MCR3U9 REVIEW FOR THE FINAL EXAM

MCR3U9 REVIEW FOR THE FINAL EXAM
CRITICAL I HINKING: I RUE OR FALSE.
CRITICAL I HINKING: CLASSIFICATION OF EQUATIONS
MECHANICAL PRACTICE: FACTORING
MECHANICAL PRACTICE: SOLVING EQUATIONS AND INEQUALITIES
THEORY: PROVING THAT AN EQUATION IS AN IDENTITY
THEORY: USING COMPOUND AND DOUBLE-ANGLE IDENTITIES TO FIND EXACT VALUES OF TRIGONOMETRIC RATIOS
GRAPHING: USING TRANSFORMATIONS OF BASE/PARENT/MOTHER FUNCTIONS TO SKETCH GRAPHS OF FUNCTIONS
GRAPHING: GRAPH POLYNOMIAL AND RATIONAL FUNCTIONS

Critical Thinking: True or False

Derivation: the process of deducing a new formula, theorem, etc., from previously proven or accepted statements; a *line of reasoning* that shows how a conclusion follows logically from accepted propositions.

- (a) If a statement is true, prove that it is or provide an explanation.
- (b) If a series of statements leads to a conclusion that is true, justify each step in the derivation.
- (c) If a statement is false, provide a *counterexample* or an explanation. In either case, *correct* the statement.
- (d) If a series of statements leads to a conclusion that is false, find the flaws in the derivation and *correct* them.
- (e) Also correct any errors in the usage of mathematical notation.

	Statement or Series of Statements	True or False?	Proof, Counterexample, Explanation, Correction
1.	f(x+y) = f(x) + f(y)		
2.	$f^{-1}(x) = \frac{1}{f(x)}$		
3.	$\left(f\left(x\right)\right)^{-1} = \frac{1}{f\left(x\right)}$		
4.	The function $f(u) = \frac{u-2}{u^2 - 5u + 6}$ has vertical asymptotes $u = 2$ and $u = 3$ (Don't take $f(u)$ personally!)		
5.	Suppose that $r = 5$ m and $\theta = 225^{\circ}$ $\therefore l = r\theta$ $\therefore l = (5)(225^{\circ})$ $\therefore l = 1125$ Therefore, arc length is 1125 m.		
6.	$(x+2)^3 = x^3 + 2^3 = x^3 + 8$		

	Statement or Series of Statements	True or False?	Proof, Counterexample, Explanation, Correction
7.	$(x-5)^2 \ge 0$ $\therefore x-5 \ge 0$ $\therefore x \ge 5$		
8.	$6x^{2}-5x=6$ $\therefore x(6x-5)=6$ $\therefore x=6 \text{ or } 6x-5=6$ $\therefore x=6 \text{ or } x=\frac{11}{6}$		
9.	$\sec \theta = 2$ $\therefore \frac{1}{\cos} \theta = 2$ $\therefore \frac{\theta}{\cos} = 2$ $\therefore \theta = 2\cos$		
10.	$\csc \theta = 2$ $\therefore \frac{1}{\sin \theta} = 2$ $\therefore \sin \theta = \frac{1}{2}$ $\therefore \theta = \sin^{-1} \left(\frac{1}{2}\right)$ $\therefore \theta = \frac{1}{\sin 2}$		
11.	$\tan\left(\frac{\pi}{4} + \frac{\pi}{3}\right) = \tan\frac{\pi}{4} + \tan\frac{\pi}{3}$ $= 1 + \sqrt{3}$		
12.	$\tan\left[\frac{\pi}{4}\left(\frac{\pi}{3}\right)\right] = \tan\frac{\pi}{4}\left(\tan\frac{\pi}{3}\right)$ $= 1\left(\sqrt{3}\right) = \sqrt{3}$		

Statement or Series of Statements	True or False?	Proof, Counterexample, Explanation, Correction
$13. \sin 2x = 2\sin x$		
$14. \sin 3x = 3\sin x$		
$15. \cos 4x = 4\cos x$		
$16. \cos\frac{x}{2} = \frac{\cos x}{2}$		
17. A rational function can have two horizontal asymptotes.		
18. No function can have two horizontal asymptotes.		
19. The solution set to the inequality $-(x-3)^2(x-5)(x+5) \le 0$ is $(-\infty, 5]$. (As always, look at equations and inequalities graphically as well as algebraically.)		
20. The solution set to the inequality $12x^6 + 2x^4 + 3x^2 + 1 \le 0$ is $\{ \} = \emptyset$ (i.e. the empty set).		

