
Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Arrays and Lists in C# UALC#-1 

UNIT 2 – UNDERSTANDING ARRAYS AND LISTS IN C# 

UNIT 2 – UNDERSTANDING ARRAYS AND LISTS IN C# ............................................................................................................. 1 

USING ARRAYS IN C# .......................................................................................................................................................................... 2 

THE CONCEPT OF AN ARRAY ................................................................................................................................................................. 2 
IMPORTANT DETAILS ABOUT ARRAYS IN C# .......................................................................................................................................... 2 
SEVERAL EXAMPLES OF ARRAY DECLARATIONS ................................................................................................................................... 2 
EXERCISES INVOLVING ARRAYS ............................................................................................................................................................ 4 

ICS4U0 – ROMAN CONVERTER PROJECT..................................................................................................................................... 6 

ROMAN TO HINDU-ARABIC CONVERTER ............................................................................................................................................... 6 
Before setting out to write Code, Consider this… ............................................................................................................................ 6 
STOP!  DO NOT WRITE ANY CODE YET! First we need to TRY SPECIFIC EXAMPLES and develop A PLAN! ........................ 7 
Hindu-Arabic to Roman Algorithm Example ................................................................................................................................... 7 
Roman to Hindu-Arabic Algorithm Example ................................................................................................................................... 7 
Hindu-Arabic to Roman Algorithm Pseudo-Code ............................................................................................................................ 7 
Roman to Hindu-Arabic Algorithm Pseudo-Code ............................................................................................................................ 7 
Exercises........................................................................................................................................................................................... 8 

ROMAN CONVERTER EVALUATION GUIDE ................................................................................................................................ 9 



Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Arrays and Lists in C# UALC#-2 

USING ARRAYS IN C# 
The Concept of an Array 

 An array is a structure that allows you to use a single name to refer to a group of two or 
more variables. 

 To distinguish one variable in the group from another, a number, called the index or 
subscript, is used. 

 This concept is similar to the street address of a house.  Each house on a given street is 
identified by the same street name.  However, each house also is identified by a unique 
number, which makes it possible to locate any given house. 

 For example, shown at the right is an overhead view of a portion of Centre Street North in 
Brampton.  Since each house on this street is identified by a unique number, there is never any confusion 
distinguishing one house from another. 

 Arrays are used whenever a program needs to process a group (usually a large group) of related data.   

 Arrays help you to create shorter and simpler code in many situations because loops can be used to process 
the array elements efficiently, regardless of the size of the array. 

Important Details about Arrays in C# 

 All the elements in an array have the same data type. 

 Because C# must allocate memory for each element of an array, avoid creating very large arrays. 

 Arrays have both upper and lower bounds and the elements of the array are contiguous within those bounds.  
In C, C++, C# and a host of other languages derived from C, the lowest index is always zero. 

 If a program attempts to access an element of an array using an index that is either negative or greater than 
the upper bound, an “ArgumentOutOfRangeException” is thrown. 

 Arrays can be thought of as fixed-size lists.  Once an array has been declared and initialized, the number of 
elements in the array remains fixed. 

 C# also provides support for Lists, which can be thought of as variable-size arrays or dynamic arrays.  Lists 
are essentially arrays that can grow and shrink in size while a program is executing.  Lists in C# are covered 
later in this unit. 

Several Examples of Array Declarations 

//Create a one-dimensional, empty array of "double" 
//values. The elements of the array exist but 
//they have not yet been assigned any values. 

double[] temperature = new double[4]; 

Index 0 1 2 3 

Data - - - - 

In this example, a variable of array type is 
declared, an array object is created and storage 
space is allocated for the elements (also called 
components) of the array.  However, the elements 
of the array do not yet have values. 

//Create and initialize an array of "double" values. 
//Initial values are given in an initializer list. 
//An initializer list is a set of values, separated 
//by commas and enclosed in braces. 

double[] temperature = new double[4] {0,2,4,6}; 

Index 0 1 2 3 

Data 0 2 4 6 

In C#, arrays are implemented as objects.  
Therefore, the new keyword must be used in the 
declaration of an array to create a new array 
object.  Note that array indices (singular index, 
also called subscripts) in C# always start at zero. 

