Grade 11 Pre-AP Mathematics

Unit 2 – Exponential and Logarithmic Functions – Major Test

Mr. N. Nolfi

Victim:

Beautiful work Mr. of

COM 12/18 15/15 10/10

Modified True/False (5 KU)

State whether each statement is *true* or *false*. If false, *change* the <u>underlined part</u> to make the statement true. $\alpha^{\gamma} = \alpha^{\gamma} = \alpha^{\gamma} + \gamma = \beta(\chi + \gamma)$

1. T/F For $f(x) = a^x$, f(x)f(y) = f(xy). 2. T/F For $f(x) = a^x$, f(nx) = nf(x).

Change: $\mathcal{H}_{\mathbf{x}}$

3. T/F $y = \log_a x$ means that $a^x = y$.

x ≥ ½ mrk hange: _

 $T/F = log_{243} 9 = \frac{5}{2}$.

Change: _____

T/F $\log_a(x+y) = \log_a x + \log_a y$

Change: ____

Problems

- **6.** Suppose that $g(x) = 1.5\log_2(0.5(x+6)) + 2$. (14 KU)
 - (a) State the transformations required to obtain g from the base function $f(x) = \log_2 x$.

Horizontal	Vertical
1. Stretch by	1. Stretch by
a factor	1. Stretch by a factor
of two	6f 1.5
V T 1 1	o — 1110
2. Translate	2. Translate
six units to the left	two units
to the left	up
	(2)

- (b) Express the transformation in *mapping notation*. $(x,y) \to (2x-6, 1.5y+2)$
- (c) Now apply the transformation to a few key points on the graph of the base function $f(x) = \log_2 x$.

Pre-image Point	Image Point
on y = f(x)	on y = g(x)
(1/2,-1)	(-5, -0.5)
(1,0)	(-4, 2)
(2,1) (4)	(-2, 3.5)
(4,2)	(a,5)
(8,3)	(10, 6.5)

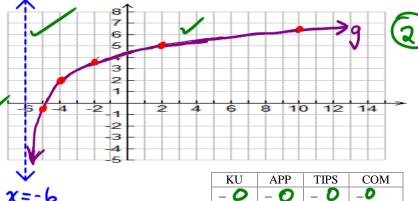
(d) Apply the transformation to the asymptote of y = f(x).

(2)	Pre-image Asymptote on $y = f(x)$	Image Asymptote on $y = g(x)$
O	x = 0	x=-6

(e) State the domain and range of g.

domain = $\{x \in \mathbb{R} \mid x \ge -6\}$ range = \mathbb{R}

(f) Finally, sketch the graph of y = g(x).



7. Opie lent Brian and Stewie an amount of money at a rate of 3.60% p.a. (per year), compounded *monthly*. Brian and Stewie finally repaid Opie ten years later in one lump sum of \$10,000. How much money did Brian and Stewie borrow from Opie?

(a) If P represents the amount borrowed, complete the following: (4 APP)

annual rate = 0.036

monthly rate = 0.003

Time (months)	Amount (\$)	
0	P	
1	P(1.003)	
2	P(1.003)(1.003)	
3	P(1.003)(1.003)(1.0	203)
· ·	// :	
t	P(1.003)t	

(b) Now solve the problem! (6 APP)

future value = \$10000, = 120 months

Unknown:

Let V(t) represent the future value of the amount borrowed by Stewie and Brian.

$$V(t) = P(1.003)^{\circ}$$

$$V(t) = P(1.003)^{t}$$

$$10000 = P(1.003)^{120} L$$

$$P = \frac{10000}{(1.003)^{120}}$$

=6980.52

Stewie and Brian borrowed

\$ 6980.52.

8. Through detailed studies, scientists have determined that in *living* carbonaceous material, the ratio of number of ¹⁴C atoms to number of ¹²C atoms is 1:10¹². In a wooden artifact found in an archaeological excavation, the ratio of number of 14 C atoms to number of 12 C atoms is measured to be $1:2.7\times10^{12}$. Estimate the age of the wood used to make the artifact. (Recall that the half-life of ¹⁴C is 5730 years.) (8 APP)

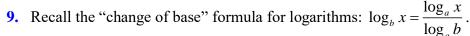
t (yews)	# 1tc atoms
0	No
5730	No (1/2)
11460	No(主)(主
•	•
t	No(2)5730

 $\frac{10^{12}}{2.7\times10^{12}} = \frac{1}{2.7} = \text{fraction of } ^{14}\text{C atoms remaining a}$ Let N(t) represent the # of 14°C artoms remaining after t years. Then,

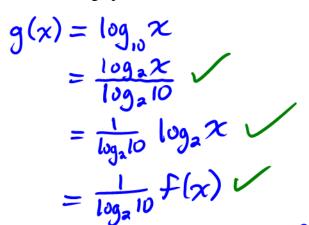
<u>=</u> 8210.9

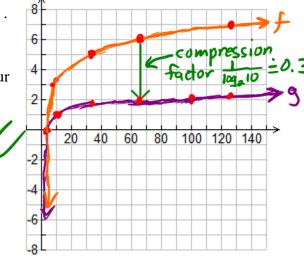
The artifact is made of wood that is about 8200 years old.