Statement or Series of Statements	True or False?	Proof, Counterexample, Explanation, Correction
21. $ x + y = x + y $		
$22. \ \sqrt{x+y} = \sqrt{x} + \sqrt{y}$		
$23. \ \sqrt{xy} = \sqrt{x}\sqrt{y}$		
$24. \ \sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}$		
25. $ xy = x y $		
$26. \left \frac{x}{y} \right = \frac{ x }{ y }$		
27. The rational function $f(x) = \frac{-3(x-7)^2(x-3)(x+1)}{2(x-7)(x-1)(x+3)}$ has vertical asymptotes $x = -3$, $x = 1$ and x = 7, as well as a horizontal asymptote $y = -\frac{3}{2}$.		
28. The equation $\csc \theta = \frac{1}{2}$ has an infinite number of solutions.		

Statement or Series of Statements	True or False?	Proof, Counterexample, Explanation, Correction
29. An even function is the same as an even- degree polynomial function.		
30. An odd function is the same as an odd-degree polynomial function.		
31. The graph of $f(x) = -3\sin\left(\frac{\pi}{4}(x-5)\right) + 6$ can be obtained by performing the following transformations to the graph of $y = \sin x$: Vertical: Stretch by a factor of -3 , then translate 6 units up. Horizontal: Compress by a factor of $\frac{\pi}{4}$,		
then translate 5 units left.		
32. The meaning of $\frac{\pi}{4}$ in $f(x) = -3\cos\left(\frac{\pi}{4}(x-5)\right) + 6$ is that there are $\frac{\pi}{4}$ cycles per 2π radians.		
33. The meaning of $\frac{\pi}{4}$ in $f(x) = -3\tan\left(\frac{\pi}{4}(x-5)\right) + 6$ is that there are $\frac{\pi}{4}$ cycles per 2π radians.		
34. The remainder obtained when $f(x) = x^3 - 8x^2 - 3x + 90$ is divided by x+2 can be obtained by evaluating f(2).		

Statement or Series of Statements	True or False?	Proof, Counterexample, Explanation, Correction
35. $h(t) = 0.5 \cos\left(\frac{200}{\pi}t\right) + 2.5$ models how		
the height (in metres) above the floor of		
motorized fan changes over time (in		
seconds). In this equation, 0.5		
represents the diameter of the fan, 2.5		
represents the maximum height and		
$\frac{200}{200}$ represents the rate of rotation in of		
π the fan in rotations per second		
(π)		
36. $(x, y) \rightarrow \left(2x - 7, \pi y - \frac{\pi}{2}\right)$ models the		
following transformation:		
Vertical: Stretch by a factor of π , then		
translate $\frac{\pi}{2}$ units down.		
2		
Horizontal: Compress by a factor of $\frac{1}{2}$,		
then translate 7 units right.		
37. $(x, y) \rightarrow \left(2(x-7), \pi\left(y-\frac{\pi}{2}\right)\right)$ models		
the following transformation:		
Vertical: Stretch by a factor of π , then		
translate $\frac{\pi}{2}$ units down.		
Horizontal: Stretch by a factor of 2,		
then translate 7 units left.		
38. Success in mathematics <i>does not</i> require		
• thought		
 communication skills 		
• understanding concepts		
• correct usage of terminology		
• understanding the meaning of		
mathematical notation		
• logical reasoning		
• creativity		
 problem-solving skins number sense 		
spatial sense		
 pattern recognition 		
It is sufficient to memorize formulas and		
unthinkingly mimic examples. It also		
doesn't hurt to suck up to the teacher! ;)		

Critical Thinking: Classification of Equations

The following is a list of types of equations that we have encountered in this course.

