Grade 11 AP Mathematics Unit 3 – Major Test – Polynomial Functions

Mr. N. Nolfi Victim:

KU	APP	TIPS	COM
26/26	30/30	23 /23	10/10

1. Use end behaviours, turning points and zeros to match each graph to the most likely polynomial equation. (4 KU)

$$(x)$$
 $y = x(2x^3 - 3x^2 + 3)$

$$y = x(x-1)(2x-1)-2$$

(a)
$$y = x(2x^3 - 3x^2 + 3)$$
 (b) $y = x(x-1)(2x-1) - 2$ (c) $y = -x^4 + x^3 + x^2 - 2x + 7$ (d) $y = -x^2 + 6x + 5$

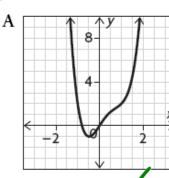
$$y = -x^2 + 6x + 5$$

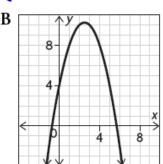
$$v = -x^2 + 5x + 4$$

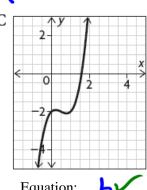
$$y = x^3 - x^2 + x - 2$$

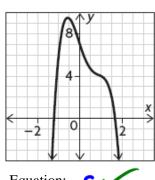
$$y = -x^2 + 5x + 4$$
 $y = x^3 - x^2 + x - 2$ $y = -7/40(4x + 5)(5x - 8)(x^2 + 1)$

D









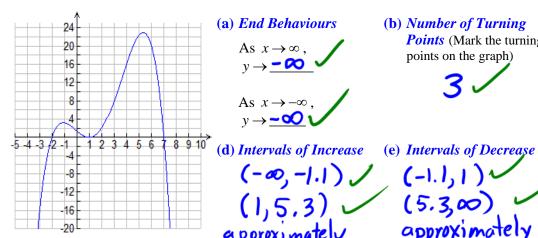
Equation: _________

Equation: _______

Equation: _________

Equation: ________

2. Given below is the graph of the polynomial function p(x). Determine each of the following. (12 KU)



(a) End Behaviours As $x \to \infty$, $v \rightarrow -\infty$

As
$$x \to -\infty$$
, $y \to -\infty$

(b) Number of Turning **Points** (Mark the turning points on the graph)

(c) Zeros and Multiplicities Zero Multiplicity

- (f) Possible Equation of p(x)

 $(-\infty, -1.1)$

- $y=(x+2)(x-7)(x-1)^{2}$
- approximately approximately

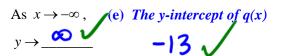
 3. Given the polynomial function $q(x) = -3x^5 9x^4 + 4x^2 + 7x 13$, determine each of the following. (10 KU)
 - **Behaviours**

(a) End

(b) Number of Possible...

As $x \to \infty$,

Zeros: 1, 2, 3, 4 or 5 **Turning Points:**



(c) Absolute Max, Min or Neither? Why?

polynomia cannot have

(d) Possible Graph end behaviour turning poi

KU	APP	TIPS	COM
-0	- 0	- 0	-0

- $=-\frac{3}{2}[2(x+1)]^{3}-5=-\frac{3}{2}(8)(x+1)^{3}-5=-12(x+1)^{3}-5$
- **4.** Sketch the graph of $g(x) = -\frac{3}{2}(2x+2)^3 5$ by applying transformations to the function $f(x) = x^3$. (9 APP)
- (a) State the transformations required to obtain g from the base/parent/mother function $f(x) = x^3$.

Horizontal	Vertical
1. No horizontal stretch or compression	1. Stretch verticall by a factor of -12
2. Translate one unit to the left.	2. Translate 5 units down

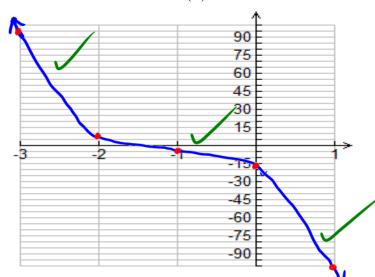
- (b) Express the transformation in *mapping notation*.

$$(x,y)\rightarrow (x-1,-12y-5)$$

(c) Apply the transformation to a few key points on the graph of the base function $f(x) = x^3$

Pre-image Point	Image Point
$on \ y = f(x)$	$on \ y = g(x)$
(-2,-8) —	(-3.91)
() = 1	1/3/1/
(-1, -1)-	7(-4) // (-//
(0,0)	→(-1,-5)(~/
(0.1)	(0, -17)
(2, 8)-	1014

(d) Now sketch the graph of g(x).



