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(a) Plot the data. (c) Find f “%(x). Explain the significance of f 2.

(b) Determine a linear function f(x) = ax + b that models (d) Use f~* to predict the year in which there were 11,987
these data, where x is the year. Plot f and the data on the radio stations. Compare it with the true value, which is
same coordinate axes. 1995.

l B Previously, we considered functions having terms of the form

Exponential Functions variable baseconsiant power

such as x?, 0.2x*3, and 8x?°. We now turn our attention to functions having
terms of the form

constant basevariable power,

such as 2% (1.04)*, and 37* Let us begin by considering the function f

defined by
FIGURE 1 f(x) = 2,
LY _ where x is restricted to rational numbers. (Recall that if x = m/n for integers
1 (3,8) m and n with n > 0, then 2* = 2™ = (\/2)".) Coordinates of several points
1 on the graph of y = 2% are listed in the following table.
1 X 10 | 3| 2| -1]0|1]2]s3 10
1 «(2,4
@9 y=2x | mm 3 : 1 2|4 |8 | 1024
T2 _ _
-1,4) 4 Other values of y for x rational, such as 2%, 27%7, and 2%, can be approxi-
. o= (0, 1)

mated with a calculator. We can show algebraically that if x, and x, are rational
numbers such that x; < x,, then 2% < 2*2, Thus, f is an increasing function,
and its graph rises. Plotting points leads to the sketch in Figure 1, where
the small dots indicate that only the points with rational x-coordinates are on
the graph. There is a hole in the graph whenever the x-coordinate of a point is
irrational.

To extend the domain of f to all real numbers, it is necessary to define 2*
for every irrational exponent x. To illustrate, if we wish to define 27, we could
use the nonterminating decimal representing 3.1415926 . . . for 7r and consider
the following rational powers of 2:

FIGURE 2

23' 23.1, 23.14’ 23.141' 23.1415l 23.14159’

It can be shown, using calculus, that each successive power gets closer to a
unique real number, denoted by 2™. Thus,

2—27 as Xx— , with x rational.

The same technique can be used for any other irrational power of 2. To sketch
the graph of y = 2* with x real, we replace the holes in the graph in Figure 1
with points, and we obtain the graph in Figure 2. The function f defined by
f(x) = 2* for every real number x is called the exponential function with
base 2.

+ Let us next consider any base a, where a is a positive real number differ-
ent from 1. As in the preceding discussion, to each real number x there
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262 CHAPTER 4 INVERSE, EXPONENTIAL, AND LOGARITHMIC FUNCTIONS
corresponds exactly one positive number a* such that the laws of exponents are
true. Thus, as in the following chart, we may define a function f whose domain
is R and range is the set of positive real numbers.
Graph of f Graph of f
Terminology Definition fora>1 for0O<a<1
Exponential function f(x) = a* y y
f with base a for every x in R,

wherea > 0anda # 1

<Y
<Y

Note thatifa > 1,thena =1 + d
(d > 0) and the base ainy = a*

can be thought of as representing
multiplication by more than 100% as
x increases by 1, so the function is
increasing. For example, if a = 1.15,
then y = (1.15)* can be considered to
be a 15% per year growth function.
More details on this concept appear
later.

The graphs in the chart show that if a > 1, then f is increasing on R, and
if 0 < a < 1, then f is decreasing on R. (These facts can be proved using cal-
culus.) The graphs merely indicate the general appearance—the exact shape
depends on the value of a. Note, however, that since a° = 1, the y-intercept is
1 for every a.

If a> 1, then as x decreases through negative values, the graph of f
approaches the x-axis (see the third column in the chart). Thus, the x-axis is a
horizontal asymptote. As x increases through positive values, the graph rises
rapidly. This type of variation is characteristic of the exponential law of
growth, and f is sometimes called a growth function.

If 0 < a <1, then as x increases, the graph of f approaches the x-axis
asymptotically (see the last column in the chart). This type of variation is
known as exponential decay.

When considering a*, we exclude the cases a = 0 and a = 1. Note that if
a < 0, then a* is not a real number for many values of x such as 3, 3, and &
If a = 0, then a° = 0° is undefined. Finally, if a = 1, then a* = 1 for every x,
and the graph of y = a* is a horizontal line.

