
UNIT 3 – ADVANCED ALGORITHMS AND PROGRAMMING PRINCIPLES
UNIT 3 – ADVANCED ALGORITHMS AND PROGRAMMING PRINCIPLES ...1
RECURSIVELY DEFINED ALGORITHMS...2

INTRODUCTION ..2
WHAT ARE RECURSIVE ALGORITHMS? ..2

Explicitly Defined Sequences (Functions)..2
Recursively Defined Sequences (Functions)...2
Questions..2

HOW THIS APPLIES TO PROGRAMMING...2
Problem 1 ...2
Problem 2 ...2
Problem 3 ...2
Pseudo-code for Iterative Solutions (i.e. Solutions Involving Loops) ..2
Pseudo-code for Recursive Solutions ...3
Java Code for Recursive Solutions...3
Try it out yourselves!..3
Visualizing the Execution of a Recursive Method ..4
Advantages and Disadvantages of Recursive Algorithm..4
Advantages and Disadvantages of Iterative Algorithm ..4
Questions..5
Summary...5
Series of Paragraphs ..5
Recursive Method Programming Exercises ...5

QUICKSORT: A VERY FAST RECURSIVE SORTING ALGORITHM ..6
PSEUDO-CODE FOR QUICKSORT...6
QUICKSORT EXAMPLE ...6
QUESTIONS ..6
EXERCISE...7

A RECURSIVE SOLUTION TO THE “TOWER OF HANOI” PROBLEM..8
ACTIVITY...8

MULTI-DIMENSIONAL ARRAYS ..10
A SOLUTION TO THE “TOWER OF HANOI” PROBLEM THAT USES TWO TWO-DIMENSIONAL ARRAYS ...10
MULTI-DIMENSIONAL ARRAY EXERCISES ...10

ANALYZING THE EFFICIENCY OF ALGORITHMS: CASE STUDY-SEARCHING AND SORTING11
INTRODUCTION ..11
PRECISE STATEMENT OF THE PROBLEMS OF SEARCHING AND SORTING ..11
EXACTLY WHAT DO WE MEAN BY EFFICIENCY? ...11
EXAMPLE – LINEAR SEARCH..11
BINARY SEARCH ..12
EXAMPLE ...12
IMPORTANT PROGRAMMING EXERCISES ..12
IMPORTANT PROGRAMMING EXERCISES ..13
FORMAL DEFINITION OF COMPLEXITY CLASSES..13

Intuitive Translation of this Definition ...13
Some Common Complexity Classes..14

USING SORTING ALGORITHMS TO GAIN A DIFFERENT PERSPECTIVE ON COMPLEXITY CLASSES ...14
EXERCISES ...14

Copyright ©, Nick E. Nolfi ICS4M0 Advanced Algorithms and Programming Principles AAPP-1

RECURSIVELY DEFINED ALGORITHMS
Introduction
Thus far, we have investigated iterative algorithms, which are all based on looping. Sometimes, however, it is very
difficult or even impossible to describe algorithms in an iterative fashion. Fortunately, in many such cases, we can resort
to a recursive description.
What are Recursive Algorithms?
To understand this, it’s helpful to understand both non-recursively and recursively defined sequences.

Recursively Defined Sequences (Functions) Explicitly Defined Sequences (Functions)
e.g. 1, 1, 2, 3, 5, 8, 13, 21, … e.g. 1, 2, 4, 8, 16, 32, 64, …

If we let tn represent the nth term of the sequence,
then t1=1, t2=2, t3=4, t4=8 and so on. If we can
find a formula that expresses tn in terms of n, then
we say that tn is defined explicitly in terms of n.
Such definitions are not recursive. The following
is an explicit definition (non-recursive definition)
of the sequence given above:

This is the famous Fibonacci Sequence. (See
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html for a great site
on how this sequence arises in nature.) This sequence is difficult to define
explicitly. However, it is extremely easy to define recursively. Such
definitions of sequences define tn in terms of previous terms of the
sequence. The sequence above can be defined recursively as follows:

1

2

2 1

1
1

, 3n n n

t
t

t t t n− −

=

=

= + ≥

⎧
⎪
⎨
⎪
⎩

Notice that in this case you need to know the values of the two previous
terms of the sequence to calculate tn. Knowing n is not enough!

12 ,n
nt n−= ∈

Notice that you can determine any term in the
sequence just by knowing the value of n.

Questions

1. Is it possible to define recursively? How? 12n
nt

−=
2. Use the Internet to discover whether it is possible to define the Fibonacci sequence explicitly? If you find an explicit

definition, compare it to the recursive definition given above. Which do you prefer? Why?

