. the object) has not yet been created. All that has
occurred is that the name “secondsText” has been associated with a yet-to-be-created object.

4. Declaring an object and instantiating (creating an instance of) a class in the same statement
(e.g. String seC{ndsTextznew String();)
. Call to one of the Eleven Constructor
Name of Class 1\1(?:1;1212 (o)fl;JeSVCt (indi‘({;‘t:gl tﬁegfe‘;(t)il;)% ofa Methods Of the Strin_g _C_fla_ss
instance of class) new instance of the class) (A constructor is used to initialize an
object)
5. Importing packages and classes.
6. The “extends” keyword (used to create a new subclass that inherits the fields and methods of its superclass)
7. Cast operator (This is used to coerce (force) type conversions. e.g. char keyPress=(char)0;)
8. Using the ternary conditional operator “?:”
9. Exception handling using a try..catch..Final ly structure
10. Java operators and primitive data types
11. Event handling (including the routing of events for a group of objects to same event handler)
12. Classes
13. Using the Java String class
14. Defining methods
15. Creating menus in J++
16. Creating keyboard shortcuts for menus in J++
17. Using “Timer” controls in J++
18. Creating J++ programs that use more than one form (owner forms and owned forms)
19. Using “ColorDialog” controls in J++
20. Using “Rich Edit” controls in J++
21. Using the Java “Date” class (java.util .Date)
22. Using arrays whose elements are objects (e.g. Color[] colorAttribute = new Color[3];)
23. Class fields (also called static fields) versus instance fields (non-static fields)
24. Class methods (also called static methods) versus instance methods (non-static methods)
25. Modifiers (e.g. public, protected, private, static, final)
26. The return keyword
27. Encapsulation
28. Information Hiding
29. Inheritance
30. Overriding (Single Polymorphism)
31. Overloading and Hiding

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-21

PUTTING ALL THIS KNOWLEDGE INTO PRACTICE — BINARY BLASTER

Description of the “Binary Blaster” Project

Working as a team, our class shall develop software that can perform the following functions:

1. Convert integers expressed in binary/octal/decimal/hexadecimal form to binary/octal/decimal/hexadecimal form.
Negative integers should be expressed in twos complement form.

2. Add and subtract integers expressed in binary/octal/decimal/hexadecimal form.

3. Given a colour code expressed in hexadecimal form, display the colour (24-bit colour).

4. Given a Unicode character code expressed in hexadecimal form, display the character.

5. Given a Unicode character entered using the keyboard or pasted from another program, display its Unicode code in
both hexadecimal and decimal forms.

6. Given 32 or 64 bits of raw binary data, display the equivalent IEEE754 value. (See
http://en.wikipedia.org/wiki/IEEE_754, page 9 and 1:\4Students\OUT\Nolfi\lcs4m0\ieee754 for more information.)

7. Use the simple method of data encryption described below to send and receive encrypted messages. Your program
should be able to encode an unencrypted text message as well as decode an encrypted text message.

8. Use the simple method of data recovery (i.e. error correction) described below to check messages for random
spontaneous bit inversion errors (i.e. a “0” is changed spontaneously to a “1” or a “1” is changed spontaneously to a
“0.”). Random spontaneous bit inversion errors are known to be caused by cosmic radiation, lightning and many
other sources of interference (“noise”).

9. Use the simple method of data compression described below (called run-length encoding) to reduce the amount of
storage space required for files containing plain text (text stored in Unicode format).

Each student will develop a specific portion of this software. A project manager will collect the individual parts and
assemble them into a working program.

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-22

Note

1. The method of data encryption described on page 24 is much simpler and much less effective than the methods used in
practice. For example, for secure Web connections (i.e. “https™), 128-bit (or greater) encryption is used. Examples of
such encryption algorithms include TwoFish, BlowFish, Serpent, RC6, MARS and Rijndael.

Such methods are either asymmetric or symmetric. Asymmetric methods use a “public-key/private-key” pair, as
illustrated in the following diagrams.

Alice Bob
: Hello E t
52ED8T9E Key generation Aical ™| ENCTYP
TOF71D92 function + Alice's
public key
Big random 6EB69570
number 08E03CE4
Alice
 J
Hello
Alice's Alice's Alice! e .
public key private key private key

Symmetric methods use a shared private key as illustrated in the following diagrams.