  

Number of elements in the array. 



Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Arrays and Lists in C# UALC#-3 

//Create an array of "string" values. No values 
//have been assigned yet to the elements of the array. 

string[] name = new string[4]; 

Index 0 1 2 3 

Data - - - - 
 

//The following declares a two-dimensional array called 
//'distance.' It consists of two rows (horizontal) and 
//3 columns (vertical). Its purpose is to store distances 
//between points. As with other similar examples, the 
//array elements have not yet been assigned values. 

double[,] distance = new double[2,3]; 

 0 1 2 
0 - - - 
1 - - - 

The statements shown at the left can 
be used to declare and create a two-
dimensional array of double 
values.  The row indices run from 0 
to 1 and the column indices run from 
0 to 2.  Without any assignment 
statements, however, the two-
dimensional array is empty (i.e. the 
elements have not yet been assigned 
any values). 

//'distance[i,j]' stores the distance from point 'i' to  
//point 'j.' For example, the distance from point 0 to  
//point 1 is 10.7. 

distance[0,0] = 0; 
distance[0,1] = 10.7; 
distance[0,2] = 25.3; 
distance[1,0] = 10.7; 
distance[1,1] = 0; 
distance[1,2] = 16.3; 

 0 1 2 
0 0 10.7 25.3 
1 10.7 0 16.3 

Once the assignment statements at 
the left are executed, the two-
dimensional array (also known as a 
matrix) will contain the values 
shown above. 

//Use an initializer list of initializer lists to initialize the 
//two-dimensional array 'distance.' 

double[,] distance = new double[2,3] { { 0, 10.7, 25.3 }, 
        { 10.7, 0, 16.3 } }; 

This statement is an alternative (and 
preferable) method of declaring, 
creating and initializing the two-
dimensional array shown above.  
Each row of the matrix is enclosed 
in braces and listed in the desired 
order. 

//A two-dimensional array used as a height map for an algorithm 
//such as the "diamond-square" algorithm. For the sake of 
//simplicity, the array is only 5x5. In reality, it would be  
//much larger. 

double[,] height = new double[5,5] { { 10, 0, 0, 0, 10 }, 
      { 0, 0, 0, 0, 0 }, 
      { 0, 0, 0, 0, 0 }, 
      { 0, 0, 0, 0, 0 }, 
      { 10, 0, 0, 0, 10 } }; 

We shall study the diamond-square 
algorithm in detail later in this unit. 

 
  

Number of Rows Number of Columns 



Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Arrays and Lists in C# UALC#-4 

Exercises involving Arrays 

1. Create a memory map for each code segment.  In addition, determine the problem that is solved in each 
case.  (Some variables have intentionally been given silly names to disguise their purpose.) 

Code Segment Memory Map (Trace Chart) Problem Solved? 

int[] a = { -1, 5, 3, -6, 3 }; 
int moe = a[0]; 
 
for (int x = 1; x < a.Length; x++) 
{ 
    if (a[x] < moe) 
       moe = a[x]; 
} 

 

By the time the 
loop has finished 
executing, the 
variable “moe” 
stores 

______________ 

______________ 

______________ 

______________ 

______________ 

Random randomGenerator = new Random(); 
int[] a = new int[6]; 

for (int i = 0; i < a.Length; i++) 
{ 
    bool rep = false; 
    int r; 

    do 
    { 
       r = randomGenerator.Next(1, 70); 
       rep = false; 

       for (int j = 0; j < i; j++) 
       { 
          if (a[j] == r) 
          { 
             rep = true; 
             break; //exit 'for' loop 
          } 
       }//end inner for 

    } while (rep); 

    a[i] = r; 

}//end outer for 

 

By the time the 
outer for loop has 
finished 
executing, the 
array “a” stores  
______________ 