How this applies to Programming
We can illustrate the differences between non-recursive and recursive solutions by solving a few problems in both ways!
Problem 1
Given n, calculate n! (This is read “n factorial” and means (1)(2) (2)(1)n n n− − . For example, .) 6! 6 5 4 3 2 1= × × × × ×

Problem 2
Given n, calculate the nth term of the Fibonacci sequence.
Problem 3
Given an amount to be deposited at regular intervals (x), the annual rate of interest (r), the number of deposits per year (d)
and the total number of deposits (n), calculate the future value. For this question, assume that the compounding frequency
equals the payment frequency and that the deposits are made at the end of each payment period (ordinary annuity).
Pseudo-code for Iterative Solutions (i.e. Solutions Involving Loops)
Problem 1 Problem 2 Problem 3
set product = 1

for i = 2 to n
 set product = product*i
next i

return product

if n=1 or n=2
 return 1
else
 set term1 = 1
 set term2 = 1
 for i=3 to n
 set temp = term2
 set term2 = term1 + term2
 set term1 = temp
 next i
 return term2
end if

set perRate r/d =
set futureVal = 0

for i=0 to n-1
 futureVal =futureVal + x*(1+perRate)^i
next i

return futureVal

Copyright ©, Nick E. Nolfi ICS4M0 Advanced Algorithms and Programming Principles AAPP-2

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html

Pseudo-code for Recursive Solutions
Problem 1 Problem 2 Problem 3
The recursive function that solves this
problem is called "factorial"
if n>1
 return n*factorial(n-1)

else

 return 1

end if

The recursive function that solves this problem is called
"fibonacci"
if n>2
 return fibonacci(n-1)+fibonacci(n-2)

else

 return 1

end if

The recursive function that solves this
problem is called "fV"
set perRate = r/d
if n>1
 return x +
 (1+perRate)*fV(n-1,x,d,r)

else
 return x

end if
Java Code for Recursive Solutions
public class RecursiveMethodExamples
{

 public static double factorial(int n)
 {
 if (n>1)
 return n*factorial(n-1);
 else if (n>=0)
 return 1;
 else
 return -1; //Error code: negative values cannot be passed
 }

 public static double fibonacci(int n)
 {
 if (n>2)
 return fibonacci(n-1)+fibonacci(n-2);
 else if n>0) (
 return 1;
 else
 return -1; //Error code: only positive values can be passed
 }

 //This method applies a simple recursive algorithm to calculate the future value
 //of an ordinary annuity (payment made at end of interval) given the amount
 //deposited at regular intervals. It is assumed in this method that the
 //payment frequency is equal to the compounding frequency.
 public static double futureValue(double deposit, double annualRate,
 short depositsPerYear, int totalNumDeposits)
 {
 if (totalNumDeposits>1)
 return deposit+(1+annualRate/depositsPerYear)
 *futureValue(deposit,annualRate,depositsPerYear,totalNumDeposits-1);
 else if (totalNumDeposits==1)
 return deposit;
 else
 return 0; //In case 0 or a negative integer is passed to "totalNumDeposits"
 }

}

Try it out yourselves!
1. Load I:\Out\Nolfi\Ics4mo\Recursion\RecursiveMethodExamples\RecursiveMethodExamples.sln.
2. Confirm that each recursive method returns correct answers.
3. Use breakpoints to follow the execution of each recursive method.
4. Write a short description of your observations in # 3. What seems to be happening?

Copyright ©, Nick E. Nolfi ICS4M0 Advanced Algorithms and Programming Principles AAPP-3

Visualizing the Execution of a Recursive Method
The following diagram should help you to understand the execution of a recursive method.

Explanation
The “factorial” method from the
previous page is used to illustrate the
execution of a recursive method.
1. The execution begins when “5” is passed to

the method. Since 5 > 1, the method returns
5*factorial(4). Since factorial(4) has not yet
been evaluated, the first call to “factorial” is
suspended until the next call (factorial(4))
returns a value.

2. The second call is factorial(4), which returns
4*factorial(3). Again, the execution of the
factorial method, that is the second call to the
factorial method, needs to be suspended until
factorial(3) returns a value.

.

.

.

5. The calls continue in the manner described
above until “1” is passed to the factorial
method. This call does not need to be
suspended because factorial(1) returns “1”
immediately.

6. Now that factorial(1) has returned a value, the
execution of factorial(2) can resume.

.

.

.

12. The returns continue in this cascading fashion
until factorial(5) finally returns a value of
120.

Advantages and Disadvantages of Recursive Algorithm
Advantages Disadvantages
1. Code tends to be extremely short.