5. Sketch a possible graph of $f(x) = x^2(x-5)^2(x-1)^3(x+4)^4(x+2)$. (8 APP)

	Zero	Mult.	1
	-4	4	
	ース	1	
	٥	a	
	1	3	
	5	2	
		,	
D	egree		

Sible graph of $f(x) = x^{-1}(x-5)(x-1)(x+4)$	(x+2). (8 APP)
end behaviour / 11	
zeros VV multiplicities VVV	
multiplicaties VVV	
/ /	/ /
\ / \	
	V

Rough Work

KU	APP	TIPS	COM
- 0	- O	-0	- D

- **6.** Consider the sixth-degree polynomial function $p(x) = -x^6 + 10x^4 9x^2$.
 - (a) Fully factor the polynomial. (3 APP)

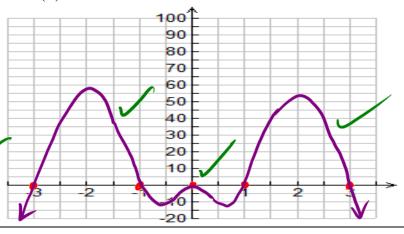
$$p(x) = -x^{6} + 10x^{4} - 9x^{2}$$

$$= -x^{2}(x^{4} + 10x^{2} - 9)$$

$$= -x^{2}(x^{2} - 1)(x^{2} - 9)$$

$$= -x^{2}(x - 1)(x + 1)(x - 3)(x + 3)$$

(b) Use the factored form of the polynomial to sketch the graph of y = p(x). (3 APP)



(c) Use the factored form to solve the equation $-x^6 + 10x^4 - 9x^2 = 0$.
(3 APP)

$$-x^{2}(x-1)(x+1)(x-3)(x+3)=0$$

$$\therefore \chi = 0 \text{ or } \chi - 1 = 0 \text{ or } \chi + 1 = 0$$
or $\chi - 3 = 0$ or $\chi + 3 = 0$

$$\therefore \chi = 0, 1, -1, 3, -3$$

(d) Use the factored form and the graph to solve the inequality $-x^6 + 10x^4 - 9x^2 \ge 0$. State the solution set using both set notation and interval notation. (4 APP)

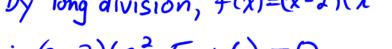
- $x^2(x-1)(x+1)(x-3)(x+3) \ge 0$ From the graph it's clear that $p(x) \ge 0$ if $-3 \le x \le -1$, x = 0 or $1 \le x \le 3$. Therefore, the solution set is $\{x \in \mathbb{R} \mid -3 \le x \le -1, x = 0, 1 \le x \le 3\}$ or $[-3,-1] \cup \{0\} \cup [1,3]$

7. Solve the polynomial equation $x^3 - 7x^2 + 16x = 12$. Include a graph that clearly shows the solutions of the equation. (10 TIPS)

$$x^3 - 7x^2 + 16x - 12 = 0$$

Let $f(x) = x^3 - 7x^2 + 16x - 12$

Since f(2)=0, x-2 is a factor of f(x) by long division, $f(x)=(x-2)(x^2-5x+6)$



$$\therefore (x-2)(x^2-5x+6)=0$$

$$(x-2)(x-2)(x-3) = 0$$

$$\therefore (x-2)^2 (x-3) = 0$$

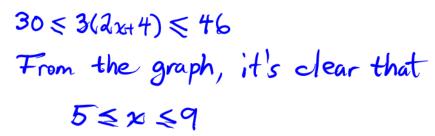
$$(x-2)^2 = 0$$
 or $x-3=0$

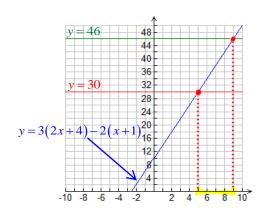
$$\therefore x = 2 \text{ or } x = 3$$

$$\begin{array}{r} x^{2}-5x+6 \\ x-2)x^{3}-7x^{2}+16x-12 \\ \underline{x^{3}-2x^{2}} \\ -5x^{2}+16x \\ \underline{-5x^{2}+16x} \\ 6x-12 \end{array}$$

KU	APP	TIPS	COM
- 0	- 	-0	- 0

8. Write an inequality that corresponds to the diagram given at the right. In addition, state the solution set using both set-builder notation and interval notation. (Do not solve the inequality. You should be able to see the solution just by looking at the graphs.) (5 TIPS)





Solution Set: {xER | 5 < x < 9} or [5,9]

and degree, possibly 3

- 9. The polynomial function $f(x) = -x^n + kx^2 (2k+2)x + 12$ has two turning points,
 - no global extreme points and can be divided exactly by x-3. Determine the values of n and k as well as any zeros of f. Then sketch the graph of y = f(x).
- Hint: There is no way to *calculate* the value of n. The best approach is to *choose* the simplest possible value of n. (8 TIPS)

$$\therefore -3^{n} + k(3^{2}) - (2k+2)(3) + 12 = 0$$

$$\therefore -3^n + 9k - 6k - 6 + 12 = 0$$

$$\therefore 3k+6-3^{n}=0$$

Since the polynomial has no global extreme points and an even number of turning points, the degree of f must be odd. Therefore, a good candidate for the value of n is 3. If n=3,

$$3k+6-3^3=0$$

$$\therefore 3k-2l=0$$

$$f(x) = -x^3 + 9x^2 - 16x + 12$$

$$= -(x-3)(x^2 - 4x + 4)$$
 by long division
$$= -(x-3)(x-2)^2$$

zeros are x=3 and x=2

KU	APP	TIPS	COM
_	_	_	_