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RECURSIVELY DEFINED ALGORITHMS 
Introduction 
Thus far, we have investigated iterative algorithms, which are all based on looping.  Sometimes, however, it is very 
difficult or even impossible to describe algorithms in an iterative fashion.  Fortunately, in many such cases, we can resort 
to a recursive description. 
What are Recursive Algorithms? 
To understand this, it’s helpful to understand both non-recursively and recursively defined sequences. 

Recursively Defined Sequences (Functions) Explicitly Defined Sequences (Functions) 
e.g. 1, 1, 2, 3, 5, 8, 13, 21, … e.g. 1, 2, 4, 8, 16, 32, 64, … 

If we let tn represent the nth term of the sequence, 
then t1=1, t2=2, t3=4, t4=8 and so on.  If we can 
find a formula that expresses tn in terms of n, then 
we say that tn is defined explicitly in terms of n.  
Such definitions are not recursive.  The following 
is an explicit definition (non-recursive definition) 
of the sequence given above: 

This is the famous Fibonacci Sequence.  (See 
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html for a great site 
on how this sequence arises in nature.)  This sequence is difficult to define 
explicitly.  However, it is extremely easy to define recursively.  Such 
definitions of sequences define tn in terms of previous terms of the 
sequence.  The sequence above can be defined recursively as follows: 

1

2

2 1

1
1

, 3n n n

t
t

t t t n− −

=

=

= + ≥

⎧
⎪
⎨
⎪
⎩

 

Notice that in this case you need to know the values of the two previous 
terms of the sequence to calculate tn.  Knowing n is not enough! 

12 ,n
nt n−= ∈  

Notice that you can determine any term in the 
sequence just by knowing the value of n. 

Questions 

1. Is it possible to define  recursively?  How? 12n
nt

−=
2. Use the Internet to discover whether it is possible to define the Fibonacci sequence explicitly?  If you find an explicit 

definition, compare it to the recursive definition given above.  Which do you prefer?  Why? 

How this applies to Programming 
We can illustrate the differences between non-recursive and recursive solutions by solving a few problems in both ways! 
Problem 1 
Given n, calculate n!  (This is read “n factorial” and means ( 1)( 2) (2)(1)n n n− − .  For example, .) 6! 6 5 4 3 2 1= × × × × ×

Problem 2 
Given n, calculate the nth term of the Fibonacci sequence. 
Problem 3 
Given an amount to be deposited at regular intervals (x), the annual rate of interest (r), the number of deposits per year (d) 
and the total number of deposits (n), calculate the future value.  For this question, assume that the compounding frequency 
equals the payment frequency and that the deposits are made at the end of each payment period (ordinary annuity). 
Pseudo-code for Iterative Solutions (i.e. Solutions Involving Loops) 
Problem 1 Problem 2 Problem 3 
set product = 1 

for i = 2 to n 
  set product = product*i 
next i 

return product 

if n=1 or n=2 
  return 1 
else 
  set term1 = 1 
  set term2 = 1 
  for i=3 to n 
    set temp = term2 
    set term2 = term1 + term2 
    set term1 = temp 
  next i 
  return term2 
end if 

set perRate r/d = 
set futureVal = 0 

for i=0 to n-1 
  futureVal =futureVal + x*(1+perRate)^i 
next i 

return futureVal 
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Pseudo-code for Recursive Solutions 
Problem 1 Problem 2 Problem 3 
The recursive function that solves this 
problem is called "factorial" 
if n>1 
  return n*factorial(n-1) 

else 

  return 1 

end if 

The recursive function that solves this problem is called 
"fibonacci" 
if n>2 
  return fibonacci(n-1)+fibonacci(n-2) 

else 

  return 1 

end if 

The recursive function that solves this 
problem is called "fV" 
set perRate = r/d 
if n>1 
  return x + 
      (1+perRate)*fV(n-1,x,d,r) 

else 
  return x 

end if 
Java Code for Recursive Solutions 
public class RecursiveMethodExamples 
{ 

   public static double factorial(int n) 
   { 
      if (n>1) 
         return n*factorial(n-1); 
      else if (n>=0) 
         return 1; 
      else 
         return -1; //Error code: negative values cannot be passed 
   } 
 

   public static double fibonacci(int n) 
   { 
      if (n>2) 
         return fibonacci(n-1)+fibonacci(n-2); 
      else if n>0)  (
         return 1; 
      else 
         return -1; //Error code: only positive values can be passed 
   } 
 