2. Debugging tends to be very easy
because code is easy to understand.

3. Code corresponds very closely to
mathematical formulation.

1. Difficult to visualize execution of recursive calls.
2. Execution can be extremely slow due to large amount of overhead involved in

processing method calls.
3. Extra memory must be allocated to store the “return points.” The return points are

stored using a data structure called a stack. In many cases, the stack can grow
exponentially, which can very quickly result in an “out of memory” condition.

Advantages and Disadvantages of Iterative Algorithm
Advantages Disadvantages
1. Execution speed tends to be fast.
2. No stack needed (no extra memory).

1. Iterative implementation sometimes not at all straightforward (e.g. quickSort).
2. Code for iterative solution can be longer, more complex, more difficult to debug.

factorial(5)

120

Step 1

Step 5

3* =62

2* =21

factorial(2) 3*

factorial(1) 2*

4* =246

factorial(4) 5*

factorial(3) 4*

5* =12024

Step 12

pSte 10

Step 11

Step 2

Ste

pSte 8

Step 9

p 3

Ste

Step 7

p 6

 4

Ste

p

Copyright ©, Nick E. Nolfi ICS4M0 Advanced Algorithms and Programming Principles AAPP-4

Questions
1. Rewrite each recursive method iteratively. Use the pseudo-code on page 2 as a guide.

2. Compare the execution speed of each recursive method with its iterative counterpart. What do you notice? Can you
explain your observations?

3. As you may have learned in a previous math course, the future value of an annuity can be calculated using a simple
formula (i.e. no recursion or iteration is needed). Rewrite “futureValue” in such a way that only a formula needs to be
evaluated to compute the future value. (If you haven’t learned about annuities in a previous course or you have
forgotten what you have learned about them, try a search phrase such as “future value formula” to find the required
formula.)

4. Is it possible to calculate the nth term of the Fibonacci sequence using a formula? Is it possible to calculate n! using a
formula? (Hint: Try searching Google using the phrases “explicit formula fibonacci” and “explicit formula factorial.”)

Summary

Problem to be Solved

Solution using Explicit Formula Solution using Recursive Algorithm Solution using Iterative Algorithm

Series of Paragraphs
Write a series of paragraphs to explain the relative merits of the three types of solutions listed above. Discuss the
advantages and disadvantages of each method as well as whether it is always possible to implement all three types of
solutions.

Recursive Method Programming Exercises

1. Write a recursive method that can compute the sum of the integers from 1 to n, that is
1

1 2 , 1
n

n
i

t n
=

= + + + = ≥∑ . i n

0

2. Write a recursive method that can compute the sum of the integers from m to n, that is

. (1) ,
n

n
i m

t m m n i n
=

= + + + + = ≥∑

3. Write a recursive method that can compute 2n
nt = , where n is a non-negative integer.

4. Write a recursive method that can compute n
nt x= , where x is any real number and n is any non-negative integer.

(Note that the value of 00 has been the subject of some debate in the past. Nowadays, the value of 00 is generally taken
to be 1 for most purposes. This definition of 00 does not create inconsistencies in the vast majority of cases.)

5. A tribonacci number is like a Fibonacci number. Instead of starting with two predetermined terms, however, the
sequence starts with three and each term afterwards is the sum of the preceding three terms. The first few tribonacci
numbers are: 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, 35890, 66012. Write a
recursive method that can compute any term in the tribonacci sequence.

6. The first few terms of the Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers) are 14, 19, 28, 47,
61, 75, 197, 742, 1104, 1537, 2208, 2580 and 3684. This sequence is formed as shown in the following examples:

14 → 1, 4, 5, 9, 14
 (The number “14” has two digits. If a “Fibonacci-like” sequence is formed starting with “1” and “4” as the
 initial terms, 14 will eventually be reached by adding the two previous terms to obtain the next term.)
19 → 1, 9, 10, 19

197 → 1, 9, 7, 17, 33, 57, 107, 197
(Since 197 has 3 digits, the previous three terms must be added to form the next term. Similarly, if a term tn in
the repfigit sequence has m digits, then it must be obtained by using a “Fibonacci-like” sequence that begins with
the m digits of tn and in which the next term is obtained by adding the previous m terms of the sequence.)

Write a recursive method that can compute any term in the Repfigit sequence. (It’s best to split the solution to this
problem into two or more methods.)

Copyright ©, Nick E. Nolfi ICS4M0 Advanced Algorithms and Programming Principles AAPP-5

QUICKSORT: A VERY FAST RECURSIVE SORTING ALGORITHM
In grade 11 we explored various sorting algorithms, all of which were very easy to program but unfortunately, also very
slow. Now that we understand recursion, we are in a position to explore a much more efficient sorting algorithm called
“quick sort,” which was developed in 1962 by C. A. R. Hoare. (Alright, try to restrain yourselves from making cheap
jokes about Hugh Grant.)

