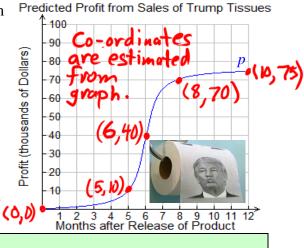
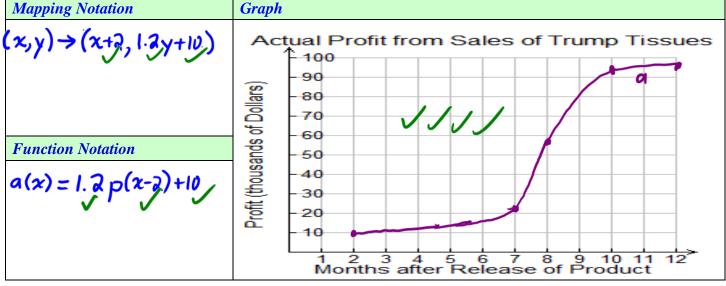

MCR 3U	9	C	rade 11 Pr		tions			Semest	er 2, 201	5 - 2016
	Unit 1 – M	ajor Test 1	– Functio	ns, Relatio	ns and		nations			
Mr. N. No. Victim:	" Mr J. C. time	chap	giring	work	_ 91	1. J. !!	KU 25/25	APP 25 /25	TIPS 14/14	
viciim.	int. Grandie						0.0720		1/21	<i>, , , , , , , , , , , , , , , , , , , </i>
	ally study the graph of the	v	at the right	t and then	answer	the ques	tions gi	ven belo	w. (15)	KU)
	tate the domain and range	•	,	, 💷			10			
Ľ	$Pomain = \{ x \in \mathbb{R} \mid x \neq -$ ange = { $y \in \mathbb{R} \mid y \neq 0$,	l, ≈≠		,						
			}~/				5			
	valuate each of the followi	C								
f	$(0) = \underbrace{ f(a) = }_{a} f(a) =$	$=2$ $\therefore a = $	· <u></u>							
				-10	-5		0	5		10
f	$(1) = \underbrace{\text{undefined}}_{(hole)} f(-1)$ $(2) \doteq \underbrace{3}_{f(3-1)} f(3-1)$	= undet	<u>inea</u>							
f	$(2) = \frac{1}{3} \sqrt{f(3-1)}$	5) = f(-2))=-1/	·						
	tate the equation of the ver						-5			
() 5	x = -1	tical asym	prote.							
	2=-10						-10			
	uggest a possible equation $f(x) = \frac{x - 1}{x^2 - 1}$ $= \frac{x - 1}{(x - 1)(x + 1)} = 1$		(" x≠I	<u>Hole</u> <u>Asymp</u> aets la	asympt Con and but tote: reer o	tote and a $\frac{1}{denom}$	hole. actur is un appn appn	x-1 for d lefined paches - If x>	in nu jvides $\frac{1}{x_{+}}$	merat out
2. State v	whether each of the following	ing is true	or false. I	Provide an	explan	ation to s	upport	each resp	onse. (8 TIPS)
	Statement	False?	Curt		er) =	Expland		6 - 1		
For	all functions f and all real numbers u and c , f(uc) = f(u)f(c)	F	L.S.= = =	ler F(= f(uc) = f(1(1) = f(1) = Z	x)=) R.S)	$ \begin{array}{l} z \neq 1, \\ z \neq f(u) \\ z \neq f(1) \\ z \neq a(z) \\ z \neq a$	u = 1, $f(c)$ $f(l)$ z	Since we have counted that s	e L.S. 7 ave fou erexam howst tatemen	R.S., nd a ple hat isfake
	The equation y = x is that of a function.	F	20110x		nere a vo val	x > 0 re ues or each $H \propto .$	_		,	

Continued on the next page...

Continued from previous page...

Statement	True or False?	Explanation
If $f(x) = x$ then $f^{-1}(x) = \frac{1}{x}$.	F	f(x)=x is invariant under a reflection in the line y=x. ∴ f ⁻¹ (x)=x NOT ½ (½ is the reciprocal function not the inverse function)
 Suppose that g(x) = -3f(2(x-8))+6. To obtain the graph of g, the following transformations must be performed to f: Vertical stretch by a factor of -3 followed by a shift up by 6 units Horizontal compression by a factor of 2, followed by a shift 8 units left. 	F	To determine the nature of the horizontal transformations, f's input must be transformed to g's input. f $2(x-8) \rightarrow \frac{1}{2}(or \times \frac{1}{2}) \rightarrow \frac{1}{8} \rightarrow \infty$ there should be a horizontal compression. by a factor of $\frac{1}{2}$ followed by a shift sunits right


3. The transformation expressed in mapping notation below is applied to $f(x) = x^3 + 1$ to produce the function g. Complete the table for this transformation. (15 APP)

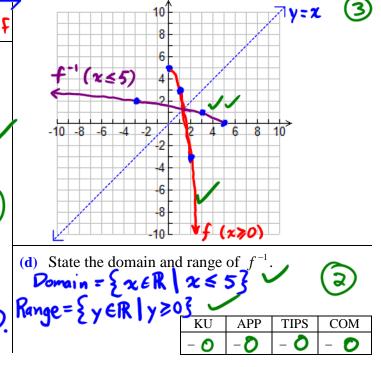


4. The graph of the function *p* at the right shows the *predicted profit* from sales of Donald Trump Bathroom Tissues for the first 12 months after introduction of the product.

Due to manufacturing problems, the introduction of the product was *delayed by two months*. In spite of the delay, the *actual profit* turned out to be \$10,000 more than 1.2 times the predicted profit.

Express this using mapping notation, function notation and graphically. For the purposes of function notation, let p represent the predicted-profit function and let a represent the actual-profit function. (10 APP)

- 5. Consider the function $f(x) = -2x^2 + 5$. (10 KU)
 - (a) Restrict the domain of f to a "piece" to that is one-to-one.


Restricted Domain = ExER x 20 (highlighted piece of graph)

(c) Find f^{-1} algebraically for the one-to-one "piece" of *f* that you chose in (a). Use your graph to check your answer. $y = -2x^2 + 5$

To find the inverse, apply the transformation $(x,y) \rightarrow (y,x)$. $x = -2y^2 + 5$

 $\therefore -2y^{2} = x-5$ $\therefore y^{2} = \frac{x-5}{2} = \frac{5-x}{2}$ $\therefore y = \pm \sqrt{\frac{5-x}{2}}$ For f, $x \ge 0$. Therefore, for f, $y \ge 0$. $\therefore f'(x) = \sqrt{\frac{5-x}{2}}$

(b) Sketch the graphs of both *f*, restricted to the domain that you chose in (a), and its inverse function for this domain.

6. Smartphone "finger" stands normally sell for \$20 apiece. At this price, 300,000 are expected to be sold.

a) For every 5-dollar increase in price, 30,000 fewer are sold. What selling price will
produce the maximum revenue and what will the maximum revenue be? (6 TTPS)
Let x represent the number of 5-dollar increases in price

$$\therefore$$
 # sold = 300000-30000x and price in # = $20+5x$
Let $R(x)$ represent the revenue, in dollars, for x #5 price increases
 $\therefore R(x) = (300000-30000x)(20+5x) + (x) +$

(b) Explain the *meaning* of the *inverse* of the function that you obtained in part (a). (4 COM)

The revenue function takes the # of #5 price increases as input and produces revenue as output.

The inverse of the revenue function, R⁻¹ does the sposite. It takes revenue as input and produces the # of \$5 price increases as output.