Alice Bob
Bob's | Combine 751A696C it % Combine 751A696C
public key keys = 24D97009 public key keys 24D87009
h/ Alice and Bob's Hl Alice and Bob's
h shared secret
Alice's R Bob's
private key private key

2. The method of data recovery described on page 25 is also much simpler and much less effective than those used in
practice. The most commonly used methods are called checksum algorithms. Examples of these include CRC-8,
CRC-ARC, CRC-16 and CRC-32 (“CRC” stands for cyclic redundancy check). Cryptographic hash functions are
related to checksums but include additional security features.

3. Not at all surprisingly, the method of data compression described on page 26 is very crude and ineffective compared to
the methods used in practice. The most commonly used lossless methods of compression are variants of the LZ
algorithm. MPEG (which includes both JPEG and MP3) is a lossy method of compression that is used to compress
movie files.

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-23

Simple Method of Data Encryption
Using a 5-bit binary code, it is possible to encode all the letters of the alphabet and a few punctuation symbols as shown below.

A 00000 1 01000 Q 10000 Y 11000
B 00001 J 01001 R 10001 Z 11001
C 00010 K 01010 S 10010 I 11010
D 00011 L 01011 T 10011 ? 11011
E 00100 M 01100 U 10100 - 11100
F 00101 N 01101 V 10101 , 11101
G 00110 0 01110 W 10110 " 11110
H 00111 P 01111 X 10111 space 11111

Using this system, the first three words of the message “DO YOUR WORK OR I’LL WRAP THIS KEYBOARD
AROUND YOUR NECK!” would be encoded as follows:

D O Y 0} U R W @) R K
ooo11 01110 11111 11000 01110 10100 10001 11111 10110 01110 10001 01010

Exercise
Using the table of codes given above, complete the binary representation of the message given above.

The Encryption Scheme Requires a Special form of Binary Addition and a “Private Key”

Anyone who has knowledge of this encoding scheme, however, can intercept messages and read them. Even without
knowledge of the scheme, it is possible to write computer programs that scan raw binary data and look for patterns that

can help to match the data to known words.

To ensure the privacy of the information, therefore, it is necessary to encrypt the message. Although it is extremely
difficult to design an encryption method that is “uncrackable,” encrypting data greatly reduces the probability that
sensitive information will be read by unauthorized parties.

For the purposes of this assignment, we shall use a simple method of encryption that is easy to implement. (It is,
however, a weak method of encryption, meaning that it is relatively easy to crack.) In this method, addition and
subtraction are defined as follows:

0+0=0 0-0=0 Notice that addition and subtraction are
0+1=1 0-1=1 identical! Also note that there is no carrying
1+0=1 1-0=1 or borrowing, as there is in true binary
1+1=0 1-1=0 addition and subtraction.

In addition to the operations defined above, this encryption method requires a 5-bit code known as a private key. The key
is known to the sender and the recipient but not to anyone else. To encrypt a message, the key is used, along with the

special operations defined above. In the following example, the private key 10101 is used to encrypt the message
“DO YOUR WORK.”

Original Message in Text Form D (0) Y (0) U R W (0] R
Original Message in Binary Form 00011 01110 11111 11000 01110 10100 10001 11111 10001 01110 10001
“Add” Private Key +10101 | +10101 | +10101 | +10101 | +10101 | +10101 | +10101 | +10101 | +10101 | +10101 | +10101
Encrypted Message in Binary Form 10110 11011 01010 01101 11011 00001 00100 01010 00100 11011 00100

Encrypted Message in Text Form W ? K N ? B E K E 2 E

(Message sent to recipient)

To decrypt the message, simply reverse the above steps.

Encrypted Message in Text Form A\%Y% ? K N ? B E K E ? E
Encrypted Message in Binary Form 10110 11011 01010 01101 11011 00001 00100 01010 00100 11011 00100
“Subtract” Private Key -10101 | -10101 | -10101 | -10101 | -10101 | -10101 | -10101 | -10101 | -10101 | -10101 | -10101

Decrypted Message in Binary Form 00011 01110 11111 11000 01110 10100 10001 11111 10001 01110 10001

Decrypted Message in Text Form D (0) Y (0) U R W (0) R

K
01010
+10101
11111

11111
-10101
01010

K

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-24

Simple Data Recovery Method

When digital signals are in transit between a point of transmission and a point of reception, they are subject to
spontaneous bit inversion errors. This means that a “1” can be spontaneously changed to a “0” and a “0” can be
spontaneously changed to a “1.” If the digital signals are transmitted using radio waves (i.e. wireless data transfers), then
they are especially susceptible to such “interference.” Sources of interference that are know to cause spontaneous bit
inversion errors include cosmic radiation (radiation that comes from space), lightning, power surges and strong
electromagnetic fields.