   //This method applies a simple recursive algorithm to calculate the future value 
   //of an ordinary annuity (payment made at end of interval) given the amount  
   //deposited at regular intervals.  It is assumed in this method that the 
   //payment frequency is equal to the compounding frequency. 
   public static double futureValue(double deposit, double annualRate, 
      short depositsPerYear, int totalNumDeposits) 
   { 
      if (totalNumDeposits>1) 
         return deposit+(1+annualRate/depositsPerYear) 
      *futureValue(deposit,annualRate,depositsPerYear,totalNumDeposits-1); 
      else if (totalNumDeposits==1) 
         return deposit; 
      else 
         return 0; //In case 0 or a negative integer is passed to "totalNumDeposits" 
   } 
 

} 

Try it out yourselves! 
1. Load I:\Out\Nolfi\Ics4mo\Recursion\RecursiveMethodExamples\RecursiveMethodExamples.sln. 
2. Confirm that each recursive method returns correct answers. 
3. Use breakpoints to follow the execution of each recursive method. 
4. Write a short description of your observations in # 3.  What seems to be happening? 
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Visualizing the Execution of a Recursive Method 
The following diagram should help you to understand the execution of a recursive method. 

 

Explanation 
The “factorial” method from the 
previous page is used to illustrate the 
execution of a recursive method. 
1. The execution begins when “5” is passed to 

the method.  Since 5 > 1, the method returns 
5*factorial(4).  Since factorial(4) has not yet 
been evaluated, the first call to “factorial” is 
suspended until the next call (factorial(4)) 
returns a value. 

2. The second call is factorial(4), which returns 
4*factorial(3).  Again, the execution of the 
factorial method, that is the second call to the 
factorial method, needs to be suspended until 
factorial(3) returns a value. 

. 

. 

. 

5. The calls continue in the manner described 
above until “1” is passed to the factorial 
method.  This call does not need to be 
suspended because factorial(1) returns “1” 
immediately. 

6. Now that factorial(1) has returned a value, the 
execution of factorial(2) can resume. 

. 

. 

. 

12. The returns continue in this cascading fashion 
until factorial(5) finally returns a value of 
120. 

Advantages and Disadvantages of Recursive Algorithm 
Advantages Disadvantages 
1. Code tends to be extremely short. 

2. Debugging tends to be very easy 
because code is easy to understand. 

3. Code corresponds very closely to 
mathematical formulation. 

1. Difficult to visualize execution of recursive calls. 
2. Execution can be extremely slow due to large amount of overhead involved in 

processing method calls. 
3. Extra memory must be allocated to store the “return points.”  The return points are 

stored using a data structure called a stack.  In many cases, the stack can grow 
exponentially, which can very quickly result in an “out of memory” condition. 

Advantages and Disadvantages of Iterative Algorithm 
Advantages Disadvantages 
1. Execution speed tends to be fast. 
2. No stack needed (no extra memory). 

1. Iterative implementation sometimes not at all straightforward (e.g. quickSort). 
2. Code for iterative solution can be longer, more complex, more difficult to debug. 

factorial(5) 

120 

Step 1 

Step 5
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Questions 
1. Rewrite each recursive method iteratively.  Use the pseudo-code on page 2 as a guide. 

2. Compare the execution speed of each recursive method with its iterative counterpart.  What do you notice?  Can you 
explain your observations? 

3. As you may have learned in a previous math course, the future value of an annuity can be calculated using a simple 
formula (i.e. no recursion or iteration is needed).  Rewrite “futureValue” in such a way that only a formula needs to be 
evaluated to compute the future value.  (If you haven’t learned about annuities in a previous course or you have 
forgotten what you have learned about them, try a search phrase such as “future value formula” to find the required 
formula.) 

4. Is it possible to calculate the nth term of the Fibonacci sequence using a formula?  Is it possible to calculate n! using a 
formula?  (Hint: Try searching Google using the phrases “explicit formula fibonacci” and “explicit formula factorial.”) 

