

- **4.** For each of the following, write an identity entirely in terms of the given trigonometric ratio.
 - (a) $\cos 4\theta$ entirely in terms of $\cos \theta$ (5 APP)

$$cos 4\theta = cos(2(2\theta))$$

$$= 2cos^{2}2\theta - 1$$

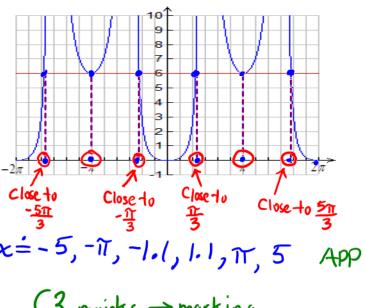
$$= 2(2cos^{2}\theta - 1)^{2} - 1$$

$$= 2(4cos^{4}\theta - 4cos^{2}\theta + 1) - 1$$

$$= 8cos^{4}\theta - 8cos^{2}\theta + 2 - 1$$

$$= 8cos^{4}\theta - 8cos^{2}\theta + 1$$

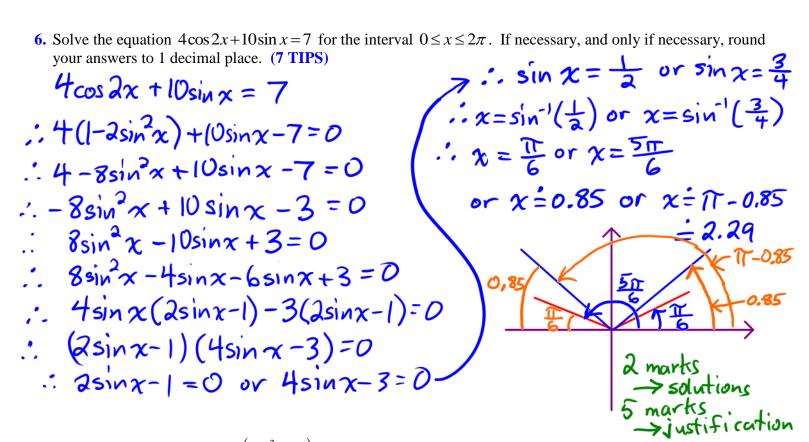
$$= 8cos^{4}\theta - 8cos^{2}\theta + 1$$

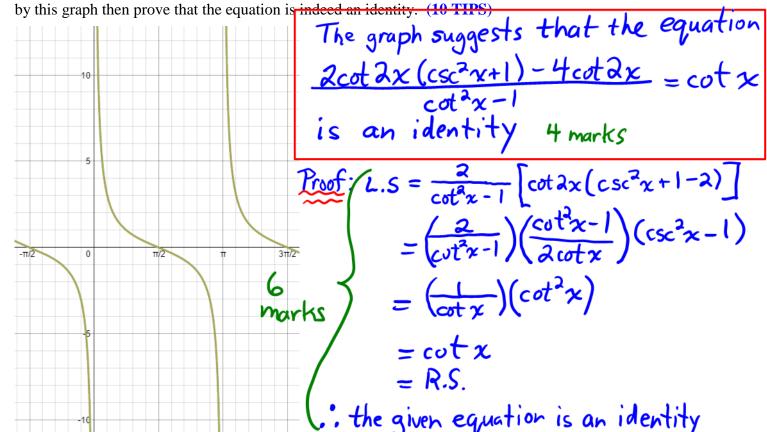

$$= 8cos^{4}\theta - 8cos^{2}\theta + 1$$

$$= 4cos^{3}\theta - cos\theta - 2cos\theta + 2cos\theta$$

$$= 4cos^{3}\theta - 3cos\theta$$

(b) $\cos 3\theta$ entirely in terms of $\cos \theta$ **(5 APP)**


- 5. The following question deals with solving trigonometric equations both graphically and algebraically.
 - (a) Shown below are the graphs of $y = (\sec x - 1)(2\sec x - 1)$ and y = 6. State approximate solutions to the equation $(\sec x - 1)(2\sec x - 1) = 6$ for $x \in [-2\pi, 2\pi]$. In addition, *mark* the solutions on the graph. (6 KU)

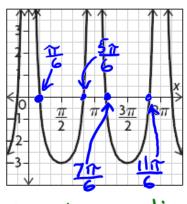

- (3 marks → marking KU) solutions on graph 3 marks → stating approximate solutions
- $(\sec x 1)(2\sec x 1) = 6$, where $x \in [-\pi, \pi]$. $\therefore 2\sec^2 x - 3\sec x + 1 = 6$ $-2\sec^{2}x-3\sec x-5=0$ $-(2\sec x-5)(\sec x+1)=0$: $2 \sec x - 5 = 0$ or $\sec x = -1$: $\sec x = \frac{5}{2}$ or $\sec x = -1$

(b) Use an algebraic method to solve the equation

KU	APP	TIPS	COM
- 0	-0	- 0	-0

7. The graph of $f(x) = \frac{2\cot 2x(\csc^2 x + 1) - 4\cot 2x}{\cot^2 x - 1}$ is shown below. Write an equation for the identity suggested

8. Write a quadratic trigonometric equation involving $\csc x$ whose solutions in the interval $[0,2\pi]$ are the same as the *x*-intercepts of the graph shown at the right. Show that your equation yields the correct solutions. (4 TIPS)


x	e/7	<u>5</u> 4⊌	F	1/2
CSC X	ス	2	- 2	-2

For the given solutions in $[0, 2\pi]$, $\csc x = 2$ or $\csc x = -2$

$$\frac{1}{2}$$
 csc $\chi - 2 = 0$ or csc $\chi + 2 = 0$

$$(csc^2x-2)(csc^2x+2)=0)$$
 Any of these forms is according to the control of the

This shows that the solutions must be $\frac{\Upsilon}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{11\pi}{6}$

1 mark -> equation 3 marks -> justification

justification is given	,			
forms is accepted provided that justification is given	- 0	- 0	- 0	- 0
power of all a	KU	APP	TIPS	COM
forms is accorded				