______________ 

______________ 

______________ 

______________ 

______________ 

______________ 

______________ 

______________ 

______________ 

______________ 

______________ 

______________ 

______________ 

______________ 

  



Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Arrays and Lists in C# UALC#-5 

2. The following table lists answers to question 1.  Check your answers to ensure that they are correct. 

Code Segment Memory Map (Trace Chart) Problem Solved? 

int[] a = { -1, 5, 3, -6, 3 }; 
int moe = a[0]; 
 
for (int x = 1; x < a.Length; x++) 
{ 
    if (a[x] < moe) 
       moe = a[x]; 
} 

Data stored in the array “a.” 
Index 0 1 2 3 4 

Data 1 5 3 6 3 
 

x moe 
- -1 
1 -1 
2 -1 
3 -6 
4 -6 
- -6 

 

By the time the 
loop has finished 
executing, the 
variable “moe” 
stores the 
smallest value 
stored in the 
array. 

Random randomGenerator = new Random(); 
int[] a = new int[6]; 

for (int i = 0; i < a.Length; i++) 
{ 
    bool rep = false; 
    int r; 

    do 
    { 
       r = randomGenerator.Next(1, 70); 
       rep = false; 

       for (int j = 0; j < i; j++) 
       { 
          if (a[j] == r) 
          { 
             rep = true; 
             break; //exit 'for' loop 
          } 
       }//end inner for 

    } while (rep); 

    a[i] = r; 

}//end outer for 

Since the given code produces random 
integers, it is not possible to predict 
exactly what will occur when the code is 
executed.  The following is an example 
of what could happen. 

Array 
Index 

i 

0 1 2 3 4 5 r 

- - - - - - - - 
0 27 - - - - - 27 
1 27 3 - - - - 3 
2 27 3 51 - - - 51 
3 27 3 51 - - - 3 
3 27 3 51 - - - 16 
4 27 3 51 16 - - 27 
4 27 3 51 16 - - 51 
4 27 3 51 16 42  42 
5 27 3 51 16 42 9 9 

Notice the numbers displayed in red.  
Since each of these numbers already 
occurred for a previous value of “i,” a 
new value of “r” needs to be generated. 

By the time the 
outer for loop has 
finished 
executing, the 
array “a” stores 
six random 
integers ranging 
from 1 to 69, 
without 
repetition (i.e. 
each random 
integer is 
different from 
all the others). 

3. On paper, write C# code to perform each of the following tasks.  Do not use a computer for this question 
except for verifying that your code is correct. 

(a) Find the largest value stored in an array. 

(b) Find the average of the values stored in an array. 

(c) Find the median of the values stored in an array. 

(d) Copies the values stored in an array to another array.  (Avoid this in practice because it uses a great deal 
of memory.) 

(e) Fill an array of 52 elements with random integers ranging from 0 to 51 without repetition.  (This is 
equivalent to shuffling a deck of 52 cards.  Use a diagram to illustrate this.)  See question 1 for a hint. 

4. Write a C# program for a word “jumble” game (also known as word scramble).  The user is given a word in 
“jumbled” form (the letters are randomly rearranged) and the user is given a limited number of guesses 
and/or a time limit to figure out the word.  For example, if the user is given the string “bmejul,” the correct 
answer would be “jumble.” 



Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Arrays and Lists in C# UALC#-6 

ICS4U0 – ROMAN CONVERTER PROJECT 

Roman to Hindu-Arabic Converter 

Write a program that can convert a number expressed in Roman form to a number expressed in Hindu-Arabic 
form and vice versa.  Your program must  

 be able to convert any value from 1 to 3999999 from Hindu-Arabic to Roman or vice versa 

 respond intelligently to any user input 

 conform to the usual conventions of good coding 

 

  

Before setting out to write Code, Consider this… 

  

1. What are the rules for writing numbers using Roman numerals? 

2. How can you design an algorithm that converts from Hindu-Arabic to Roman? 

3. How can you design an algorithm that converts from Roman to Hindu-Arabic? 

4. How are numbers greater than 3999 represented using Roman numerals? 

5. How can you make your program recognize invalid values such as “XXMMMM?” 

    

                

The look  
on Mr. Nolfi’s face 

whenever… 

1. …students install software 
or change computer 
settings without asking for 
permission! 