Pseudo-Code for Quicksort Quicksort Example
Suppose that the data are stored in an array with
indices running from 0 to n.

In this example, the “middle” element is always chosen as the
pivot. The pivot(s) is(are) always displayed in red.
First, choose the middle element (element 5) as the pivot.

1. Choose a “Pivot.”
There are many methods that can be used to
perform this step, however, none of them is
optimal! There is no way of choosing the pivot
in such a way that worst case performance can
be avoided (see question 2 below).
e.g. choose “middle” element as pivot, pick a
random pivot, choose either the leftmost or
rightmost element, etc.

0 1 2 3 4 5 6 7 8 9 10

4 17 7 0 6 31 13 27 18 21 13 Step 1

Then reorganize the array in such a way that the elements of the
left partition are ≤ the pivot and all the elements of the right
partition are the pivot. Once this is done, the pivot lands
exactly in its final resting place.

≥

0

2. “Partition” the Array
Reorganize the array in such a way that the array
is divided into three parts. The left partition
consists of all elements ≤ the pivot and the
right partition consists of all elements≥ the
pivot.

Left Partition
all elements pivot ≤ Pivot Right Partition

all elements ≥ pivot

3. Repeat Steps 1 and 2 on each Partition
If the left partition has 2 or more elements
 Repeat steps 1 and 2 on the left partition
Else
 Return (do nothing)
If the right partition has 2 or more elements
 Repeat steps 1 and 2 on the right partition
Else
 Return (do nothing)

1 2 3 4 5 6 7 8 9 10

0 4 7 6 13 13 18 17 31 21 27
Since the left partition consists of only one element, it requires no
further processing. The right partition has 9 elements, so the
quicksort algorithm is applied to it.

0 1 2 3 4 5 6 7 8 9 10

0 4 7 6 13 13 18 17 31 21 27
Now reorganize the right partition.

0 1 2 3 4 5 6 7 8 9 10

0 4 7 6 13 13 17 18 31 21 27
Continuing in this manner, we obtain the following:

0 1 2 3 4 5 6 7 8 9 10

0 4 7 6 13 13 17 18 31 21 27

0 1 2 3 4 5 6 7 8 9 10

0 4 7 6 13 13 17 18 21 27 31

0 1 2 3 4 5 6 7 8 9 10

0 4 7 6 13 13 17 18 21 27 31

0 1 2 3 4 5 6 7 8 9 10

0 4 6 7 13 13 17 18 21 27 31

0 1 2 3 4 5 6 7 8 9 10

0 4 6 7 13 13 17 18 21 27 31

Questions
1. Using a tree diagram, explain why quicksort is usually so fast.

2. Again using a tree diagram, describe a scenario that would cause quicksort to perform very poorly. How could a
hacker exploit this to launch an attack on a Web site?

Step 2

Step 1

Step 2

Step 1

Step 2

Step 1

Step 2

Copyright ©, Nick E. Nolfi ICS4M0 Advanced Algorithms and Programming Principles AAPP-6

public final class SortingMethods
{
 /**
 * The following three methods implement quickSort with median pivot. There are a variety of
 * other ways of choosing the pivot, including a randomly chosen pivot.
 */
 public static void quickSort(int[] a, int left, int right)
 {
 if (left<right)
 {
 int pivotIndex=partition(a, left, right);
 quickSort(a,left,pivotIndex-1); //Sort left partition
 quickSort(a,pivotIndex+1,right); //Sort right partition
 }

 else
 return; //Do nothing if partition contains fewer than 2 elements
 }

 private static void swap(int a[], int i, int j)
 {
 int temp=a[i];
 a[i]=a[j];
 a[j]=temp;
 }

 /**
 * The "partition" method is used to reorganize the array into three parts, the left
 * partition, the pivot and the right partition. The left partition contains all
 * elements <= pivot and the right partition contains all elements >= pivot. The index
 * of the pivot is normally chosen as the average (midpoint) of the indices "left"
 * and "right." If the pivot is <= or >= both a[left] and a[right], then the "pivotIndex"
 * is set either to "left" or "right," depending on whether a[left] or a[right]
 * is "in the middle." This method returns "pivotIndex," the index of the pivot.
 */
 private static int partition(int a[], int left, int right)
 {
 int i, pivot, pivotIndex, mid=(left+right)/2;

 Choose the index of the pivot. //
 if (a[left]<=a[mid] && a[mid]<=a[right] || a[right]<=a[mid] && a[mid]<=a[left])
 pivotIndex=mid;
 else if (a[right]<=a[left] && a[left]<=a[mid] || a[mid]<=a[left] && a[left]<=a[right])
 pivotIndex=left;
 else
 pivotIndex=right;