Summary 

Problem to be Solved 

Solution using Explicit Formula Solution using Recursive Algorithm Solution using Iterative Algorithm 

 

Series of Paragraphs 
Write a series of paragraphs to explain the relative merits of the three types of solutions listed above.  Discuss the 
advantages and disadvantages of each method as well as whether it is always possible to implement all three types of 
solutions. 

Recursive Method Programming Exercises 

1. Write a recursive method that can compute the sum of the integers from 1 to n, that is 
1

1 2 , 1
n

n
i

t n
=

= + + + = ≥∑ . i n

0

2. Write a recursive method that can compute the sum of the integers from m to n, that is 

. ( 1) ,
n

n
i m

t m m n i n
=

= + + + + = ≥∑

3. Write a recursive method that can compute 2n
nt = , where n is a non-negative integer. 

4. Write a recursive method that can compute n
nt x= , where x is any real number and n is any non-negative integer.  

(Note that the value of 00 has been the subject of some debate in the past.  Nowadays, the value of 00 is generally taken 
to be 1 for most purposes.  This definition of 00 does not create inconsistencies in the vast majority of cases.) 

5. A tribonacci number is like a Fibonacci number.  Instead of starting with two predetermined terms, however, the 
sequence starts with three and each term afterwards is the sum of the preceding three terms.  The first few tribonacci 
numbers are: 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, 35890, 66012.  Write a 
recursive method that can compute any term in the tribonacci sequence. 

6. The first few terms of the Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers) are 14, 19, 28, 47, 
61, 75, 197, 742, 1104, 1537, 2208, 2580 and 3684.  This sequence is formed as shown in the following examples: 
 

14 → 1, 4, 5, 9, 14 
 (The number “14” has two digits.  If a “Fibonacci-like” sequence is formed starting with “1” and “4” as the
 initial terms, 14 will eventually be reached by adding the two previous terms to obtain the next term.) 
19 → 1, 9, 10, 19 

197 → 1, 9, 7, 17, 33, 57, 107, 197  
(Since 197 has 3 digits, the previous three terms must be added to form the next term.  Similarly, if a term tn in 
the repfigit sequence has m digits, then it must be obtained by using a “Fibonacci-like” sequence that begins with 
the m digits of tn and in which the next term is obtained by adding the previous m terms of the sequence.) 

Write a recursive method that can compute any term in the Repfigit sequence.  (It’s best to split the solution to this 
problem into two or more methods.) 
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QUICKSORT: A VERY FAST RECURSIVE SORTING ALGORITHM 
In grade 11 we explored various sorting algorithms, all of which were very easy to program but unfortunately, also very 
slow.  Now that we understand recursion, we are in a position to explore a much more efficient sorting algorithm called 
“quick sort,” which was developed in 1962 by C. A. R. Hoare.  (Alright, try to restrain yourselves from making cheap 
jokes about Hugh Grant.) 

Pseudo-Code for Quicksort Quicksort Example 
Suppose that the data are stored in an array with 
indices running from 0 to n. 

In this example, the “middle” element is always chosen as the 
pivot.  The pivot(s) is(are) always displayed in red.  
First, choose the middle element (element 5) as the pivot. 

1. Choose a “Pivot.” 
There are many methods that can be used to 
perform this step, however, none of them is 
optimal!  There is no way of choosing the pivot 
in such a way that worst case performance can 
be avoided (see question 2 below). 
e.g. choose “middle” element as pivot, pick a 
random pivot, choose either the leftmost or 
rightmost element, etc. 

0 1 2 3 4 5 6 7 8 9 10 

4 17 7 0 6 31 13 27 18 21 13 Step 1 

Then reorganize the array in such a way that the elements of the 
left partition are ≤  the pivot and all the elements of the right 
partition are  the pivot.  Once this is done, the pivot lands 
exactly in its final resting place. 

≥

0 

2. “Partition” the Array 
Reorganize the array in such a way that the array 
is divided into three parts.  The left partition 
consists of all elements ≤  the pivot and the 
right partition consists of all elements≥  the 
pivot. 