KU	APP	TIPS	COM
- 0	- 0	- D	- D



Use this formula to explain how the graph of $g(x) = \log_{10} x$ can be obtained by transforming the graph of $f(x) = \log_2 x$. Illustrate your answer with graphs. (8 TIPS)





Therefore, the graph of g can be obtained by compressing the graph of f vertically by a factor of $\frac{1}{\log_2 10} = 0.3$

10. The dynamic range of human hearing spans roughly from 10^{-12} W/m² to 10 W/m². This means that the highest sound intensity that can be heard is about 10,000,000,000,000 times louder than the quietest! Such a wide span of sound intensity is very impractical for most applications.

A much more convenient way to measure the "loudness" of a sound is to use a *relative logarithmic scale*. The most commonly used such scale defines the "loudness" L of a sound, in units called *decibels* (dB), in terms of the intensity I of the sound and the intensity I_0 (10^{-12} W/m²) of a sound at the threshold of human hearing. The following equation relates L, I and I_0 :

Sound	Loudness (dB)
soft whisper	30
normal conversation	60
shouting	80
subway	90
screaming	100
rock concert	120
jet engine	140
space-shuttle laynch	180

$$L = 10\log_{10}\left(\frac{I}{I_0}\right)$$

 $L=10\log_{10}\left(\frac{I}{I_0}\right) \qquad \begin{array}{c} I \rightarrow \text{intensity (W/m)} \\ L \rightarrow \text{loudness (dB)} \end{array}$

A car has an interior low less of 70 dB at 50 km/h. A second car, travelling at the same speed, has an interior sound level 3 times more intense than the first car. Determine the interior loudness of the second car.

$$\frac{\text{Car } 2}{L = 10 \log_{10} \left(\frac{3I}{I_0}\right)}$$

$$\begin{cases} : L = 10 \log_{10} \left[3 \left(\frac{1}{T_0} \right) \right] \\ = 10 \left[\log_{10} 3 + \log_{10} \left(\frac{1}{T_0} \right) \right] \\ = 10 \log_{10} 3 + 10 \log_{10} \left(\frac{1}{T_0} \right) \end{cases}$$

The interior loudness of the second = $10 \log_{10} 3 + 70 \frac{\text{KU}}{\text{APP}} \frac{\text{TIPS}}{\text{COM}}$ car is about 74.8 dB. $= 74.8 \frac{1}{2} \cdot 0 = 0 = 0$

Sudanshu's Atternative Approach to Question 8

The decay of 1 the "Catoms every 5730 years is equivalent to the ratio of 12C to "C doubling every 5730 years.

	/
t	12C: 14C
0	10 ¹² : 1
5730	2×10 ¹² : 1 4×10 ¹² : 1
11460	4x1012:1
1:	
•	.
4	2 5730 X10 12
•	A 70

$$\therefore 2.7 \times 10^{12} = 2^{\frac{5}{5730}} \times 10^{12}$$

$$\therefore 2.7 = 2^{\frac{5}{5730}}$$

Since
$$2^1 = 2$$
, $2^2 = 4$ and $2 < 2.7 < 4$, $1 < \frac{t}{5730} < 2$

$$\begin{array}{ccc} \vdots & \pm & \pm & 1.435 \\ \vdots & \pm & 8200 \end{array}$$

- How equation can still be solved without knowing laws of logs

Yet another approach is to observe that the ratio of 14C: 12C is cut in half every 5730 years

$$\frac{1}{2.7\times10^{12}} = \left(\frac{1}{2}\right)^{\frac{1}{5730}} \left(\frac{1}{10^{12}}\right)$$

$$\frac{1}{2.7\times10^{12}} = \left(\frac{1}{2}\right)^{\frac{1}{5730}} \left(\frac{1}{10^{12}}\right)$$

$$\frac{10^{12}}{2.7\times10^{12}} = \left(\frac{1}{2}\right)^{\frac{1}{5730}} \longrightarrow \frac{1}{2.7} = \left(\frac{1}{2}\right)^{\frac{1}{5730}}$$

Sudanshu's Alternative Approach to Question 10

Car 1:
$$70 = 10 \log_{10} (\frac{I}{I_0})$$

$$\therefore I = 10^7 I_{\bullet}$$

$$\therefore 3I = 3 \times 10^7 I_0$$

$$\frac{\text{Car 1:}}{70 = 10 \log_{10} \left(\frac{1}{T_0}\right)} \rightarrow \frac{\text{Car 2:}}{2} L = 10 \log_{10} \left(\frac{31}{T_0}\right) \log_{10} \left(\frac{3\times 10^7 T_0}{T_0}\right) \text{ at step}$$

$$\therefore 7 = \log \left(\frac{1}{T_0}\right) \text{ step}$$

$$= 10(\log_{10}3+7) = 74.8$$