Fortunately, computer scientists have developed algorithms that allow spontaneous bit inversion errors to be detected and
even corrected. A very simple such method, used originally by NASA, is able to correct one-bit errors. (It cannot correct
errors of two or more bits.) It is based on the same type of addition used in the simple encryption method describe above,
as well as the vector operations vector addition and dot product of two vectors.

Description of a One-Bit Correction Method

This method relies on a vector operation known as the dot product. The example below shows how to apply the dot
product to two 7-dimensional binary vectors (using the special form of addition defined above).

(1001101)+(0010111)
=1(0)+0(0)+0() +1(0) +1(1) + 0(1) +1(2)
=0+0+0+0+1+0+1
=0
Number Error
of Bitsin | Correcting Fifteen Possible Error Correcting Property Interpretation of Received Data
. Data Vectors Vector
Code Matrix
0001110 1001101 @ Each of the fifteen data The received data vector is “dotted”
0010111 1010100 | vectors has the property that | with each row of the error correcting
1001101 0011001 1011010 | its dot product with each matrix. If each dot product is zero, the
7 0101011 0100101 1100110 | row of the error correcting received vector is considered correct.

0101011 1101000 ' matrix must be zero. When | If not, the error can be corrected (if
0010111) | 0110010 1110001 @ a data vector is received, itis | only one bit is incorrect) by using the
0111100 1111111 | “dotted” with each row of the | columns of the error correcting matrix
1000011 error correcting matrix. (see example below).

Suppose that the vector (1011010) is transmitted from a spacecraft orbiting Mars. As the signal travels toward the Earth,
it passes through a stream of highly energetic particles from the solar wind, which causes a spontaneous bit inversion
error. The vector received at an Earth monitoring station is (1010010). By “dotting” this received vector with each row
of the error correcting matrix, we obtain

(1001101)+(1010010) =1
(0101011)+(1010010) =1
(0010111)(1010010) =0

Since we have at least one dot product that is not zero, we know that an error has taken place. Where is the error? Notice
1

that the column vector | 1 | matches the fourth column of the error correcting matrix. Therefore, we know that the fourth
0
bit of the received vector must be wrong.

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-25

Simple Method of Data Compression — Run-Length Encoding (RLE)

Run-Length Encoding is a very simple method of lossless data compression. It forms the basis of the GIF data
compression algorithm and is also used in the final stages of more sophisticated algorithms such as JPEG. This method
of compression involves searching for runs of consecutive data and storing the number of repetitions of the data. For
example, the string “aaaaaaa” could be stored as “7a” since there are 7 repetitions of the character “a.” Similarly, the
string “abcddddddcbbbbabcdef” could be stored as “abc6dc4babcedef.”

Obviously, this very simple scheme is not of much practical value because it does not allow for the encoding of humbers.
Since the digits from 2 to 9 are used to represent the length of a run of consecutive characters, it is not possible to
distinguish between a number that is used for this purpose and one that is actually part of the data. To overcome this
obstacle, we can use a slightly modified version of the scheme described above.

Rules for Simple Version of RLE for this Project

1. Any sequence of two to nine identical characters is encoded by using two characters. The first character is the length of
the sequence, represented by one of the characters “2” through “9.” The second character is the value of the repeated
character. If a sequence consists of more than nine identical characters, each group of nine characters is encoded
separately.

2. Any sequence of characters that does not contain consecutive repetitions of any characters is represented by a “1”
character followed by the sequence of characters and terminated with another “1.” If a “1” appears as part of the
sequence, it is preceded with a “1.” In this case, the first “1” acts as an escape character (in the same way that the “\”
is used as an escape character in C, C++ and Java).

Using this method, the string “abc11111ddddddddddddddddcbbbbabc234444def,,,,510234” would be stored as follows
labc1519d7d1c14blabc231541def14,151102341

These “1’s” are used to mark the beginning Numbers from 2 to 9 (shown in blue) are In this case, the “1” is used as an escape
and end of a sequence that does not contain used to store the length of sequences of character, not as a delimiter. It indicates
consecutive repetitions of characters. identical characters. that the “1” that follows it is part of the data.

STOP! Do NOT Write Any Code Yet! This is a big Project and Requires a Great Deal of Planning!!

TR 2

By this stage in your programming education, it should be deeply engrained in your grey matter that you should not write
any code for a project of this scope until you first complete several extremely important preliminary steps. The
following is a list of strongly recommended steps that you should follow before you attempt to write even a single line of
code!

1. First you must ensure that you understand fully all the problems that need to be solved. In addition, it is essential that
you understand and are able to apply what we have learned about binary numbers. To ensure that you have a good
understanding, reread pages 3 — 13 and answer all questions. In addition, answer the supplementary questions given
below.