The graph of an exponential function f is either increasing throughout its
domain or decreasing throughout its domain. Thus, f is one-to-one by the theo-
rem on page 251. Combining this result with the definition of a one-to-one
function (see page 250) gives us parts (1) and (2) of the following theorem.

Theorem: Exponential
Functions Are One-to-One

The exponential function f given by

f(x) =a* for 0<a<1l or a>1

is one-to-one. Thus, the following equivalent conditions are satisfied for
real numbers x; and X,.

(1) If x; # Xy, then a%  a%.

(2) If @« = a*, then x; = X,.

When using this theorem as a reason for a step in the solution to an exam-
ple, we will state that exponential functions are one-to-one.
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FIGURE 3

ILLUSTRATION

4.2 Exponential Functions 263

Exponential Functions Are One-to-One
B If 7% = 7%*5 then 3x = 2x + 5, or x = 5.

In the following example we solve a simple exponential equation—that is,
an equation in which the variable appears in an exponent.

EXAMPLE 1 Solving an exponential equation

Solve the equation 3%°8 = 9x*2,

SOLUTION

38 = gx*2 given
3%8 = (3%)**2  express both sides with the same base
38 = x4 law of exponents
5x — 8 = 2x + 4 exponential functions are one-to-one
3x =12 subtract 2x and add 8
X =4 divide by 3 [

Note that the solution in Example 1 depended on the fact that the base 9
could be written as 3 to some power. We will consider only exponential equa-
tions of this type for now, but we will solve more general exponential equa-
tions later in the chapter.

In the next two examples we sketch the graphs of several different expo-
nential functions.

DLV NANIPN  Sketching graphs of exponential functions

If f(x) = (g)x and g(x) = 3%, sketch the graphs of f and g on the same

coordinate plane.

SOLUTION Since% > 1and 3 > 1, each graph rises as x increases. The fol-
lowing table displays coordinates for several points on the graphs.

x -2 -1 |0 |1 2 3 4
y=0G) | 2~04 | Z=07| 1|} |9=23| Z=34 | %=51
y=3x |[3=01|31~03 |13 9 27 81

Plotting points and being familiar with the general graph of y = a* leads to the
graphs in Figure 3. ]

Example 2 illustrates the fact that if 1 < a < b, then a* < b* for positive
values of x and b* < a* for negative values of x. In particular, sinceg <2<3,
the graph of y = 2*in Figure 2 lies between the graphs of f and g in Figure 3.
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264 CHAPTER 4 INVERSE, EXPONENTIAL, AND LOGARITHMIC FUNCTIONS

FIGURE 4 Sketching the graph of an exponential function
Sketch the graph of the equation y = (3)"

SOLUTION Since 0 < % < 1, the graph falls as x increases. Coordinates of
some points on the graph are listed in the following table.

X -3 -2 -1 0 1 2 3

y=(3) 8 4 2 | 1

o=

NI
Bl

The graph is sketched in Figure 4. Since (%)X = (271 = 27 the graph is
the same as the graph of the equation y = 27* Note that the graph is a reflec-
FIGURE 5 tion through the y-axis of the graph of y = 2* in Figure 2. ]

Equations of the form y = a", where u is some expression in X, occur in
applications. The next two examples illustrate equations of this form.

Shifting graphs of exponential functions
Sketch the graph of the equation:
@y=3?% @By=3-2

SOLUTION

(a) The graph of y = 3% sketched in Figure 3, is resketched in Figure 5. From
the discussion of horizontal shifts in Section 2.5, we can obtain the graph of
y = 3*2 by shifting the graph of y = 3* two units to the right, as shown in
Figure 5.

The graph of y = 372 can also be obtained by plotting several points and
FIGURE 6 using them as a guide to sketch an exponential-type curve.

LY (b) From the discussion of vertical shifts in Section 2.5, we can obtain the

graph of y = 3* — 2 by shifting the graph of y = 3* two units downward, as
shown in Figure 6. Note that the y-intercept is —1 and the liney = —2 is a
horizontal asymptote for the graph. [

EXAMPLE 5 Finding an equation of an exponential
function satisfying prescribed conditions

Find an exponential function of the form f(x) = ba™* + c that has horizontal
asymptote y = —2, y-intercept 16, and x-intercept 2.

