MCR 3U9 Semester 2, 2016 - 2017 **Grade 11 Pre-AP Mathematics** Unit 2 – Exponential and Logarithmic Functions – Test #2 +3A as usual your solutions are thought Mr. N. Nolfi APP TIPS COM Mh Solutions Victim: a) /18 10/10 10/10 1. Opie lent Brian and Stewie an amount of money at a rate of 4.80% p.a. (per year), compounded quarterly (four times per year). Brian and Stewie finally repaid Opie five years later in one lump sum of \$5,000. How much money did Brian and Stewie borrow from Opie? (b) Now solve the problem! (6 APP) (a) If *P* represents the amount P=? V(t) = value of money after t quarters 5 years = 20 quarters ... V(20) = 5000 borrowed, complete the following: (4 APP) annual rate = 0.048 $V(t) = P(i.0)a^{t}$ quarterly rate = 0.012 V(20) = 5000Time Amount (\$) (quarters) ~ P(1.012)20 = 5000~ 0 Р 1 P(I,D|2) $P = \frac{5000}{1.012^{20}}$ = 3938.76 🗸 2 P(LOIA 3 PCI.DI Brian and Stewie borrowed \$ 3938.76. t 2. In *living* carbonaceous material, the ratio of number of ${}^{14}C$ atoms to number of ${}^{12}C$ atoms is about 1:10¹². In a wooden artifact found in an excavation, the ratio of number of ¹⁴C atoms to number of ¹²C atoms is $1:1.9\times10^{12}$. Estimate the age of the wood used to make the artifact. (The half-life of ${}^{14}C$ is 5730 years.) (8 APP) Let R(t) represent the ratio of "C atoms to "C atoms t t years after the death of the organism. (yews

0	1012	$\frac{t}{5730}$	
5730 <u>1</u>	$m\left(\frac{1}{a}\right)$	$\therefore R(t) = \overline{10^{12}} (\frac{1}{2})^{12}$	
11460 10	ふ(生)は)	When nation $t = \frac{1}{10000000000000000000000000000000000$	
;	•	$\frac{10^{12}}{(\frac{1}{2})^{12}} = \frac{10^{12}}{1.9 \times 10^{12}}$	
t <u>1</u>	Ta (2) 5730	$(\pm)^{\pm} = \frac{1}{1.9} = 0.526316$	
By trial and error, $\frac{L}{5730} \doteq 0.926$. $\therefore t \doteq 5306$ The artifact is about 5300 years old.			

3. After a drug is given to a patient, the amount of drug remaining in the bloodstream is measured twice. The table at the right shows the results. (**10 TIPS**)

Time (min)	Amount of Drug Left (mg)
90	85
120	81

- (a) Assume that the amount of drug remaining in the bloodstream decreases exponentially. Write an equation of the form
- $A(t) = A_0 b^t \text{ that describes the amount of drug remaining, in mg, after thours.}$ $A(1.5) = 85 \rightarrow 85 = A_0 b^{1.5} (1) \qquad A(t) = A_0 \left(\frac{81^2}{85^3}\right)^{1}$ $A(2) = 81 \rightarrow 81 = A_0 b^{2} (2) \qquad A(2) = 81 \qquad A_0 (\frac{81^2}{85^3})^{2} = A_0 \left(\frac{81^4}{85^4}\right)^{1}$ $A(2) = 81 \rightarrow 81 = A_0 b^{2} (2) \qquad A(2) = 81 \qquad A(3) = 81 \qquad A(4) = 81 \qquad A$

The initial dose was
$$A(0) = \frac{85^4}{81^3} = 98.225 \text{ mg}$$

(c) Write an equation for
$$A^{-1}$$
. Explain the *meaning* of the input and the output of this function.
Let $y = \frac{85^{+}}{8l^{3}} \left(\frac{8l^{2}}{85^{2}}\right)^{\pm} = 98.225(0.9081)^{\pm}$
To form the inverse, $app(y(t,y) \rightarrow (y,t))$
 $t = \frac{85^{+}}{8l^{3}} \left(\frac{8l}{85^{2}}\right)^{2} = 98.225(0.9081)^{2}$
 $\therefore A^{-1}(t) = \log_{8l^{2}} \left(\frac{8l}{85^{4}}\right)^{2} = \frac{\log_{10}(\frac{\pi}{98.235})}{\log_{10}(0.9081)}$
 $\frac{1}{85^{2}} = \frac{1}{85^{2}} = 98.225(0.9081)^{2}$
 $\therefore \frac{81^{3}}{85^{4}} t = \left(\frac{8l^{2}}{85^{2}}\right)^{2}$ or $\frac{1}{98.225} = 0.9081^{2}$
 $\frac{1}{85^{2}} = \frac{1}{85^{2}} = 0.9081^{2}$
 $\frac{1}{85^{2}} = \frac{1}{85^{2}} = 0.9081^{2}$
 $\frac{1}{85^{2}} = \frac{1}{85^{2}} = 1 = 0.9081^{2}$
 $\frac{1}{109} = \frac{1}{109} = \frac{1}{10$