(a) What is lossless data compression? What is lossy data compression? Give examples of each.

(b) List all the escape sequences used in C, C++ and Java. (For example, the new line character is represented as
"\n" and "\O" represents the string terminating character.)

(c) What is the maximum compression ratio achievable with the simple method of RLE described above? What is
the minimum compression ratio achievable?

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-26

10.

11.

12.

Once step one is completed, you should begin planning the user interface for your program. Do not begin creating
the user interface until you have a good design laid out on paper. While planning your interface, keep in mind that
the program will have a large number of features that are in some way related to binary numbers but not necessarily
closely related to one another. Give a great deal of thought to how you will integrate all these features into one
piece of software in a coherent and unified manner.

Show your design for your user interface to your classmates, friends and of course, yours truly, Mr. Nolfi. These
people should provide you with objective feedback about your interface.

Once you are satisfied with your interface design, use the Visual J++ form editor (and any other tools that you
require) to create your interface. During this process, ensure that all objects are named in a descriptive manner and
that all object names adhere to the conventions that we have used throughout the course.

Break up the large problems to be solved into a series of smaller and simpler sub-problems. A “block diagram” is
very useful for this step.

Begin writing pseudo-code for the algorithms that you will be using to solve all the sub-problems. During this
process, always remember to give thought to possible ways of improving the algorithms that you have chosen.

Design the class structure of your program. Each student will be given a copy of the SuperStringMethods class
to assist in the processing of strings. What other classes will you need to design? What will be their structure? What
methods and/or data fields will they contain?

Design the file structure of your program. (More details to follow)

Once steps one to eight have been completed to the best of your ability, you may begin to write code. You should
focus on one method at a time. Before you add a method to a class, test it fully in isolation. Once you are confident
that the method is error free, you may add it to the class and move on to the next method.

While you write your code, remember to adhere to all the positive programming practices that we have been
discussing since grade ten.
o Indent all code properly.

Use descriptive, meaningful names and follow all naming conventions.

Document (comment) all methods clearly and accurately. Each method should be introduced by a comment
that explains the purpose of the method and the meaning/purpose of each parameter.

Document all abstruse (difficult-to-understand) lines of code.

Do not document any self-explanatory lines of code.

Insert blank lines in strategic places to prevent the code from having a sloppy and cluttered appearance.
Include exception handling to ensure that your program will behave gracefully even when the user doesn’t.

O O o o

Test your software rigorously. Ensure that it performs well under a variety of different conditions. Do not forget to
test the boundary/extreme cases! It is essential that you allow other people, especially non-programmers, to test your
software!

If you have completed steps 1 — 11 in a highly proficient manner, you deserve a break! Have a coffee, eat a doughnut
and watch “The Simpsons.” While watching “The Simpsons,” continuously repeat the phrase “I never want to
become like Homer” until the episode is over! You may also need some well-deserved sleep!

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-27

Binary Blaster Master Plan

The heart of Binary Blaster will be a class called “NumericString.” Since our software will input numbers in string form,
it will be necessary to design a variety of methods that can manipulate numbers that are stored as strings.
/**
* The fTollowing is a template for the "NumericString” class. All required data fields and
* constructors are given. However, only the signatures of most of the remaining methods are given.
* You will write the code to implement the static methods and instance methods for which code is
* not given.
*/
public class NumericString
{
/**
* CONSTANT DATA FIELDS
* In keeping with the principle of ENCAPSULATION, the data fields (both constant and variable)
* are bundled with the methods that operate on the data. This allows for the construction
* of logical, cohesive structures.
*/
public final static byte BYTE_SIZE=8, SHORT_SI1ZE=16, CHAR_SIZE=16, INT_SI1ZE=32, LONG_SIZE=64;
public final static byte FLOAT_SI1ZE=32, DOUBLE_SI1ZE=64, COLOR_SIZE=24;
public final static byte BINARY=2, OCTAL=8, DECIMAL=10, HEX=16;
public final static short IEEE754=754;
/**
* VARIABLE DATA FIELDS
* In keeping with the principle of INFORMATION HIDING, the variable data fields are declared
* as "private.” This prevents them from being exposed needlessly to the outside world.
*/
private String number=new String();
private int base;//2, 8, 10, 16, 754->1EEE754; custom bases allowed: 2 -> 16 for integers
private boolean signed;//false->unsigned, true->signed (IEEE754 values must be signed)
private int size;//# of bits: 8, 16, 24, 32, 64; custom sizes allowed: 1 -> 64 for integers