Left Partition 
all elements  pivot ≤ Pivot Right Partition 

all elements ≥  pivot 

3. Repeat Steps 1 and 2 on each Partition 
If the left partition has 2 or more elements 
    Repeat steps 1 and 2 on the left partition 
Else 
    Return (do nothing) 
If the right partition has 2 or more elements 
    Repeat steps 1 and 2 on the right partition 
Else 
    Return (do nothing) 

1 2 3 4 5 6 7 8 9 10 

0 4 7 6 13 13 18 17 31 21 27 
Since the left partition consists of only one element, it requires no 
further processing.  The right partition has 9 elements, so the 
quicksort algorithm is applied to it. 

0 1 2 3 4 5 6 7 8 9 10 

0 4 7 6 13 13 18 17 31 21 27 
Now reorganize the right partition. 

0 1 2 3 4 5 6 7 8 9 10 

0 4 7 6 13 13 17 18 31 21 27 
Continuing in this manner, we obtain the following: 

0 1 2 3 4 5 6 7 8 9 10 

0 4 7 6 13 13 17 18 31 21 27 
 

0 1 2 3 4 5 6 7 8 9 10 

0 4 7 6 13 13 17 18 21 27 31 
 

0 1 2 3 4 5 6 7 8 9 10 

0 4 7 6 13 13 17 18 21 27 31 
 

0 1 2 3 4 5 6 7 8 9 10 

0 4 6 7 13 13 17 18 21 27 31 
 

0 1 2 3 4 5 6 7 8 9 10 

0 4 6 7 13 13 17 18 21 27 31  

Questions 
1. Using a tree diagram, explain why quicksort is usually so fast. 

2. Again using a tree diagram, describe a scenario that would cause quicksort to perform very poorly.  How could a 
hacker exploit this to launch an attack on a Web site? 

Step 2 

Step 1 

Step 2 

Step 1 

Step 2 

Step 1 

Step 2 
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public final class SortingMethods 
{ 
 /** 
  * The following three methods implement quickSort with median pivot. There are a variety of 
  * other ways of choosing the pivot, including a randomly chosen pivot. 
  */ 
 public static void quickSort(int[] a, int left, int right) 
 { 
  if (left<right) 
  { 
   int pivotIndex=partition(a, left, right); 
   quickSort(a,left,pivotIndex-1); //Sort left partition 
   quickSort(a,pivotIndex+1,right); //Sort right partition 
  } 
 

  else 
   return; //Do nothing if partition contains fewer than 2 elements 
 } 
 

 private static void swap(int a[], int i, int j) 
 { 
  int temp=a[i]; 
  a[i]=a[j]; 
  a[j]=temp; 
 } 
 

 /** 
  * The "partition" method is used to reorganize the array into three parts, the left 
  * partition, the pivot and the right partition. The left partition contains all 
  * elements <= pivot and the right partition contains all elements >= pivot. The index 
  * of the pivot is normally chosen as the average (midpoint) of the indices "left" 
  * and "right." If the pivot is <= or >= both a[left] and a[right], then the "pivotIndex"  
  * is set either to "left" or "right," depending on whether a[left] or a[right]  
  * is "in the middle."  This method returns "pivotIndex," the index of the pivot. 
  */ 
 private static int partition(int a[], int left, int right) 
 { 
  int i, pivot, pivotIndex, mid=(left+right)/2; 
 

  Choose the index of the pivot. //
  if (a[left]<=a[mid] && a[mid]<=a[right] || a[right]<=a[mid] && a[mid]<=a[left]) 
   pivotIndex=mid; 
  else if (a[right]<=a[left] && a[left]<=a[mid] || a[mid]<=a[left] && a[left]<=a[right]) 
   pivotIndex=left; 
  else 
   pivotIndex=right; 
 