SOLUTION The horizontal asymptote of the graph of an exponential func-
tion of the form f(x) = ba™* is the x-axis—that is, y = 0. Since the desired
horizontal asymptote isy = —2, we must have ¢ = —2, so f(x) = ba™ — 2.
Because the y-intercept is 16, f(0) must equal 16. But f(0) = ba™® — 2 =
b—2,s0b—2=16andb = 18. Thus, f(x) = 18a* — 2.
Lastly, we find the value of a:

f(x) = 18a* — 2  given form of f
0 =18(a)2 — 2 f(2) = O since 2 is the x-intercept
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FIGURE 7

FIGURE 8
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FIGURE 9
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1
2=18" 2z add 2; definition of negative exponent
a?=9 multiply by a?/2
a==*3 take square root

Since a must be positive, we have
f(x) = 18(3)™* — 2.

Figure 7 shows a graph of f that satisfies all of the conditions in the problem
statement. Note that f(x) could be written in the equivalent form

f(x) = 18(3) — 2. ]

The bell-shaped graph of the function in the next example is similar to a
normal probability curve used in statistical studies.

Sketching a bell-shaped graph

If f(x) = 27**, sketch the graph of f.
SOLUTION If we rewrite f(x) as
1
f(x) = Pt

we see that as x increases through positive values, f(x) decreases rapidly;
hence the graph approaches the x-axis asymptotically. Since x? is smallest
when x = 0, the maximum value of f is f(0) = 1. Since f is an even function,
the graph is symmetric with respect to the y-axis. Some points on the graph are
(0,1), (1,3), and (2, ). Plotting and using symmetry gives us the sketch in
Figure 8. u

NNV 9 kel 'l Bacterial Growth

Exponential functions may be used to describe the growth of certain popula-
tions. As an illustration, suppose it is observed experimentally that the number
of bacteria in a culture doubles every day. If 1000 bacteria are present at the
start, then we obtain the following table, where t is the time in days and f(t) is
the bacteria count at time t.

t (time in days) 0 1 2 3 4
f(t) (bacteria count) 1000 2000 4000 8000 16,000

It appears that f(t) = (1000)2". With this formula we can predict the number of
bacteria present at any time t. For example, att = 1.5 = %

f(t) = (1000)2%2 ~ 2828.
The graph of f is sketched in Figure 9.

NNV NRke]\B Radioactive Decay

Certain physical quantities decrease exponentially. In such cases, if a is the
base of the exponential function, then 0 < a < 1. One of the most common
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266 CHAPTER 4 INVERSE, EXPONENTIAL, AND LOGARITHMIC FUNCTIONS

examples of exponential decrease is the decay of a radioactive substance, or
isotope. The half-life of an isotope is the time it takes for one-half the original
amount in a given sample to decay. The half-life is the principal characteristic
used to distinguish one radioactive substance from another. The polonium iso-
tope 2'°Po has a half-life of approximately 140 days; that is, given any amount,
one-half of it will disintegrate in 140 days. If 20 milligrams of #°Po is present

FIGURE 10 initially, then the following table indicates the amount remaining after various
A f(t) (mg remaining) intervals of time.
20
t (time in days) 0 140 280 420 560

f(t) (mg remaining) 20 10 5 25 1.25

The sketch in Figure 10 illustrates the exponential nature of the disintegration.

Other radioactive substances have much longer half-lives. In particular, a

> by-product of nuclear reactors is the radioactive plutonium isotope #°Pu,

which has a half-life of approximately 24,000 years. It is for this reason that
t(days) he disposal of radioactive waste is a major problem in modern society.

INAANe:ygle]’§ Compound Interest

Compound interest provides a good illustration of exponential growth. If a
sum of money P, the principal, is invested at a simple interest rate r, then the
interest at the end of one interest period is the product Pr when r is expressed
as a decimal. For example, if P = $1000 and the interest rate is 9% per year,
then r = 0.09, and the interest at the end of one year is $1000(0.09), or $90.