 //Reorganize the array so that a[i] <= a[pivotIndex] if left <= i <= pivotIndex
 //and a[i] >= a[pivotIndex] if pivotIndex <= i <= right.
 swap(a,left,pivotIndex);//Place pivot at left end of array
 pivotIndex=left;
 pivot=a[pivotIndex];

 for (i=left+1; i<=right; i++)
 {
 if (a[i]<pivot)
 swap(a,++pivotIndex,i);
 }

 swap(a,left,pivotIndex); //Put pivot in its proper place

 return pivotIndex;
 }
}

Exercise
1. Use array diagrams to explain how the “partition” method reorganizes an array “a” in such a way that

a[i] <= a[pivotIndex] for “i” ranging from “left” up to “pivotIndex-1” and a[i] >= a[pivotIndex] for “i” ranging from
“pivotIndex+1” up to “right.”

Copyright ©, Nick E. Nolfi ICS4M0 Advanced Algorithms and Programming Principles AAPP-7

A RECURSIVE SOLUTION TO THE “TOWER OF HANOI” PROBLEM

B C A

The “Tower of Hanoi,” commonly known as the “Towers of Hanoi,” is a puzzle invented by E. Lucas in 1883. This
puzzle involves three rods and a stack of n disks that is placed on one of the rods. The disks are initially arranged from
largest on the bottom to smallest on top. The objective of the puzzle is to determine the minimum number of moves
required to move the stack from one rod to another. Only one disk may be moved at a time from the top of any stack to
the top of any other stack. Smaller disks may be placed on top of larger disks but larger disks cannot be placed on top of
smaller disks.

Activity
1. Use the “Tower of Hanoi” Java applet on the “Puzzles” page of www.misternolfi.com (or any other Web-based version

of this puzzle) to complete the following table:

Number of
Disks (n)

Number of Moves
Required to Solve Record of Moves

1 1 A → B (or A → C)

2 3 A → B, A → C, B → C (or A → C, A → B, C → B)

3

4

5

6

7

Copyright ©, Nick E. Nolfi ICS4M0 Advanced Algorithms and Programming Principles AAPP-8

http://www.misternolfi.com/

2. Now observe your results very carefully. Can you see how a solution for n=1 can be used to build a solution for n=2?
Can you see how a solution for n=2 can be used to build a solution for n=3? Can you see how a solution for n=3 can be
used to build a solution for n=4? Can you see how a solution for n=k can be used to build a solution for n=k+1?
Express your results using recursion.

3. Using your observations from question 2, try to write a Java method that can solve the tower of Hanoi problem for a
stack of n disks.

Copyright ©, Nick E. Nolfi ICS4M0 Advanced Algorithms and Programming Principles AAPP-9

MULTI-DIMENSIONAL ARRAYS
A Solution to the “Tower of Hanoi” Problem that uses two Two-Dimensional Arrays

You can find the “Tower of Hanoi Solutions” program
in I:\Out\Nolfi\Ics4m0\TowerOfHanoi.

x

y

Once you load this program into J++, read through the
code carefully. You should notice the following:

1. Many arrays are used, including two two-
dimensional arrays.

2. The code in the “FormTower” class is neatly
divided into two sections, one for data fields and
another for methods. The data field section is
further subdivided into one section for global
constants and another for global variables and
objects. Furthermore, the method portion consists
of three different subsections (one for constructor
methods, another for event handling methods and
yet another for all other methods).

3. Most of the concepts learned in this course can be
found in this program. Therefore, the “Tower of
Hanoi” program can serve as an excellent tool for
studying for the final exam!

The two-dimensional array declared below, known as a
3×10 (read “3 by 10”) array because it has 3 rows and 10
columns, stores integers representing the disks present in
each stack. The disks are numbered from 0 (largest disk) to
9 (smallest disk). A value of −1 (constant "NO_DISK") is
assigned if a disk is absent. Each row of the matrix
represents a stack on one of the pegs.
private int[][] stack = new int[3][10];

For example, the initial arrangement of the disks on “peg A”
would be stored as follows in the “stack” array:

 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
2 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

The following two-dimensional constant array stores the
(left, top) co-ordinates of the disks when they rest on
“peg A.” These values are used when the disks are moved
from one stack to another. When a disk is moved, its new
position is based on the values in this array.
private final static int[][] STACK_A_DISK_COORD =
 { {20,200},{28,184},{36,168},{44,152},{52,136},
 {60,120},{68,104},{76,88},{84,72},{92,56} };

 0 1

0 20 200
1 28 184
2 36 168
3 44 152
4 52 136
5 60 120
6 68 104
7 76 88
8 84 72
9 92 56

This array is called a 10×2 (read “10 by 2”) array because it
has 3 rows and 10 columns.