  //Reorganize the array so that a[i] <= a[pivotIndex] if left <= i <= pivotIndex 
  //and a[i] >= a[pivotIndex] if pivotIndex <= i <= right. 
  swap(a,left,pivotIndex);//Place pivot at left end of array 
  pivotIndex=left; 
  pivot=a[pivotIndex]; 
 

  for (i=left+1; i<=right; i++) 
  { 
   if (a[i]<pivot) 
    swap(a,++pivotIndex,i); 
  } 
 

  swap(a,left,pivotIndex); //Put pivot in its proper place 
 

  return pivotIndex; 
 } 
} 

Exercise 
1. Use array diagrams to explain how the “partition” method reorganizes an array “a” in such a way that  

a[i] <= a[pivotIndex] for “i”  ranging from “left” up to “pivotIndex-1” and a[i] >= a[pivotIndex] for “i”  ranging from 
“pivotIndex+1” up to “right.” 
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A RECURSIVE SOLUTION TO THE “TOWER OF HANOI” PROBLEM 

 

B C A 

The “Tower of Hanoi,” commonly known as the “Towers of Hanoi,” is a puzzle invented by E. Lucas in 1883.  This 
puzzle involves three rods and a stack of n disks that is placed on one of the rods.  The disks are initially arranged from 
largest on the bottom to smallest on top.  The objective of the puzzle is to determine the minimum number of moves 
required to move the stack from one rod to another.  Only one disk may be moved at a time from the top of any stack to 
the top of any other stack.  Smaller disks may be placed on top of larger disks but larger disks cannot be placed on top of 
smaller disks. 

Activity 
1. Use the “Tower of Hanoi” Java applet on the “Puzzles” page of www.misternolfi.com (or any other Web-based version 

of this puzzle) to complete the following table: 

Number of 
Disks (n) 

Number of Moves 
Required to Solve Record of Moves 

1 1 A → B (or A → C) 

2 3 A → B, A → C, B → C (or A → C, A → B, C → B) 

3   

4   

5   

6   

7   
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2. Now observe your results very carefully.  Can you see how a solution for n=1 can be used to build a solution for n=2?  
Can you see how a solution for n=2 can be used to build a solution for n=3?  Can you see how a solution for n=3 can be 
used to build a solution for n=4?  Can you see how a solution for n=k can be used to build a solution for n=k+1?  
Express your results using recursion. 

3. Using your observations from question 2, try to write a Java method that can solve the tower of Hanoi problem for a 
stack of n disks. 
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MULTI-DIMENSIONAL ARRAYS 
A Solution to the “Tower of Hanoi” Problem that uses two Two-Dimensional Arrays 

 

You can find the “Tower of Hanoi Solutions” program 
in I:\Out\Nolfi\Ics4m0\TowerOfHanoi. 

x 

y 

Once you load this program into J++, read through the 
code carefully.  You should notice the following: 

1. Many arrays are used, including two two-
dimensional arrays. 

2. The code in the “FormTower” class is neatly 
divided into two sections, one for data fields and 
another for methods.  The data field section is 
further subdivided into one section for global 
constants and another for global variables and 
objects.  Furthermore, the method portion consists 
of three different subsections (one for constructor 
methods, another for event handling methods and 
yet another for all other methods). 

3. Most of the concepts learned in this course can be 
found in this program.  Therefore, the “Tower of 
Hanoi” program can serve as an excellent tool for 
studying for the final exam! 

The two-dimensional array declared below, known as a 
3×10 (read “3 by 10”) array because it has 3 rows and 10 
columns, stores integers representing the disks present in 
each stack.  The disks are numbered from 0 (largest disk) to 
9 (smallest disk).  A value of −1 (constant "NO_DISK") is 
assigned if a disk is absent.  Each row of the matrix 
represents a stack on one of the pegs. 
private int[][] stack = new int[3][10]; 

For example, the initial arrangement of the disks on “peg A” 
would be stored as follows in the “stack” array: 

 
 0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 
1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 
2 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 

 

The following two-dimensional constant array stores the 
(left, top) co-ordinates of the disks when they rest on 
“peg A.”  These values are used when the disks are moved 
from one stack to another.  When a disk is moved, its new 
position is based on the values in this array. 
private final static int[][] STACK_A_DISK_COORD = 
   { {20,200},{28,184},{36,168},{44,152},{52,136}, 
       {60,120},{68,104},{76,88},{84,72},{92,56} }; 

 0 1 

0 20 200 
1 28 184 
2 36 168 
3 44 152 
4 52 136 
5 60 120 
6 68 104 
7 76 88 
8 84 72 
9 92 56 

This array is called a 10×2 (read “10 by 2”) array because it 
has 3 rows and 10 columns. 