If the interest is reinvested with the principal at the end of the interest
period, then the new principal is

| |
100 200 300 400 500

P + Pr or, equivalently, P(1 + r).

Note that to find the new principal we may multiply the original principal by
(1 + r). In the preceding example, the new principal is $1000(1.09), or $1090.

After another interest period has elapsed, the new principal may be found
by multiplying P(1 + r) by (1 + r). Thus, the principal after two interest peri-
ods is P(1 + r)2 If we continue to reinvest, the principal after three periods is
P(1 + r)3; after four itis P(1 + r)* and, in general, the amount A accumulated
after k interest periods is

A =P+ )k

Interest accumulated by means of this formula is compound interest. Note
that A is expressed in terms of an exponential function with base 1 + r. The
interest period may be measured in years, months, weeks, days, or any other
suitable unit of time. When applying the formula for A, remember that r is the
interest rate per interest period expressed as a decimal. For example, if the
rate is stated as 6% per year compounded monthly, then the rate per month is
% % or, equivalently, 0.5%. Thus, r = 0.005 and k is the number of months. If
$100 is invested at this rate, then the formula for A is

A = 100(1 + 0.005)% = 100(1.005).

In general, we have the following formula.
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4.2 Exponential Functions 267

Compound Interest Formula

< r >nt
A=P(1+—],
n

where P = principal
r = annual interest rate expressed as a decimal
n = number of interest periods per year

t = number of years P is invested
A = amount after t years.

Note that when working with
monetary values, we use = instead
of = and round to two decimal
places.

FIGURE 1
Compound interest: A = 1000(1.0075)*

4000

3000

2000

1000

A

A A (dollars)

5 10 15  t(years)

The next example illustrates the use of the compound interest formula.

DEVNANIA Using the compound interest formula

Suppose that $1000 is invested at an interest rate of 9% compounded monthly.
Find the new amount of principal after 5 years, after 10 years, and after
15 years. Illustrate graphically the growth of the investment.

SOLUTION Applying the compound interest formula with r = 9% = 0.09,
n = 12, and P = $1000, we find that the amount after t years is

0.09 \*
A= 1000(1 + F) = 1000(1.0075)*2.

Substituting t = 5, 10, and 15 and using a calculator, we obtain the following
table.

Number of
years Amount
5 A = $1000(1.0075)% = $1565.68
10 A = $1000(1.0075)**° = $2451.36
15 A = $1000(1.0075)*° = $3838.04

The exponential nature of the increase is indicated by the fact that during
the first five years, the growth in the investment is $565.68; during the second
five-year period, the growth is $885.68; and during the last five-year period, it
is $1386.68.

The sketch in Figure 11 illustrates the growth of $1000 invested over a
period of 15 years. ]

DEVINASIN Finding an exponential model

In 1938, a federal law establishing a minimum wage was enacted, and the
wage was set at $0.25 per hour; the wage had risen to $5.15 per hour by 1997.
Find a simple exponential function of the form y = ab' that models the federal
minimum wage for 1938-1997.
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SOLUTION y = ab' given

0.25 = ah° let t = 0 for 1938
025 =a b =1

y = 0.25h replace a with 0.25
5.15 = 0.25b%° t = 1997 — 1938 = 59

b% = % = 20.6 divide by 0.25
b= V206 take 59th root
b =~ 1.0526 approximate

We obtain the model y = 0.25(1.0526)", which indicates that the federal min-
imum wage rose about 5.26% per year from 1938 to 1997. A graph of the
model is shown in Figure 12. Do you think this model will hold true through

the year 20167
FIGURE 12
A Y ($/hr)
13.64+ ?
/
/
/
/
/
/
/
/
/
5.15+
0.25 , , >~
0 59 78 t
1938 1997 2016  (years) -

We conclude this section with an example involving a graphing utility.

% DIV NANIEN  Estimating amounts of a drug in the bloodstream

If an adult takes a 100-milligram tablet of a certain prescription drug orally,
the rate R at which the drug enters the bloodstream t minutes later is predicted

FIGURE 13 to be

It can be shown using calculus that the amount A of the drug in the blood-
stream at time t can be approximated by

A = 97.4786[1 — (0.95)'] mg.