- (a) Classify each equation as an *identity*, an *equation to be solved* for the unknown, an *equation of a function* or an *equation of a relation*.
- (b) Give a geometric (graphical) representation of each equation.
- (c) For the equations that are identities, prove that the expression on the L.S. is *equivalent* to that on the R.S.
- (d) For the equations of functions/relations, use the equation to find a point that lies on the graph of the function/relation. (Mark that point on the graph.)
- (e) Solve the equations that are neither identities nor equations of functions/relations.

Equation	Type of Equation	Geometric(Graphical) Representation	Proof/Solution/Evaluation to find Point on Graph
$1. \sin 2t = 2\sin t \cos t$			
2. $\tan 2\theta = 1$			

Equation	Type of Equation	Geometric(Graphical) Representation	Proof/Solution/Evaluation to find Point on Graph
3. $x^2 + y^2 = 169$			
$4. g(x) = \cot x$		·	
5. $(x+y)^3$ = $x^3 + 3x^2y + 3xy^2 + y^3$			

Equation	Type of Equation	Geometric(Graphical) Representation	Proof/Solution/Evaluation to find Point on Graph
6. $x^3 - 8x^2 - 3x + 90 = 0$			
7. $a^3 + b^3$ = $(a+b)(a^2 - ab + b^2)$			
8. $\tan x$ $= \frac{2\tan 2x - \sec^2 x \tan 2x}{2}$			

Mechanical Practice: Factoring

Fully factor each of the expressions given below. You can check your answers by expanding but you can save a great deal of time by using *graphing software* such as Desmos.

Note

- The *majority* of the expressions given below can be factored *without* first finding one of the zeros of the polynomial expression.
- For the expressions that do require that you first find a zero, you can save time by using software such as Desmos. This is especially helpful whenever trial and error takes too long.

1. $x^3 + 5x^2 + 6x$	$2. 6x^4y - 13x^3y - 5x^2y$	3. $a^2 - 169$
4. $25a^2b^4 - 169c^4d^6$	5. $a^3 - 81$	6. $a^3 + 125$
7. $64a^3b^6 - 343c^6d^3$	8. $12x^4 + 36x^2 + 15$	9. $6x^5 + 36x^4 + 54x^3$
10. $2x^3 + 5x^2 - 24x - 63$	11. $2\sin^2 x - \sin x - 21$	12. $16\sin^2 x \sec^2 x - 9\cos^4 x \cot^4 x$
13. $x^4 - 8x^3 - 26x^2 + 168x + 441$	14. $8\tan^3 x - 27\cot^6 x$	

Mechanical Practice: Solving Equations and Inequalities

Solve each equation or inequality given below. You can check your answers by substitution but you can save a great deal of time by using *graphing software* such as Desmos.

Note

- Recall that the general approach is first to rewrite the equation or inequality in such a way that one side is some algebraic expression and the other side is *zero*!
- Using function notation, we can express the previous point more precisely. First, the equation or inequality must be expressed in one of the following forms: f(x) = 0, f(x) < 0, f(x) > 0, $f(x) \le 0$, $f(x) \ge 0$.
- Some of the given equations/inequalities cannot be solved *analytically* (i.e. only by exploiting known rules, without using numerical or graphical methods of approximation). In such cases, use graphing software to find approximate solutions.
- 3. $2\sin^2 x 3\sin x 1 = 0$, $x \in [0, 2\pi]$ 1. $x^3 + 5x^2 = -6x$ 2. $12x^4 = -36x^2 - 15$ 6. $x^5 + 6x^4 \ge -9x^3$ 4. $2x^3 + 5x^2 > 24x + 63$ 5. $a^2 - 16 < 0$ 9. $\frac{7}{x+2} + \frac{5}{x-2} = \frac{10x-2}{x^2-4}$ 7. $\sec x \sin x = 3\sin x, x \in [0, 2\pi]$ 8. $4\sin^2 x - 1 \le 0$ **12.** $16\sin^2 x - 9\cos^2 x = 0$, $x \in [-\pi, \pi]$ **10.** $x^4 - 8x^3 - 26x^2 + 168x + 441 = 0$ **11.** $\tan x = x$ 15. $\frac{1}{x-6} + \frac{x}{x-2} \le \frac{4}{x^2 - 8x + 12}$ 13. $-4\sin^2 x \cos^2 x \ge 3\sin^4 x - 3$ 14. $\cos x \le x^2 - 6x - 16$ **16.** $\frac{1}{\sin x} + \frac{2}{\cos x} \le \frac{4}{\sin 2x}$ **17.** $\frac{1}{a+1} + \frac{1}{a-1} = \frac{2}{a^2 - 1}$ **18.** $\frac{1}{r+1} + \frac{x}{r-2} \ge \frac{13}{r^2 - r-2}$

Theory: Proving that an Equation is an Identity

Prove that each of the following equations is an identity.