Multi-Dimensional Array Exercises 
1. Write a method that can calculate the sum of any row, column or diagonal of any n×n two-dimensional array.  (Note 

that two-dimensional arrays are also called matrices.) 

2. Write a method that can calculate the sum of any, row, column, diagonal or layer of an n×n×n three-dimensional 
array.  (A description of how three-dimensional arrays can be visualized will be given in class.) 

Column 
Indices 
(0 to 9) Row 

Indices 
(0 to 9) 

Row 
Indices 
(0 to 2) 

Column 
Indices 
(0 to 1) 
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ANALYZING THE EFFICIENCY OF ALGORITHMS: 
CASE STUDY-SEARCHING AND SORTING 

Introduction 
Often, many different algorithms can be used to solve a particular problem.  Therefore, to select the best algorithm for a 
given situation, it is important to be able to measure precisely the efficiency of algorithms.  Computer scientists use 
complexity theory to perform such analyses.  Complexity theory helps them to group algorithms into various complexity 
classes.  The problems of searching and sorting, the most widely studied problems in computer science, will be used to 
illustrate the main ideas of complexity theory. 
Precise Statement of the Problems of Searching and Sorting 
Given n records stored in an array of n elements, how can the records be sorted (i.e. arranged in “alphabetic” order) 
efficiently?  Once the records are sorted, how can a certain record be located in the least time possible? 
Exactly what do we mean by Efficiency? 
Space and time are the most important quantities to consider in the analysis of an algorithm. 

• Space: The amount of memory required during the execution of a program. 
• Time: The amount of time required for a program to complete a certain task. 

These two quantities tend to be inversely related.  Fast programs tend to use a lot of memory while programs that use 
memory efficiently tend to be slow. 
Example – Linear Search 
Consider the following Visual Basic program that uses a function procedure to perform a linear search (sequential search) 
of an array of n elements. 
Dim SomeArray(1 To 20) As Integer 

Private Sub Form_Load() 

    Dim I As Integer 

    'Store random integers between 1 and 100 in the array. 

    For I = 1 To 20 
        SomeArray(I) = Int(Rnd*100+1) 

 

    Next I 

End Sub 

Private Sub cmdClose_Click() 

    End 

End Sub 

Private Sub cmdSearch_Click() 

    Dim Location As Integer 

    Location = LinearSearch(SomeArray(), Val(txtSearchFor.Text), 20) 

    If Location <> 0 Then 
        lblFoundAt.Caption = "Found at location " & CStr(Location)&"." 
    Else 
        lblFoundAt.Caption = "Not found" 
    End If 

End Sub 

' This function performs a linear search of the array passed to the 
' array parameter "A" for the value passed to the parameter "Item." 
' If the item is found, its location within the array is returned. 
' Otherwise, zero is returned.  It is assumed in this function that 
' the array is declared with indices running from 1 to "N." 

Function LinearSearch(A() As Integer, ByVal Item As Integer , _ 
                                      ByVal N As Integer) As Integer 
    Dim I As Integer 

    For I = 1 To N 

        If A(I) = Item Then 
            LinearSearch = I 
            Exit Function 
        End If 

    Next I 

    LinearSearch = 0 'Return 0 if required value was not found 

End Function 

Let f(n) represent the growth function of the 
“LinearSearch” VB function procedure shown 
at the left.  That is, f(n) represents the 
maximum number of statements that need to be 
executed by “LinearSearch.”  If we exclude the 
first and last lines of the function, it’s easy to 
verify that (n represents the number of elements 
in the array being searched) 

f(n) = 4n + 2. 

In this function (which represents the 
performance of the given linear search 
algorithm), as the data size n increases, the 
“4n” term will dominate.  Therefore, we say 
that this is an O(n) algorithm (read “order n” or 
“big O of n”). 
To determine the O value of an algorithm,  
1. Ignore the constants since we are only 

interested in the growth characteristic of the 
algorithm. 