(a) Estimate how long it takes for 50 milligrams of the drug to enter the blood-
stream.

(b) Estimate the number of milligrams of the drug in the bloodstream when
the drug is entering at a rate of 3 mg/min.
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FIGURE 14
[0, 15] by [0, 5]
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SOLUTION

(a) We wish to determine t when A is equal to 50. Since the value of A cannot
exceed 97.4786, we choose the viewing rectangle to be [0, 100, 10] by
[0, 100, 10].

We next assign 97.4786[1 — (0.95)*] to Y, assign 50 to Y,, and graph Y;
and Y,, obtaining a display similar to that in Figure 13 (note that x = t). Using
the intersect feature, we estimate that A = 50 mg when x = 14 min.

(b) We wish to determine t when R is equal to 3. Let us first assign 5(0.95)
to Yz and 3 to ;. Since the maximum value of Y;is 5 (att = 0), we use a view-
ing rectangle of dimensions [0, 15] by [0, 5] and obtain a display similar to
that in Figure 14. Using the intersect feature again, we find that y = 3 when
X = 9.96. Thus, after almost 10 minutes, the drug will be entering the blood-
stream at a rate of 3 mg/min. (Note that the initial rate, att = 0, is 5 mg/min.)
Finding the value of Y; at x = 10, we see that there is almost 39 milligrams of
the drug in the bloodstream after 10 minutes. [

m Exercises

Exer. 1-10: Solve the equation.

14 Work Exercise 13 if a = 3.

1 78 = 7 2 67 = 67

3 3 =3 4 9% = g Exer. 15-28: Sketch the graph of f.

5 27 = (05 6 (3" =2 15 (0 = (2) 16 f(x) = (2)

7 257% = 125 8 27t =927 17 (0 =53) +3 18 f(x) = 8(4)* — 2

o 4 (3 "=8-@p 10 (=273 19 f00 = —(4) + 4 20 f(x) = —37* + 9

11 Complete the statements for f(x) = a* + ¢ with a > 1. 2 f) = —(3)"+8 22 fx) = -3+ 9
(@) Asx — o, f(X) > 23 f(x) = 2~ 24 f(x) = 27X
(b) Asx—5 — f() > 25 f(x) = 3~ 26 f(x) = 27V

12 Complete the statements for f(x) = a~* + ¢ with a > 1. 27 f(x) =3+ 3™ 28 f(x) =3 — 3™

@) Asx > o, f(x) >
(b) Asx > —oo, f(X) >

13 Sketch the graph of fifa = 2.

29 y
(@) f(x) = a* (b) f(x) = —a
(o) f(x) = 3a* (d) f(x) = ax*® (1.5)
(e fx)=a*+3 f) f(x) = ax? 0.2)
(8 f(x) =a* -3 (h) f(x) =a~ .
M f00 = (;) M 100 = &

Exer. 29-32: Find an exponential function of the form
f(x) = ba*or f(x) = ba* + c that has the given graph.
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270 CHAPTER 4 INVERSE, EXPONENTIAL, AND LOGARITHMIC FUNCTIONS

31 y

Exer. 33-34: Find an exponential function of the form
f(x) = ba* that has the given y-intercept and passes through
the point P.

33 y-intercept 8; P(3,1)
34 y-intercept 5; P(Z,%)

Exer. 35-36: Find an exponential function of the form
f(x) = ba=* + c that has the given horizontal asymptote and
y-intercept and passes through point P.

35 y = 32; y-intercept 212; P(2,112)
36 y = 72; y-intercept 425; P(1,248.5)

37 Elk population One hundred elk, each 1 year old, are
introduced into a game preserve. The number N(t) alive
after t years is predicted to be N(t) = 100(0.9)".

(a) Estimate the number alive after 5 years.
(b) What percentage of the herd dies each year?

38 Drug dosage A drug is eliminated from the body through
urine. Suppose that for an initial dose of 10 milligrams, the
amount A(t) in the body t hours later is given by
A(t) = 10(0.8)".

(a) Estimate the amount of the drug in the body 8 hours
after the initial dose.

(b) What percentage of the drug still in the body is elimi-
nated each hour?

