MCR3U9 Grade 11 Pre-AP Function	Semester 1, 2016 - 2017
Minor Test – Unit 1 – Function Concepts, Notation, Perspecti	ives, Applications, Transformations
Mr. N. Nolfi Victim: Volutions	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Part 1: Modified True/False (6 KU)	
State whether each statement is <i>true</i> or <i>false</i> . If false, <i>change</i> the <u>unde</u>	<u>erlined part</u> to make the statement true.
1. T/F $F(2+7) = f(2) + f(7)$ for all functions f .	Change: $f(\gamma) \wedge$
2. T/F $f(g(3) = -1$ then $(-1,3)$ lies of the graph of g.	Change: (3,-1) ×
3. T/F All functions are relations <u>and all</u> relations are functions.	Change: but not all
4. T/F F The function $h(t) = -4.9t^2 + 14t + 2$ describes the height,	, in metres, of a ball thrown vertically
upward, t seconds after it was thrown. Then $h(0)$ means the height of the ball when it hits the ground.	S Change: the height at time O
5. T/F F The symbol $f(u)$ is read " <u>fu</u> ."	Change: "F of y" X
Part 2: Problems	
6. Circle the relations that are functions. (5 KU) One mark	deducted for
(a) (b) (c) each in correct $each = 10^{10}$	recta identitication (e)
(f) $x^2 - y^2 = 0$ (g) {(1,1), (1,2), (1,3), (1,5)} (h) {(0,2), (1,2), (2,2)}	2) (i) $ y = 16 - x^2$ (j) $y = x^3 + 2x^2 - 3x$
7. State the domain and range of $f(x) = x^3 + 5x^2 - 66x$	$- \chi(\chi^2 + 5\chi - 66) - \chi(\chi + 11)[\chi - 6]$
7. State the domain and range of $f(x) = \frac{1}{x+11}$. (2 KU)	2+11 2+11
Domain = $\frac{2 \times 6 \mathbf{K} \times \neq -115}{Range} = \frac{1}{2}$	<u>{yer}y>-95</u>
See page 3 for detailed analysis of #1	(bonus +1, Ky reduced to 20)
8. A kayak-rental company charges \$40 per kayak rental and averages 400 rentals per day. According to marketing studies of the kayak -	s 30000 (16,28800)
rental industry, for every \$5 increase in price, a typical company ca expect to lose 10 rentals per day. How much should the company	in a second s
charge to maximize revenue? (10 APP)	
Let x represent the number of	
#5 price increases and let RCX hepve.	2hl 40
increases have been made	axis of
De anno - (u karaka mutal Varia anno	what the symmetry
Mevenue = (# nayaris renteal price parte	2=16
K(x) = (400 - 10x)(40 + 5x)	The max revenue is found at the
$\therefore R(x) = 10(40-x)(5)(8+x)$	of symmetry. Therefore, to maximiz
$\therefore R(x) = 50(40-x)(8+x)$	the company should charge
: the zeros of Rare - 8 and 40 V	KU APP TIPS COM
Since Ris a quadratic function,	
its axis at symmetry has equation $x = -\frac{81}{3}$	<u>=====================================</u>

9. Consider the function f defined by the equation f(x) = |x-10|. The function g is obtained by performing the following transformations to f:

Therefore, the graph of f is a parabola with a hole at x=11, If we let g(x)=x(x-6), g(-11)=187. Thus, the co-ordinates of the hole are (-11, 187).

... domain of $f = \{ x \in \mathbb{R} \mid x \neq -11 \}$ and the range of $f = \{ y \in \mathbb{R} \mid y \ge 0 \text{ and } y \neq 187 \}$