2. Choose the fastest growing term since it will 
account for the majority of the growth. 
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Binary Search 
While linear search is easy to program and is reasonably fast when used to search small arrays, it is excruciatingly slow if 
used to search an array with a large number of elements.  For instance, consider an array of one million strings.  On 
average, the linear search requires 500000 comparisons before a required value is found.  In the worst case, one million 
comparisons are needed.  Obviously, this method wastes a great deal of CPU time.  Fortunately, there are much faster 
algorithms that can be used to search very large data sets.  Binary search, for instance, can find any value in an array of 
1000000 elements using 10 or fewer comparisons.  In order for binary search to work, however, the array must be sorted. 
Example 
Suppose that the following sorted array is being searched for the value “80.” 

Index Data 
1 6 
2 14 
3 14 
4 21 
5 29 
6 36 
7 42 
8 43 
9 56 
10 56 
11 63 
12 69 
13 71 
14 76 
15 77 
16 80 
17 85 
18 89 
19 97 
20 100  

Index Data 
1 6 
2 14 
3 14 
4 21 
5 29 
6 36 
7 42 

Step 1 

8 43 
9 56 
10 56 
11 63 
12 69 
13 71 
14 76 
15 77 
16 80 
17 85 
18 89 
19 97 
20 100 

 
Index Data 

1 6 
2 14 
3 14 
4 21 
5 29 
6 36 
7 42 
8 43 
9 56 
10 56 
11 63 
12 69 
13 71 
14 76 
15 77 
16 80 
17 85 
18 89 
19 97 
20 100  

Index Data 
1 6 
2 14 
3 14 
4 21 
5 29 
6 36 
7 42 
8 43 
9 56 
10 56 
11 63 
12 69 
13 71 
14 76 
15 77 
16 80 
17 85 
18 89 
19 97 
20 100  

Step 2 

The search begins at the 
middle of the array.  The 
value being sought is “80” 
and the value stored at the 
middle of the array is “56.”  
Since 80 > 56, the first half 
of the list is ignored and the 
search continues at the 
middle of the second half 
of the array. 

The search continues at the 
middle of the second half 
of the array, where “77” is 
stored.  Since 80 > 77, the 
first half of the second half 
of the array is ignored and 
the search continues at the 
lowest quarter of the array. 

Step 4 
Step 3 

The search ends at element 
16 of the array, where the 
required value is found.  
Notice that half of the 
elements remaining are 
eliminated after each 
comparison, which means 
that no more than five 
comparisons are required to 
search 20 elements. 

The search continues at the 
middle of the lowest 
quarter of the array, where 
“89” is stored.  Since  
80 < 89, the second half of 
the lowest quarter of the 
array is ignored and the 
search continues. 
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Important Programming Exercises 
1. Translate the VB “LinearSearch” function procedure on page into a Java method.  (Please remember that in Java, array 

indices always run from 0 to arraySize-1.  Therefore, you will need to modify the strategy used in the VB function 
procedure shown on the previous page.) 

2. Write two different Java versions of binary search, one that works with numeric data and another that works with 
strings. 

Formal Definition of Complexity Classes 

Let f(n) represent the number of statements that need to be performed by an algorithm to complete a task given a data size 
of n.  Then f(n) is said to belong to the complexity class O(g(n)) (read “order g of n” or “big O of g of n”) if there exist 
positive constants k ∈  and c ∈  such that for all n ≥ k,

f(n) ≤ cg(n). 
We can state this definition more concisely symbolically: 

f(n) ∈ O( g(n) ) if ∃ k ∈  and c ∈  ∋ ∀ n ≥ k, f(n) ≤ cg(n). 

Intuitive Translation of this Definition 

When the data size n is large enough, then there will be a function cg(n) which is larger than f(n) (cg(n) is an upper bound for f(n)).  
We choose to use cg(n) because it is a simpler, more well behaved function than f(n).  This makes it much easier to analyze than f(n).  
In addition, when we choose g(n) we ignore all terms except for the fastest growing term (dominant term) because it accounts for 
most of the growth.  In addition, we can also ignore all the statements except for the dominant operation.  For example, in any sorting 
algorithm, comparisons are performed more often than any other operation.  Therefore, in order to determine the efficiency of any 
sorting algorithm, it is enough to count the number of comparisons. 