Multi-Dimensional Array Exercises
1. Write a method that can calculate the sum of any row, column or diagonal of any n×n two-dimensional array. (Note

that two-dimensional arrays are also called matrices.)

2. Write a method that can calculate the sum of any, row, column, diagonal or layer of an n×n×n three-dimensional
array. (A description of how three-dimensional arrays can be visualized will be given in class.)

Column
Indices
(0 to 9) Row

Indices
(0 to 9)

Row
Indices
(0 to 2)

Column
Indices
(0 to 1)

Copyright ©, Nick E. Nolfi ICS4M0 Advanced Algorithms and Programming Principles AAPP-10

ANALYZING THE EFFICIENCY OF ALGORITHMS:
CASE STUDY-SEARCHING AND SORTING

Introduction
Often, many different algorithms can be used to solve a particular problem. Therefore, to select the best algorithm for a
given situation, it is important to be able to measure precisely the efficiency of algorithms. Computer scientists use
complexity theory to perform such analyses. Complexity theory helps them to group algorithms into various complexity
classes. The problems of searching and sorting, the most widely studied problems in computer science, will be used to
illustrate the main ideas of complexity theory.
Precise Statement of the Problems of Searching and Sorting
Given n records stored in an array of n elements, how can the records be sorted (i.e. arranged in “alphabetic” order)
efficiently? Once the records are sorted, how can a certain record be located in the least time possible?
Exactly what do we mean by Efficiency?
Space and time are the most important quantities to consider in the analysis of an algorithm.

• Space: The amount of memory required during the execution of a program.
• Time: The amount of time required for a program to complete a certain task.

These two quantities tend to be inversely related. Fast programs tend to use a lot of memory while programs that use
memory efficiently tend to be slow.
Example – Linear Search
Consider the following Visual Basic program that uses a function procedure to perform a linear search (sequential search)
of an array of n elements.
Dim SomeArray(1 To 20) As Integer

Private Sub Form_Load()

 Dim I As Integer

 'Store random integers between 1 and 100 in the array.

 For I = 1 To 20
 SomeArray(I) = Int(Rnd*100+1)

 Next I

End Sub

Private Sub cmdClose_Click()

 End

End Sub

Private Sub cmdSearch_Click()

 Dim Location As Integer

 Location = LinearSearch(SomeArray(), Val(txtSearchFor.Text), 20)

 If Location <> 0 Then
 lblFoundAt.Caption = "Found at location " & CStr(Location)&"."
 Else
 lblFoundAt.Caption = "Not found"
 End If

End Sub

' This function performs a linear search of the array passed to the
' array parameter "A" for the value passed to the parameter "Item."
' If the item is found, its location within the array is returned.
' Otherwise, zero is returned. It is assumed in this function that
' the array is declared with indices running from 1 to "N."

Function LinearSearch(A() As Integer, ByVal Item As Integer , _
 ByVal N As Integer) As Integer
 Dim I As Integer

 For I = 1 To N

 If A(I) = Item Then
 LinearSearch = I
 Exit Function
 End If

 Next I

 LinearSearch = 0 'Return 0 if required value was not found

End Function

Let f(n) represent the growth function of the
“LinearSearch” VB function procedure shown
at the left. That is, f(n) represents the
maximum number of statements that need to be
executed by “LinearSearch.” If we exclude the
first and last lines of the function, it’s easy to
verify that (n represents the number of elements
in the array being searched)

f(n) = 4n + 2.

In this function (which represents the
performance of the given linear search
algorithm), as the data size n increases, the
“4n” term will dominate. Therefore, we say
that this is an O(n) algorithm (read “order n” or
“big O of n”).
To determine the O value of an algorithm,
1. Ignore the constants since we are only

interested in the growth characteristic of the
algorithm.

2. Choose the fastest growing term since it will
account for the majority of the growth.

Copyright ©, Nick E. Nolfi ICS4M0 Advanced Algorithms and Programming Principles AAPP-11

Binary Search
While linear search is easy to program and is reasonably fast when used to search small arrays, it is excruciatingly slow if
used to search an array with a large number of elements. For instance, consider an array of one million strings. On
average, the linear search requires 500000 comparisons before a required value is found. In the worst case, one million
comparisons are needed. Obviously, this method wastes a great deal of CPU time. Fortunately, there are much faster
algorithms that can be used to search very large data sets. Binary search, for instance, can find any value in an array of
1000000 elements using 10 or fewer comparisons. In order for binary search to work, however, the array must be sorted.
Example
Suppose that the following sorted array is being searched for the value “80.”