39 Bacterial growth The number of bacteria in a certain
culture increased from 600 to 1800 between 7:00 A.M. and
9:00 A.M. Assuming growth is exponential, the num-
ber f(t) of bacteria t hours after 7:00 A.Mm. is given by
f(t) = 600(3)"2.

(a) Estimate the number of bacteria in the culture at
8:00 A.M., 10:00 A.M., and 11:00 A.M.

(b) Sketch the graph of ffor0 =t < 4.

40 Newton’s law of cooling According to Newton’s law of
cooling, the rate at which an object cools is directly pro-
portional to the difference in temperature between the

object and the surrounding medium. The face of a house-
hold iron cools from 125° to 100° in 30 minutes in a room
that remains at a constant temperature of 75°. From calcu-
lus, the temperature f(t) of the face after t hours of cooling
is given by f(t) = 50(2)~2 + 75.

(a) Assuming t = 0 corresponds to 1:00 p.M., approximate
to the nearest tenth of a degree the temperature of the
face at 2:00 P.M., 3:30 P.M., and 4:00 P.M.

(b) Sketch the graph of ffor0 <t < 4.

41 Radioactive decay The radioactive bismuth isotope °Bi
has a half-life of 5 days. If there is 100 milligrams of ?°Bi
present att = 0, then the amount f(t) remaining after t days
is given by f(t) = 100(2) .

(a) How much #°Bi remains after 5 days? 10 days?
12.5 days?

(b) Sketch the graph of f for 0 = t = 30.

42 Light penetration in an ocean An important problem in
oceanography is to determine the amount of light that can
penetrate to various ocean depths. The Beer-Lambert law
asserts that the exponential function given by I(x) = l,c*
is a model for this phenomenon (see the figure). For a cer-
tain location, 1(x) = 10(0.4)* is the amount of light (in
calories/cm?/sec) reaching a depth of x meters.

(a) Find the amount of light at a depth of 2 meters.

(b) Sketch the graph of | for 0 = x =< 5.

EXERCISE 42

X meters

43 Decay of radium The half-life of radium is 1600 years.
If the initial amount is g, milligrams, then the quantity q(t)
remaining after t years is given by q(t) = q,2". Find k.
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44 Dissolving salt in water If 10 grams of salt is added to a 51
quantity of water, then the amount q(t) that is undissolved
after t minutes is given by q(t) = 10(%)‘. Sketch a graph that
shows the value q(t) at any time fromt = 0 to t = 10.

45 Compound interest If $1000 is invested at a rate of 7%
per year compounded monthly, find the principal after

(a) 1 month (b) 6 months
(c) 1 year (d) 20 years

46 Compound interest If a savings fund pays interest at a
rate of 3% per year compounded semiannually, how much
money invested now will amount to $5000 after 1 year?

47 Automobile trade-in value If a certain make of automo-
bile is purchased for C dollars, its trade-in value V(t) at the
end of t years is given by V(t) = 0.78C(0.85)""%. If the
original cost is $25,000, calculate, to the nearest dollar,
the value after

(a) 1 year (b) 4 years (c) 7 years

48 Real estate appreciation If the value of real estate
increases at a rate of 4% per year, after t years the value V
of a house purchased for P dollars is V = P(1.04)". A graph
for the value of a house purchased for $80,000 in 1986 is
shown in the figure. Approximate the value of the house, to
the nearest $1000, in the year 2016.

EXERCISE 48
A V (dollars) 52

300,000 -
250,000
200,000

150,000

100,000 -
50,000 + 1987 2016

— -ttt
5 10 15 20 25

4.2 Exponential Functions 271

Depreciation The declining balance method is an
accounting method in which the amount of depreciation
taken each year is a fixed percentage of the present value
of the item. If y is the value of the item in a given year, the
depreciation taken is ay for some depreciation rate a with
0 < a < 1, and the new value is (1 — a)y.

(a) If the initial value of the item is y,, show that the value
after n years of depreciation is (1 — a)"y,.

