MCR3U9	Semester 1, 2015 - 2016					
Grade 11 Pre-AP Functions Minor Test – Unit 1 – Inverses of Functions, Using Transformations to Deepen Insight						
Mr. N. Nolfi Victim: Mr. Jolutions mathematical reasoning		KU	APP	TIPS	СОМ	
Victim: Mr. Solutions mathematical r	easoning	14/14	21 /21	8 18	15/7+8 v.1	
1. Khadeeja, the smiley auto mechanic, is paid as described • \$20/h for working up to 40 h per week • time-and-a-half (\$20/h + \$10/h = \$30/h) for working For instance, if Khadeeja works 50 hours in a single week (a) Let $P(t)$ represent how much Khadeeja is paid per week for working t hours. Complete the definition of $P(t)$ found below. (4 APP) Hint: The calculation shown above should be used as a guide for writing the expression for $t > 40$. $P(t) = \begin{cases} 20t, 0 \le t \le 40 \\ 30(t-40) + 800, t > 40 \end{cases}$	d below: g overtime (hours ek, she is paid a t (b) Sketch a gra (b) Sketch a gra 1400 1200 1100 900 800 700 600 500 400 300 200 120 100 100 100 100 100 1	s worked otal of 4 aph of P.	beyond 40(20)+ . (3 APF	40 in a s 10(30) =) 3	ingle week)	
(c) Because of Khadeeja's exceptional customer service, her boss, Ms. I. Mama, decided to give her a monthly bonus. As shown in the table below, the bonus paid is a function of the number of customers who give Khadeeja a five-star rating. Number of Customers who give Khadeeja a five-star rating. Number of Customers who give Khadeeja a five-star rating. Fewer than 10 \$0 At least 10 but fewer than 30 \$50 At least 30 but fewer than 50 \$100 Fifty or more \$150 Let B(n) represent the monthly bonus Khadeeja receives if n customers give her a 5-star rating. Complete the definition of B(n) found below. (5 APP)	(d) Sketch a gra 200 180 160 140 120 100 80 60 40 20		(5 APH		orrect and o	

20 30 40 50 60 70 80 90 100 Number of Customers

APP

-0

KU 0

_

TIPS

- D

COM

_

D

10

 $B(n) = \begin{cases} 50, \ 10 \le n < 30 \\ 100, \ 30 \le n < 50 \\ 150, \ n \ge 50 \end{cases}$

2. Consider the function g defined by the equation $g(x) = -3 \left| \frac{1}{2} (x-5) \right| + 15$. (a) Use mapping notation to describe the (b) Using the grid given in (a), sketch the graph of the *inverse relation* of g. (2 KU) transformations of the mother function f(x) = |x|that would produce the function g. Then use the (c) State a restriction on the domain of g that ensures transformations to sketch the graph of g. (5,KU) that g is one-to-one on the restricted domain. $(x, y) \rightarrow (2x+5)$ -3y+15) **Briefly** explain how you arrived at your answer. (2 KU)x≥5 -3) 2(0) g is one-to-one for all x ≥5 The graph of Dashed g-1 consists 12 because it is strictly decreasing only of the arrows 10 highlighted point part (y≥5) (d) Determine the equation of $g^{-1}(x)$ for the restricted from domain stated in (c). (5 KU) pre-image For $x \ge 5$, $g(x) = -\frac{3}{2}(x-5) + 15$ = $-\frac{3}{2}x + \frac{45}{2}x$ to image 9 12 15 18 2 To find g', apply the transt. (x,y) > (y,x) $x = \frac{3}{3}y + \frac{45}{5}$ $y = -\frac{3}{5}x + 15, x \le 15$ Blue \rightarrow f Red \rightarrow g Purple \rightarrow inverse relation of g 3. The function $T_E(x) = 0.03x^2 + 245.50$ approximates the exhaust Blue ->f $=\frac{2}{3}\chi+15, \chi \leq 15/$ temperature, in Fahrenheit degrees, of a diesel engine operating at This question x % of the maximum load on the engine (0 < x < 100). mentions my name. You'd better get the (a) Determine the equation of $T_E^{-1}(x)$. (4 APP) right answer! Apply the transformation $(x,y) \rightarrow (y,x)$: $\therefore \chi = 0.03y^{2} + 245.50$ $x - 245.50 = 0.03 y^{2}$ $\frac{x - 245.50}{9.03} = y^2$ $\frac{+}{\sqrt{\frac{x-245,50}{2.03}}} = Y$ he engine x-245.50 0.03 x > 245.50 v Since y > 0, $T_E^{-1}(x) = 1$ (b) In the equation of $T_{E}^{-1}(x)$, what does x represent? Explain. (2 COM) In $T_E'(x)$, χ represents the exhaust temperature because for T_E' , the input is the same as the output for T_E . Therefore, $\chi \ge 245.50$ because this is the -0 - 0 - 0 - 0minimum exhaust temperature according to the equation of T_E .

4. A pig-headed grade-9 student insists that $(x+2)^3 = x^3 + 8$. You, being a far more mature, experienced and wiser grade-11 AP student obviously know better. Use your knowledge of transformations to prove that the grade-9 student is wrong! Note that a grid is provided so that you can illustrate your answer with graphs. (**Hint:** Use $f(x) = x^3$ as the base function.) (5 COM) Let $g(x) = (x+2)^3 = f(x+2)$ and -16 -12 -8 8 12 16 20 $h(x) = x^3 + 8 = f(x) + 8$. The graph of g is obtained by translating the graph of F & units to the left. The graph of h, on the other hand, 8 units upward. is obtained by translating + As shown in the diagram, the two graphs intersect at only two points, meaning that $(x+2)^3 \neq x^3+8$ except. for x = -2 and x = 0. Thus, the expressions $(x+2)^3$ and x^3+8 Not equivalent. The grade-q' student, as often is the are case, was 5. Let r_1 and r_2 represent the x-intercepts of the quadratic function $f(x) = x^2 + bx + c$. (a) Show that the function g(x) = af(x), where *a* represents any non-zero real number, has exactly the same x-intercepts as f. (5 TIPS) This is true for any function F (f doesn't need to be a quadactic function). The co-ordinates of the x-intercepts are (r,, 0) and (r, 0) The transformation given above can be expressed in mapping notation as follows: $(x, y) \longrightarrow (x, ay)$ $(r_{1}, 0) \rightarrow (r_{1}, a(0)) = (r_{1}, 0) \text{ and } (r_{2}, 0) \rightarrow (r_{2}, a(0)) = (r_{2}, 0)$ the points (r., 0) and (r., 0) are invariant under the transformation g has the same x-intercepts as + (b) Interpret this geometrically (i.e. graphically). Include a diagram to illustrate your answer. (3 TIPS)