MCR3U9 Semester 2, 2015 - 2016 **Grade 11 Pre-AP Functions Quiz – Unit 1 – Translations, Reflections** Another fine piece of work Mr. J. !! Mr. N. Nolfi APP TIPS COM KU Mr. Solution 5 /5 20/20 16/16 10/10 Victim: **1.** Consider the graph of the function y = f(x) shown below and the function g defined by the equation g(x) = -f(-(x-7)) - 3. (a) State an equation of f. (2 KU) (b) Write the transformation g(x) = -f(-(x-7)) - 3 using $f(x) = \frac{1}{x+\varepsilon} + 2^{\omega}$ 8 mapping notation. (2 KU) 6 $(x,y) \rightarrow (-x+7,-y-3)$ 4 (c) Describe the transformation in words. (4 KU) **Horizontal** Vertical -12 -10 -8 -611 -4 -2 1. Reflect in x-axis 1. Reflect in y-axis -2 2. Translate 7 right 2. Translate 3 down (d) Apply the transformation to the four key points (e) Sketch the graph of y = g(x). In addition, state an on f given in the table as well as to the equation of g based on your graph. (6 APP) asymptotes of f. (6 KU) 8 Pre-Image Image 6 (-4,3)(-(-4)+7,-3-3) = (11,-6, 2 <u>(-(-6)+7, -1-3) = (13,-4)</u> (-6,1)14 16 18 20 22 24 6 8 10 12 -4 $-8,\frac{5}{3}$ (-(3)+7, -=-3)=(15, -4) -6 -8 $\left(-2,\frac{7}{3}\right)\left(\left(-2,\frac{7}{3},-\frac{7}{3},-\frac{7}{3},-\frac{7}{3}\right)=\left(9,-\frac{16}{3}\right)$ 10 12 -14 y = 2y=-2-3=-5 -16 $\chi = -(-5) + 7 = 12$ x = -5Equation of $g: \underline{q(\chi)} = \overline{\chi} - l \chi$ (f) Use an algebraic method to confirm that the equation you stated in (e) is correct. (4 APP) $\frac{-1}{-\chi + 12}$ g(x) = -f(-(x-7)) - 3 $= -\left[\frac{1}{-(x-7)+5}+2\right]$ $=\frac{-1}{-1(x-12)}-5$

 $=\frac{-1}{-1}$

2. Consider the function *f* defined by the equation f(x) = |x|. The function *g* is obtained by performing the following transformations to *f*:

Horizontal Transformations	Vertical Transformations
1. Reflect in the y-axis	1. Reflect in the <i>x</i> -axis
2. Translate three units to the right	2. Translate 10 units up
8	1

3. Suppose that g(x) = f(-x+7). Explain why the graph of g can be obtained by using *either* of the following sets of transformations given below. Illustrate your answer with a graph. (5 COM, 5 TIPS)

	Transformation 1	Transformation 2
	1. Translate seven units to the left	1. Reflect in the <i>y</i> -axis
	2. Reflect in the <i>y</i> -axis	2. Translate seven units to the right
1	You may write your answer on the back of this sho <u>f's input</u> <u>g's input</u> To tran first 7 then th multiplied to trans	neet nstorm -x+7 to x must be subtracted, he result is divided (or stormation 1. g: x * y (-1) ÷(-1) x(-1) ÷(-1) f: -x+7 -7 f: -x+7 -x+7

Using mapping notation, transformations 1 and 2 can be described as follows:

Transf.	Pre-image (onf)	Image (on g)
1	(x,y)-	\rightarrow (-(x-7), y)
2	(x,y)-	→(-x+7,y)

Notice that when -(x-7) is simplified, the resulting expression is -x+7. This shows that the two transformations are equivalent.