(b) At the end of T years, the item has a salvage value of s
dollars. The taxpayer wishes to choose a depreciation
rate such that the value of the item after T years will
equal the salvage value (see the figure). Show that

a=1-Vs/y
EXERCISE 51
A Y (value in dollars)

T n (yearg)

Language dating Glottochronology is a method of dating
a language at a particular stage, based on the theory that
over a long period of time linguistic changes take place
at a fairly constant rate. Suppose that a language origi-
nally had N, basic words and that at time t, measured in
millennia (1 millennium = 1000 years), the number N(t)
of basic words that remain in common use is given by
N(t) = Ny(0.805)".

(a) Approximate the percentage of basic words lost every
100 years.

(b) If Ny = 200, sketch the graph of N for0 =t = 5.

t (years) Exer. 53-56: Some lending institutions calculate the
monthly payment M on a loan of L dollars at an interest
49 Manhattan Island The Island of Manhattan was sold for rate r (expressed as a decimal) by using the formula
$24 in 1626. How much would this amount have grown to M = Lrk
by 2012 if it had been invested at 6% per year compounded 12(k = 1)’
quarterly? where k = [1 + (r/12)]*** and t is the number of years that

the loan is in effect.

50 Credit-card interest A certain department store requires
its credit-card customers to pay interest on unpaid bills at
the rate of 24% per year compounded monthly. If a cus-
tomer buys a television set for $500 on credit and makes
no payments for one year, how much is owed at the end of
the year?

53

Home mortgage

(a) Find the monthly payment on a 30-year $250,000 home
mortgage if the interest rate is 8%.

(b) Find the total interest paid on the loan in part (a).
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54 Home mortgage Find the largest 25-year home mortgage
that can be obtained at an interest rate of 7% if the monthly
payment is to be $1500.

Car loan An automobile dealer offers customers no-down-
payment 3-year loans at an interest rate of 10%. If a cus-
tomer can afford to pay $500 per month, find the price of
the most expensive car that can be purchased.

55

Business loan The owner of a small business decides to
finance a new computer by borrowing $3000 for 2 years at
an interest rate of 7.5%.

56

(a) Find the monthly payment.

(b) Find the total interest paid on the loan.

v Exer. 57-58: Approximate the function at the value of x to
four decimal places.

57 (a) f(x) = 13V**1L X =3
(b) h(x) = (2* + 2% x = 1.06
58 (a) f(x) = 2Vi~, X =05
3*+5
(b) h(x) = m, Xx=14

an Exer. 59-60: Sketch the graph of the equation. (a) Estimate
y if x = 40. (b) Estimate x ify = 2.

59 y = (1.085)* 60 y = (1.0525)"

anw Exer. 61-62: Use a graph to estimate the roots of the
equation.

61 14x>—220=1
62 1.21% + 14 —2x =05

. Exer. 63-64: Graph f on the given interval. (a) Determine
whether f is one-to-one. (b) Estimate the zeros of f.
3.1x - 257~

= v [-3.3]

B0 s

64 f(x) = 70 — 1.3%%; [-4,4]
(Hint: Change x*8 to an equivalent form that is defined for
x <0.)

ww Exer. 65-66: Graph f on the given interval. (a) Estimate
where f is increasing or is decreasing. (b) Estimate the range
of f.

65 f(x) = 0.7x3 + 1.7018); [—4,1]
3.1 — 4.1%
flx) = ——"—- —
66 10 = 4> 153" [=3.3]

INVERSE, EXPONENTIAL, AND LOGARITHMIC FUNCTIONS

w67 Trout population One thousand trout, each 1 year old, are
introduced into a large pond. It is predicted that the number
N(t) still alive after t years will be given by the equation
N(t) = 1000(0.9)". Use the graph of N to approximate when
500 trout will be alive.

Buying power An economist predicts that the buying
power B(t) of a dollar t years from now will be given by
B(t) = (0.95)". Use the graph of B to approximate when the
buying power will be half of what it is today.

%68

Gompertz function The Gompertz function,
withk >0,0<a<1l,and0<b<1,

is sometimes used to describe the sales of a new product
whose sales are initially large but then level off toward a max-
imum saturation level. Graph, on the same coordinate plane,
the line y = k and the Gompertz function withk = 4,a = %
and b = % What is the significance of the constant k?