1. $(a+b)^2 = a^2 + 2ab + b^2$ 2. $\sin^4 x - \cos^4 x = -\cos 2x$ 3. $8\csc^2\theta - 3\cot^2\theta = 3 + 5\csc^2\theta$ 6. $\frac{1-\cos 2\theta}{2} = \sin^2 \theta$ 4. $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$ 5. $\sqrt{xy} = \sqrt{x}\sqrt{y}, x \ge 0, y \ge 0$ 7. $\frac{\sin^2 x + 4\sin x + 3}{\cos^2 x} = \frac{3 + \sin x}{1 - \sin x}$ 8. $\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}, x \ge 0, y > 0$ 9. $\frac{\tan x + \tan y}{\cot x + \cot y} = \tan x \tan y$ 10. $\frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta - \cos^2 \theta} = -\sec 2\theta$ 11. $\frac{\cos(x+y)\cos(x-y)}{\cos^2 x + \cos^2 y - 1}$ 12. $\frac{(\sin\theta + \cos\theta)^2}{\sin 2\theta} = \csc 2\theta + 1$ **15.** Derive an identity for $\sin 5x$ 13. $\tan x + \tan y = \frac{\sin(x+y)}{\cos x \cos y}$ **14.** $\cos 3x = 4\cos^3 x - 3\cos x$ entirely in terms of $\sin x$ and $\cos x$. 16. $\frac{\sin(x+y)\sin(x-y)}{\cos^2 y - \cos^2 x}$ 17. $\frac{\sin(x+y) + \cos(x-y)}{= (\sin x + \cos x)(\sin y + \cos y)}$

Theory: Using Compound and Double-Angle Identities to find Exact Values of Trigonometric Ratios

Find exact values for each of the following. Use Wolfram Alpha to check your answers.

 1. $\cos \frac{\pi}{12}$ 2. $\sin \frac{5\pi}{12}$ 3. $\cos \frac{11\pi}{12}$ 4. $\sin \frac{\pi}{8}$

 5. $\cos \frac{3\pi}{8}$ 6. $\tan \frac{13\pi}{8}$ 7. $\cos \frac{19\pi}{12}$ 8. $\cot \frac{19\pi}{12}$

Graphing: Using Transformations of Base/Parent/Mother Functions to Sketch Graphs of Functions Sketch the graphs of each of the following functions. Use Desmos to check your answers.

1.
$$f(x) = -3\cos\left(\frac{1}{3}(x-2\pi)\right) + 1$$
 2. $f(x) = \frac{1}{2}\cot\left(2\left(x+\frac{\pi}{4}\right)\right) - 3$ 3. $f(x) = \frac{5}{2}\left\lfloor\frac{1}{4}(x+3)\right\rfloor - 1$
4. $f(x) = -2\csc\left(\frac{\pi}{2}(x-3)\right) - 2$ 5. $f(x) = \frac{1}{2}|3(x+7)| - 5$ 6. $f(x) = -\frac{9}{2}[2(x+1)]^3 + 1$

Graphing: Graph Polynomial and Rational Functions

Sketch the graphs of each of the following functions. Use Desmos to check your answers.

1.
$$f(x) = x^3 + 5x^2 + 6x$$

2. $f(x) = 2x^3 + 5x^2 - 24x - 63$
3. $f(x) = x^4 - 8x^3 - 26x^2 + 168x + 441$
4. $f(x) = \frac{x^2 - 6x + 8}{x^2 - 8x + 16}$
5. $f(x) = \frac{x^3 - x^2 - 6x}{-3x^2 - 3x + 18}$
6. $f(x) = \frac{x^4 - x^3 - 6x^2}{-3x^2 - 3x + 18}$