Index Data
1 6
2 14
3 14
4 21
5 29
6 36
7 42
8 43
9 56
10 56
11 63
12 69
13 71
14 76
15 77
16 80
17 85
18 89
19 97
20 100

Index Data
1 6
2 14
3 14
4 21
5 29
6 36
7 42

Step 1

8 43
9 56
10 56
11 63
12 69
13 71
14 76
15 77
16 80
17 85
18 89
19 97
20 100

Index Data

1 6
2 14
3 14
4 21
5 29
6 36
7 42
8 43
9 56
10 56
11 63
12 69
13 71
14 76
15 77
16 80
17 85
18 89
19 97
20 100

Index Data
1 6
2 14
3 14
4 21
5 29
6 36
7 42
8 43
9 56
10 56
11 63
12 69
13 71
14 76
15 77
16 80
17 85
18 89
19 97
20 100

Step 2

The search begins at the
middle of the array. The
value being sought is “80”
and the value stored at the
middle of the array is “56.”
Since 80 > 56, the first half
of the list is ignored and the
search continues at the
middle of the second half
of the array.

The search continues at the
middle of the second half
of the array, where “77” is
stored. Since 80 > 77, the
first half of the second half
of the array is ignored and
the search continues at the
lowest quarter of the array.

Step 4
Step 3

The search ends at element
16 of the array, where the
required value is found.
Notice that half of the
elements remaining are
eliminated after each
comparison, which means
that no more than five
comparisons are required to
search 20 elements.

The search continues at the
middle of the lowest
quarter of the array, where
“89” is stored. Since
80 < 89, the second half of
the lowest quarter of the
array is ignored and the
search continues.

Copyright ©, Nick E. Nolfi ICS4M0 Advanced Algorithms and Programming Principles AAPP-12

Important Programming Exercises
1. Translate the VB “LinearSearch” function procedure on page into a Java method. (Please remember that in Java, array

indices always run from 0 to arraySize-1. Therefore, you will need to modify the strategy used in the VB function
procedure shown on the previous page.)

2. Write two different Java versions of binary search, one that works with numeric data and another that works with
strings.

Formal Definition of Complexity Classes

Let f(n) represent the number of statements that need to be performed by an algorithm to complete a task given a data size
of n. Then f(n) is said to belong to the complexity class O(g(n)) (read “order g of n” or “big O of g of n”) if there exist
positive constants k ∈ and c ∈ such that for all n ≥ k,

f(n) ≤ cg(n).
We can state this definition more concisely symbolically:

f(n) ∈ O(g(n)) if ∃ k ∈ and c ∈ ∋ ∀ n ≥ k, f(n) ≤ cg(n).

Intuitive Translation of this Definition

When the data size n is large enough, then there will be a function cg(n) which is larger than f(n) (cg(n) is an upper bound for f(n)).
We choose to use cg(n) because it is a simpler, more well behaved function than f(n). This makes it much easier to analyze than f(n).
In addition, when we choose g(n) we ignore all terms except for the fastest growing term (dominant term) because it accounts for
most of the growth. In addition, we can also ignore all the statements except for the dominant operation. For example, in any sorting
algorithm, comparisons are performed more often than any other operation. Therefore, in order to determine the efficiency of any
sorting algorithm, it is enough to count the number of comparisons.

The “smallest” function which is an upper limit is chosen for g(n). For example, 3n+2 ∈ O(n2) is true, but there is a
“smaller” big-O value which is a better fit, O(n).

True Better Intuitive Meaning

n2 + 7 ∈ O(n3) n2 + 7 ∈ O(n2)
The growth rate of n2 + 7 is no larger than that of cn2 for

some c ∈ and for large enough values of n.

n2 + n3 ∈ O(2n) n2 + n3 ∈ O(n3)
The growth rate of n2 + n3 is no larger than that of cn3 for

some c ∈ and for large enough values of n.

10n + n2 + n3 ∈ O(nn) 10n + n2 + n3 ∈ O(2n)
The growth rate of 10n + n2 + n3 is no larger than that of c(2n)

for some c ∈ and for large enough values of n.

n
Data Size

N
um

be
r o

f S
ta

te
m

en
ts

 R
eq

ui
re

d
to

 C
om

pl
et

e
Ta

sk

Copyright ©, Nick E. Nolfi ICS4M0 Advanced Algorithms and Programming Principles AAPP-13

Listed below are some common complexity classes and some well known algorithms.

Some Common Complexity Classes

Complexity Class Name Complexity Common Algorithms with The Given Complexity

Constant O(1) Any program that executes in a constant time regardless of input.
Very few practical algorithms belong to this class.

Logarithmic O(log n) Binary Search of a Sorted array, Search of an Approximately
Balanced Binary Tree

Linear O(n) Linear Search

Quadratic O(n2) Bubble Sort, Selection Sort, Insertion Sort

Polynomial O(nk), k ∈ Multiplying Two n × n Matrices (O(n3)).