2. …students try to write 
programs to solve 
problems that they do not 
know how to solve! 



Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Arrays and Lists in C# UALC#-7 

STOP!  DO NOT WRITE ANY CODE YET! First we need to TRY SPECIFIC EXAMPLES and develop A PLAN! 

              

The table below shows the basic “building blocks” of Roman numbers less than 4000 and their respective 
values.  That is, any Hindu-Arabic number less than 4000 can be written as a Roman number that uses some 
combination of the symbols listed below.  The best way to store the Roman symbols and their values is to use 
two arrays.  (Keep in mind that in C, C++ and C#, array indices always begin at zero.  This is not the case in 
VB, where indices can range from any Integer value to any other Integer value.) 

              Index (Subscript) 
 

Array Name 
0 1 2 3 4 5 6 7 8 9 10 11 12 

romanSymbol "M" "CM" "D" "CD" "C" "XC" "L" "XL" "X" "IX" "V" "IV" "I" 

romanSymbolValue 1000 900 500 400 100 90 50 40 10 9 5 4 1 
 

Hindu-Arabic to Roman Algorithm Example 

Convert 1642 to Roman form. 

Operation Remainder Quotient Roman String 

 1642 - “” 

÷1000 642 1 “M” 

÷900 642 0 “M” 

÷500 142 1 “MD” 

÷400 142 0 “MD” 

÷100 42 1 “MDC” 

÷90 42 0 “MDC” 

÷50 42 0 “MDC” 

÷40 2 1 “MDCXL” 

÷10 2 0 “MDCXL” 

÷9 2 0 “MDCXL” 

÷5 2 0 “MDCXL” 

÷4 2 0 “MDCXL” 

÷1 0 2 “MDCXLII” 
 

Roman to Hindu-Arabic Algorithm Example 

Convert “MCMXLIV” to Hindu-Arabic form. 

i 
Character 
at Index i 

Character at 
Index i+1 

Operation 
Hindu-Arabic 

Form 

- - - - 0 

0 “M” “C” +1000 1000 

1 “C” “M” 100 900 

2 “M” X +1000 1900 

3 “X” “L” 10 1890 

4 “L” “I” +50 1940 

5 “I” “V” 1 1939 

6 “V” - +5 1944 
 

Hindu-Arabic to Roman Algorithm Pseudo-Code 
store all possible one character and two  
   character Roman symbol combinations in 
   descending order in an array 
store Hindu-Arabic values of above in descending 
   order in another array 

set roman to null string 
set remainder to value of Hindu-Arabic number 

for (i=0; i<number elements of array; i++) 
{ 
  set quotient to quotient of remainder divided 
    by element "i" of the array storing divisors 

  set remainder to remainder of remainder  
    divided by element "i" of the same array 

  concatenate quotient Roman symbols (of type 
    found at element "i" of Roman symbol array) 
    to roman 
} 

Roman to Hindu-Arabic Algorithm Pseudo-Code 
set len to length of the Roman number string 
for (i=0; i<len; i++) 
{ 
  set char to character at position "i" 
  set value to Hindu-Arabic value of char 
  if (i<len-1) 
  { 
    set nextChar to character at position "i+1" 
    set valueNext to Hindu-Arabic value of nextChar 
  } 
  if (valueNext<=value) 
    set HinduArabic to HinduArabic + value 
  else 
    set HinduArabic to HinduArabic - value 
} 



Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Arrays and Lists in C# UALC#-8 

Exercises 

Convert 2007 to Roman form. 

Operation Remainder Quotient Roman String 

    

    

    

    

    

    

    

    

    

    

    

    

    

    
 

Convert “MCMXCVIII” to Hindu-Arabic form. 

i 
Character 
at Index i 

Character at 
Index i+1 

Operation 
Hindu-Arabic 

Form 

     

     

     

     

     

     

     

     

     

     
 

Convert 3999 to Roman form. 