%69

y = ka®

Logistic function The logistic function,

%70

y withk > 0,a>0,and0 < b < 1,

Tk + ap*
is sometimes used to describe the sales of a new product
that experiences slower sales initially, followed by growth
toward a maximum saturation level. Graph, on the same
coordinate plane, the line y = 1/k and the logistic function
with k = % a= % and b = g What is the significance of
the value 1/k?

Exer. 71-72: 1f monthly payments p are deposited in a sav-
ings account paying an annual interest rate r, then the
amount A in the account after n years is given by

r r\zn
o) ()]
. .
12
Graph A for each value of p and r, and estimate n for

A = $100,000.
71 p = 100,

A=

r=0.05 72 p =250, r=0.09
w73 Government receipts Federal government receipts (in bil-

lions of dollars) for selected years are listed in the table.

Year 1910 1930 1950 1970

Receipts 0.7 4.1 394 192.8
Year 1980 1990 2000
Receipts 517.1 1032.0 2025.2

(a) Let x = 0 correspond to the year 1910. Plot the data,
together with the functions f and g:
(1) f(x) = 0.786(1.094)*
(2) g(x) = 0.503x2 — 27.3x + 149.2
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75

(b) Determine whether the exponential or quadratic func-
tion better models the data.

(c) Use your choice in part (b) to graphically estimate the
year in which the federal government first collected
$1 trillion.

Epidemics In 1840, Britain experienced a bovine (cattle
and oxen) epidemic called epizooty. The estimated number
of new cases every 28 days is listed in the table. At the time,
the London Daily made a dire prediction that the number of
new cases would continue to increase indefinitely. William
Farr correctly predicted when the number of new cases
would peak. Of the two functions

f(t) = 653(1.028)"
and g(t) = 54,700 (120071750
one models the newspaper’s prediction and the other mod-

els Farr’s prediction, where t is in days with t = 0 corre-
sponding to August 12, 1840.

Date New cases
Aug. 12 506
Sept. 9 1289
Oct. 7 3487
Nov. 4 9597
Dec. 2 18,817
Dec. 30 33,835
Jan. 27 47,191

(a) Graph each function, together with the data, in the
viewing rectangle [0, 400, 100] by [0, 60,000, 10,000].

(b) Determine which function better models Farr’s
prediction.

(c) Determine the date on which the number of new cases
peaked.

Cost of astamp The price of a first-class stamp was 4¢ for
the first time in 1958 and 44¢ in 2009 (it was 2¢ in 1919).
Find a simple exponential function of the formy = ab' that
models the cost of a first-class stamp for 1958-2009, and
predict its value for 2020.
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76 Super Bowl TV costs The following table gives the cost (in

thousands of dollars) for a 30-second television advertise-
ment during the Super Bowl for various years.

Year Cost
1967 42
1977 125
1987 600
1997 1200
2007 2600

(a) Plot the data on the xy-plane.

(b) Determine a curve in the formy = ab*, where x = 0 is
the first year and y is the cost that models the data.
Graph this curve together with the data on the same
coordinate axes. Answers may vary.

(c) Use this curve to predict the cost of a 30-second com-
mercial in 2002. Compare your answer to the actual
value of $1,900,000.

77 Inflation comparisons In 1974, Johnny Miller won 8 tour-

naments on the PGA tour and accumulated $353,022 in
official season earnings. In 1999, Tiger Woods accumulated
$6,616,585 with a similar record.

(a) Suppose the monthly inflation rate from 1974 to 1999
was 0.0025 (3%)/yr). Use the compound interest for-
mula to estimate the equivalent value of Miller’s
winnings in the year 1999. Compare your answer with
that from an inflation calculation on the web (e.g.,
bls.gov/cpi/home.htm).

(b) Find the annual interest rate needed for Miller’s win-
nings to be equivalent in value to Woods’s winnings.

(c) What type of function did you use in part (a)? part (b)?

78 Consumer Price Index The CPI is the most widely used

measure of inflation. In 1970, the CPl was 37.8, and in
2000, the CPI was 168.8. This means that an urban con-
sumer who paid $37.80 for a market basket of consumer
goods and services in 1970 would have needed $168.80 for
similar goods and services in 2000. Find a simple exponen-
tial function of the form y = ab' that models the CPI for
1970-2000, and predict its value for 2020.
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