 
The “smallest” function which is an upper limit is chosen for g(n).  For example, 3n+2 ∈ O(n2) is true, but there is a 
“smaller” big-O value which is a better fit, O(n). 

True Better Intuitive Meaning 

n2 + 7 ∈ O(n3) n2 + 7 ∈ O(n2) 
The growth rate of n2 + 7 is no larger than that of cn2 for 

some c ∈  and for large enough values of n. 

n2 + n3 ∈ O(2n) n2 + n3 ∈ O(n3) 
The growth rate of n2 + n3 is no larger than that of cn3 for 

some c ∈  and for large enough values of n. 

10n + n2 + n3 ∈ O(nn) 10n + n2 + n3 ∈ O(2n) 
The growth rate of 10n + n2 + n3 is no larger than that of c(2n) 

for some c ∈  and for large enough values of n. 
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Listed below are some common complexity classes and some well known algorithms. 

Some Common Complexity Classes 

Complexity Class Name Complexity Common Algorithms with The Given Complexity 

Constant O(1) Any program that executes in a constant time regardless of input.  
Very few practical algorithms belong to this class. 

Logarithmic O(log n) Binary Search of a Sorted array, Search of an Approximately 
Balanced Binary Tree 

Linear O(n) Linear Search 

Quadratic O(n2) Bubble Sort, Selection Sort, Insertion Sort 

Polynomial O(nk), k ∈  Multiplying Two n × n Matrices (O(n3)). 

O(2n) Exponential Travelling Salesperson Program 

Using Sorting Algorithms to Gain a Different Perspective on Complexity Classes 
Measuring the efficiency of any algorithm is a matter of counting the number of statements that need to be executed.  
Usually, a single type of statement tends to require the bulk of the processing time.  For instance, sorting methods spend 
most of their time comparing and swapping (exchanging) data.  Since a swap can only occur after a comparison, the 
number of swaps will always be less than or equal to the number of comparisons.  Thus, the dominant operation for 
sorting is the comparing of data; to study the performance of sorting algorithms, it is only necessary to count the number 
of comparisons.  (The above paragraph should help you to understand why we ignore the constants and all terms except 
for the dominant one.) 

Exercises 
Comparison of Some Well Known Sorting Algorithms 

Best Case Average Case Worst-Case Algorithm 
Comparisons Exchanges Comparisons Exchanges Comparisons Exchanges 

2 2 2 2O(n) Bubble Sort (most efficient version) 0 O(n O(n O(n O(n) ) ) ) 
2 2 2 2O(n) Insertion Sort 0 O(n O(n O(n O(n) ) ) ) 

2 2 2O(n O(n O(n) O(n O(n) Selection Sort ) 0 ) ) 
1.25Shell Sort O(n ) 0 O(n1.25 1.25 1.5 O(n1.5O(n ) ) O(n) ) 

2Quicksort ? ? O(n log n) O(n log n) O(n O(n) ) 

x1. Use a graphing calculator (or a graphing program) to sketch the graphs of y = x, y = x2, y = x1.25, y = log x, y = 2  and 
y = x log x on a single set of axes.  Use the graphs to rank the complexity classes O(n), O(n2), O(n1.25), O(log n), O(2n) 
and O(n log n) from most efficient to least efficient.  Then use the graphs to rank the sorting algorithms shown above 
from fastest to slowest (average case). 
Suggestion for Graphing Calculator Window: Set XMin=0, XMax=100, XScl=10, YMin=0, YMax=300, YScl=25 
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2. Explain why it is not possible to choose a sorting algorithm that is best in all cases. 

3. Visit the Web site http://www.cs.smith.edu/~thiebaut/java/sort/demo.html and try out the sorting algorithm demo.  Use 
it to complete the following table (use the phrases “random array,” “array sorted in increasing order” and “array sorted 
in decreasing order.” 

What Produces Best 
Case Behaviour 

What Produces Average 
Case Behaviour 

What Produces Worst 
Case Behaviour Algorithm 

Standard Quicksort ?   

Shell Sort    

Insertion Sort    

Selection Sort    

Quicksort with Random Pivot ?   

Quicksort with Median Pivot ?   

n4. Explain why you should never use an O(2 ) algorithm (exponential time algorithm). 
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