O(2n) Exponential Travelling Salesperson Program

Using Sorting Algorithms to Gain a Different Perspective on Complexity Classes
Measuring the efficiency of any algorithm is a matter of counting the number of statements that need to be executed.
Usually, a single type of statement tends to require the bulk of the processing time. For instance, sorting methods spend
most of their time comparing and swapping (exchanging) data. Since a swap can only occur after a comparison, the
number of swaps will always be less than or equal to the number of comparisons. Thus, the dominant operation for
sorting is the comparing of data; to study the performance of sorting algorithms, it is only necessary to count the number
of comparisons. (The above paragraph should help you to understand why we ignore the constants and all terms except
for the dominant one.)

Exercises
Comparison of Some Well Known Sorting Algorithms

Best Case Average Case Worst-Case Algorithm
Comparisons Exchanges Comparisons Exchanges Comparisons Exchanges

2 2 2 2O(n) Bubble Sort (most efficient version) 0 O(n O(n O(n O(n))))
2 2 2 2O(n) Insertion Sort 0 O(n O(n O(n O(n))))

2 2 2O(n O(n O(n) O(n O(n) Selection Sort) 0))
1.25Shell Sort O(n) 0 O(n1.25 1.25 1.5 O(n1.5O(n)) O(n))

2Quicksort ? ? O(n log n) O(n log n) O(n O(n))

x1. Use a graphing calculator (or a graphing program) to sketch the graphs of y = x, y = x2, y = x1.25, y = log x, y = 2 and
y = x log x on a single set of axes. Use the graphs to rank the complexity classes O(n), O(n2), O(n1.25), O(log n), O(2n)
and O(n log n) from most efficient to least efficient. Then use the graphs to rank the sorting algorithms shown above
from fastest to slowest (average case).
Suggestion for Graphing Calculator Window: Set XMin=0, XMax=100, XScl=10, YMin=0, YMax=300, YScl=25

Copyright ©, Nick E. Nolfi ICS4M0 Advanced Algorithms and Programming Principles AAPP-14

2. Explain why it is not possible to choose a sorting algorithm that is best in all cases.

3. Visit the Web site http://www.cs.smith.edu/~thiebaut/java/sort/demo.html and try out the sorting algorithm demo. Use
it to complete the following table (use the phrases “random array,” “array sorted in increasing order” and “array sorted
in decreasing order.”

What Produces Best
Case Behaviour

What Produces Average
Case Behaviour

What Produces Worst
Case Behaviour Algorithm

Standard Quicksort ?

Shell Sort

Insertion Sort

Selection Sort

Quicksort with Random Pivot ?

Quicksort with Median Pivot ?

n4. Explain why you should never use an O(2) algorithm (exponential time algorithm).

Copyright ©, Nick E. Nolfi ICS4M0 Advanced Algorithms and Programming Principles AAPP-15

http://www.cs.smith.edu/%7Ethiebaut/java/sort/demo.html

	Unit 3 – Advanced Algorithms and Programming Principles
	 Recursively Defined Algorithms
	Introduction
	What are Recursive Algorithms?
	Explicitly Defined Sequences (Functions)
	Recursively Defined Sequences (Functions)
	Questions

	How this applies to Programming
	Problem 1
	Problem 2
	Problem 3
	Pseudo-code for Iterative Solutions (i.e. Solutions Involving Loops)
	 Pseudo-code for Recursive Solutions
	Java Code for Recursive Solutions
	Try it out yourselves!
	 Visualizing the Execution of a Recursive Method
	Advantages and Disadvantages of Recursive Algorithm
	Advantages and Disadvantages of Iterative Algorithm
	 Questions
	Summary
	Series of Paragraphs
	Recursive Method Programming Exercises

	 Quicksort: A Very Fast Recursive Sorting Algorithm
	Pseudo-Code for Quicksort
	Quicksort Example
	Questions
	Exercise

	 A Recursive Solution to the “Tower of Hanoi” Problem
	Activity

	 Multi-Dimensional Arrays
	A Solution to the “Tower of Hanoi” Problem that uses two Two-Dimensional Arrays
	Multi-Dimensional Array Exercises

	 Analyzing the Efficiency of Algorithms: Case Study-Searching and Sorting
	Introduction
	Precise Statement of the Problems of Searching and Sorting
	Exactly what do we mean by Efficiency?
	Example – Linear Search
	 Binary Search
	Example
	 Important Programming Exercises
	Formal Definition of Complexity Classes
	Intuitive Translation of this Definition
	 Some Common Complexity Classes

	Using Sorting Algorithms to Gain a Different Perspective on Complexity Classes
	Exercises