//CONSTRUCTORS
public NumericString(Q)
{
//Set default values of the variable data fields
this.number="00000000";
this.base=BINARY;
this.signed=true;
this.size=BYTE_SIZE;

}

public NumericString(String number, int base, boolean signed, int size)
{

this.number=number;

this.base=base;

this.signed=signed;

this.size=size;

}

public NumericString(NumericString n)

{

this.number=n.number;
this.base=n_base;
this.signed=n.signed;
this.size=n.size;

H

//INSTANCE METHODS

public byte byteValue()

//Return the "byte" value of this NumericString object

}
public char charValue()
{
//Return the "char" value of this NumericString object
}

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-28

public short shortvValue()

{
//Return the "short™ value of this NumericString object
}
public int intvalue()
{
//Return the "int" value of this NumericString object
}

public long longvValue()

//Return the "long" value of this NumericString object
3
public float floatvalue()

//Return the "float" value of this NumericString object

3
public double doubleValue()
{
//Return the "double'"™ value of this NumericString object
¥
public int rgbvalue()
{
//Return the rgb colour value of this NumericString object
}

public long unsignedvValue()

//Return the unsigned integer value of this NumericString object
3
public long signedvValue()

//Return the signed integer value of this NumericString object

3
public NumericString convertTo(int base, boolean signed, int size)
{
//Return this NumericString object converted to the given base
¥
public NumericString convertTo(NumericString n)
{
//Return this NumericString object converted to the format of the NumericString object "n*
3

public NumericString resize(NumericString n, int size)

//Return this NumericString object converted to the format of the NumericString object "n*
}
//Static Methods - To be determined by the individual student.

}//end of class

Copyright ©, Nick E. Nolfi 1CS4MO Classes, Methods and Data Fields CMDF-29

	Unit 2 – Classes, Methods and Data Fields
	 An Overview of Digital Circuits and the Binary Number System
	Computer Architecture -- An Overview of Digital Circuits
	The CPU is the “Engine” of the Computer System
	Why do Computers Process Binary Numbers and not Decimal Numbers?
	Why Computers Count by “Twos” instead of “Tens” – The Basis of Digital Circuits
	Question

	Character Encoding – How Binary Numbers are used to represent Textual Information
	 An Old Binary Character Encoding Scheme – Morse Code
	EBCDIC, ASCII, ANSI, ISO-Latin 1 and other Character Sets
	 The Relationship between Storage Space and Characters
	An Example of Unicode Character Mappings
	 Examples
	Solutions

	Questions

	 Binary, Octal and Hexadecimal Arithmetic
	Place Values
	 Various Interpretations of Binary Codes
	The IEEE754 Standard for Representing Floating Point Numbers
	More Information

	 The Twos Complement Method of Representing Signed Integers
	Example 1 – Positive 8-bit Signed Integers (byte Data Type in Java)
	Example 2 – Negative 8-bit Signed Integers (byte Data Type in Java)
	Why use the Twos Complement Method to Represent Signed Integers?
	Exercises

	 The Importance of Hexadecimal Numbers
	Conclusion
	Converting from one Base to Another
	Binary to Octal
	Binary to Hexadecimal
	Octal to Hexadecimal
	Octal or Hexadecimal to Binary
	 Decimal to Binary
	Method 1 (Subtraction)
	Method 2 (Division by 2)

	Elementary School Arithmetic Revisited
	Decimal Examples
	Binary Examples
	Octal Examples
	Hexadecimal Examples

	 Exercises and Problems

	 Assignment: Exploring Primitive Data Types in Java
	 Basic Class Structure
	 Understanding Classes and Objects at an Intuitive Level
	Why use Classes?
	The “Automobile” Class

	 Class Hierarchies and Inheritance
	Example of Class Inheritance
	The “extends” Keyword
	Question

	 Using Time Converter 1.1 to Review Unit 1
	Concepts Introduced and/or Reviewed in Time Converter 1.1

	 Putting all this Knowledge into Practice – Binary Blaster
	Description of the “Binary Blaster” Project
	Note

	 Simple Method of Data Encryption
	Exercise
	The Encryption Scheme Requires a Special form of Binary Addition and a “Private Key”

	 Simple Data Recovery Method
	Description of a One-Bit Correction Method

	 Simple Method of Data Compression – Run-Length Encoding (RLE)
	Rules for Simple Version of RLE for this Project

	STOP! Do NOT Write Any Code Yet! This is a big Project and Requires a Great Deal of Planning!!
	 Binary Blaster Master Plan

