MCR 3U9 Semester 2, 2016 - 2017 **Grade 11 Pre-AP Functions** Unit 1 - Major Test 1 - Functions, Relations and Transformations Mr. N. Nolfi anothe frillight display TIPS APP COM KU lutino 23/23 26/26 20/20 ID /10 Victim: nathematical inci ľh. 1. Carefully study the graph of the function f at the right and then answer the questions given below. (10 KU) (a) State the domain and range of f. 10-Domain = \mathbb{R} Q Range = $\{y \in \mathbb{R} \mid y \ge 0\}$ (b) Evaluate each of the following. $f(2) = \underbrace{4}_{f(-2)} = \underbrace{4}_{f(-2)}$ $f(-3-2) = \underbrace{f(-5)}_{x} = 3 \sqrt{11} \text{ Bonus}$ $f(a) = 1 \quad \therefore a = \underbrace{1 \quad \text{or} \quad -1}_{x} \quad \text{or} \quad -3$ -3 (c) Suggest a possible equation for f. -x-2, x<-2 $f(x) = \begin{cases} \chi^2, -2 \leq \chi \leq 2 \\ \chi+2, \chi > 2 \end{cases}$ 2. A cylinder with radius r and height h is inscribed in a sphere of constant radius R. Express the volume of the cylinder as a function of h. (Recall that $V_{\text{cylinder}} = \pi r^2 h$.) (6 APP) By the Pythagorean Theorem, R $h^{2} + (2r)^{2} = (2R)^{2}$ $V = \frac{1}{4} \pi h (4R^2 - h^2)$ $h^{2} + 4r^{2} = 4R^{2}v$ ∴ 4r² = 4R^{*}-1 $\therefore r^{2} = \frac{4R^{2} - h^{2}}{4}$ $\therefore V = \pi \left(\frac{4R^{2} - h^{2}}{4}\right)h$ KU APP TIPS COM Ο Ο -0 Г

3. Given below is the graph of $f(x) = |x^3 - 1|$. The transformation expressed in mapping notation below is applied to the function *f* to produce the function *g*. Complete the table for this transformation. (12 APP)

5. The graph of the function *p* at the right shows the *predicted profit* from sales of Donald Trump Bathroom Tissues for the first 12 months after introduction of the product.

Due to manufacturing problems, the introduction of the product was *delayed by two months*. In spite of the delay, the *actual profit* turned out to be \$10,000 more than 1.2 times the predicted profit.

Express this using mapping notation, function notation and graphically. For the purposes of function notation, <u>let *p* represent the predicted-profit</u> function and <u>let *a* represent the actual-profit function</u>. (8 APP)

- Smartphone "finger" stands normally sell for \$15 apiece. At this price, 200,000 are expected to be sold. For every 2-dollar increase in price, 10,000 fewer are sold. (8 TIPS)
 - (a) What selling price will produce the maximum revenue and what will the maximum revenue be?

Let x represent the number of \$2 increases in price and let R(x) represent the revenue obtained (in dollars) Then, 7. the selling price should be R(x) = (200000 - 10000x)(15 + 2x)15+2(25)= \$27.50, Zeros: -들, 20 ~ which produces a maximum axis of symmetry: $\chi = \frac{20 + (-\frac{12}{2})}{\chi} =$ revenue of $Verte_{x!}$ $(\frac{25}{4}) 378 (250)$

(b) Explain the *meaning* of the *inverse* of the function that you obtained in part (a).

As shown in the diagram, the function R⁻¹ takes the revenue as input and outputs the # of \$2 price increases needed to produce that revenue. KU APP TIPS COM -0-0-0-0

Mate: Functions that are their own inverses are called Involutions.
7. Let
$$f(x) = \frac{x}{x-1}$$
. (DITING)
(a) Prove that $f(x) = f^{-1}(x)$
1. B: prove that $f(x) = f^{-1}(x)$
1. C: $x = \frac{y}{x-1}$
2. $x = \frac{y}{x-1}$
3. $x = \frac{y}{x-1}$
(b) Let $g(x) = g(x) = \frac{1}{x}$, where f is a defined above and a represents any non-zero real number.
Prove that $g(x) = g^{-1}(x)$ is $\frac{1}{x}$, where f is a defined above and a represents any non-zero real number.
Prove that $g(x) = g^{-1}(x)$ is $\frac{1}{x}$, where f is a defined above and a represents any non-zero real number.
Prove that $g(x) = g^{-1}(x)$ is $\frac{1}{x}$, where f is a defined above and a represents any non-zero real number.
Prove that $g(x) = g^{-1}(x)$ is $\frac{1}{x}$, where f is a defined above and a represents any non-zero real number.
Prove that $g(x) = g^{-1}(x)$ is $\frac{1}{x}$, where f is a defined above and x represents any non-zero real number.
Prove that $g(x) = g^{-1}(x)$ is $\frac{1}{x}$, prove that if $f(x) = \frac{x}{x-1}$ is stretched/compresed both
is $\frac{1}{x} = \frac{1}{y}$ is $\frac{1}{x}$. The torus will be its oluan inverse (i.e. symetric in $y=x$)
 $g(x) = af(\frac{1}{x}x)$
 $= a(\frac{x}{2})^{-a}$
 $\therefore x(y-a) = ay$
 $\therefore x(y-a) = ay$
 $\therefore x(y-a) = ax$
 $\therefore g(x) = g^{-1}(x)$.
(c) Let $h(x) = a(\frac{1}{a}(x-c)) + d$, where f is a defined above and x is any non-zero real number. How must the
values of c and d be related for $h(x) - h^{-1}(x)$? Notice that $h(x) = g(x) = g^{-1}(x)$.
(c) Let $h(x) = a(\frac{1}{a}(x-c)) + d$, where f is a defined above and x is any non-zero real number. How must the
values of c and d be related for $h(x) - h^{-1}(x)$? Notice that $h(x) = g(x-c) + d$.
The function $h(x,y) - i(x+c, y+d)$.
(3) This means that g must be translided by c units horizontally
and d units vertically.
The symmetry of g in the line $y=x$ is preserved only if
it is translated h

$$h(x) = a f\left(\frac{1}{a}(x-c)\right) + d$$

$$= a \left[\frac{\frac{1}{a}(x-c)}{\frac{1}{a}(x-c)-1}\right] + d$$

$$= a \left(\frac{x-c}{a}\right) + d$$

$$= a \left(\frac{x-c}{a}\right) + d$$

$$= a \left(\frac{x-c}{a}\right) + d$$

$$= \frac{a(x-c)}{x-c-a} + d$$

$$= \frac{a(y-c)}{x-c-a} + d$$

$$= \frac{a(y-c)}{y-c-a} + d$$

$$= \frac{a(x-c)}{x-c-a} + d$$