Operation Remainder Quotient Roman String 

    

    

    

    

    

    

    

    

    

    

    

    

    

    
 

Convert MMMCDXLIV” to Hindu-Arabic form. 

i 
Character 
at Index i 

Character at 
Index i+1 

Operation 
Hindu-Arabic 

Form 

     

     

     

     

     

     

     

     

     

     
 

  



Copyright ©, Nick E. Nolfi ICS4U0 Unit 2 – Using Arrays and Lists in C# UALC#-9 

 

ROMAN CONVERTER EVALUATION GUIDE 

Victim: ______________________________ 

Categories Criteria Descriptors Mark 
Level 4 Level 3 Level 2 Level 1 Level 0 

Knowledge 
and 

Understanding 
(KU) 

Degree of Completeness 

� be able to convert any value from 1 to 3999999 
from Hindu-Arabic to Roman or vice versa 

Very High 
(All 

features 
imple-

mented) 

High 
(Most 

features 
imple-

mented) 

Moderate 
(Some 

important 
features 
imple-

mented) 

Minimal 
(A few 
features 
imple-

mented) 

Insufficient 
(Little to 
nothing 
imple-

mented) 
20

 

Application 
(APP) 

Correctness 
To what degree does the program produce correct 
output? 

Very High High Moderate Minimal Insufficient 

20
 

Avoidance of Code Duplication 
To what degree has the student used methods (i.e 
functions) to avoid duplication of code?  (i.e. to avoid 
copy & paste coding) 

Very High High Moderate Minimal Insufficient 

Data Validation and Exception Handling 
To what degree are exceptions caught and handled?  
To what degree can the program detect invalid input? 

Very High High Moderate Minimal Insufficient 

Thinking, 
Inquiry and 

Problem  
Solving 
(TIPS) 

Independence 
To what degree has the student been able to implement 
the solution without asking for assistance? 

Very High High Moderate Minimal Insufficient 

30
 

Research 
When problems are encountered during the design, 
implementation and validation phases, to what degree 
has the student consulted resources before asking for 
help? 

Very High High Moderate Minimal Insufficient 

Algorithm/Implementation Efficiency 

� To what level does the algorithm use resources 
(memory, processor time, etc) efficiently? 

� To what degree are appropriate data types used? 

Very High High Moderate Minimal Insufficient 

Communication 
(COM) 

Indentation of Code 

Insertion of Blank Lines in Strategic Places 
(to make code easier to read) 

Very Few 
or no 
Errors 

A Few 
Minor 
Errors 

Moderate 
Number of 

Errors 

Large 
Number of 

Errors 

Very Large 
Number of 

Errors 

30
 

Comments (Internal Documentation) 

� Effectiveness of explaining abstruse (difficult-to-
understand) code 

� Effectiveness of introducing major blocks of code 
� Avoidance of comments for self-explanatory code 

Very High High Moderate Minimal Insufficient 

Descriptiveness of Identifier Names 
Variables, Constants, Objects, Methods, Classes, etc 

Method and Class Design 

� Methods are self-contained (can be used in other 
programs without modification) 

� Parameters and return types are logical 
� Class structure is logical and efficient 

Clarity of Code 
How easy is it to understand, modify and debug code? 

Adherence to Naming Conventions 
� lowerCamelCase used for variable, object, methods 
� UpperCamelCase used for classes and constructors 
� ALL_UPPER_CASE used for constants 

Masterful Good Adequate Passable Insufficient 

 


	Unit 2 – Understanding Arrays and Lists in C#
	�Using Arrays in C#
	The Concept of an Array
	Important Details about Arrays in C#
	Several Examples of Array Declarations
	Exercises involving Arrays

	�ICS4U0 – Roman Converter Project
	�STOP!  DO NOT WRITE ANY CODE YET! First we need to TRY SPECIFIC EXAMPLES and develop A PLAN!
	�Exercises

	Roman Converter Evaluation Guide

