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ESSENTIAL CONCEPTS OF TRIGONOMETRY

Introduction

To a great extent, this unit is just an extension of the trigonometry that you studied in grade 10. Given below is a list of
the additional topics and concepts that are covered in this course.

For the most part, angles will be measured in radians instead of degrees.

Angles of rotation will be introduced and extended beyond the range 0° <@ < 360°

Your knowledge of transformations will be used extensively to help you understand trigonometric functions.

The reciprocal trigonometric functions csc, sec and cot will be studied in detail.

Trigonometric identities will be studied in detail.

What is Trigonometry?

Trigonometry (Greek trigonon “triangle” + metron “measure”) is a branch of mathematics that deals with the
relationships among the interior angles and side lengths of triangles, as well as with the study of trigonometric
functions. Although the word “trigonometry” emerged in the mathematical literature only about 500 years ago, the
origins of the subject can be traced back more than 4000 years to the ancient civilizations of Eqypt, Mesopotamia and the
Indus Valley. Trigonometry has evolved into its present form through important contributions made by, among others,
the Greek, Chinese, Indian, Sinhalese, Persian and European civilizations.

Why Triangles?

Triangles are the basic building blocks from which any shape (with straight boundaries) can be constructed. A square,
pentagon or any other polygon can be divided into triangles, for instance, using straight lines that radiate from one vertex
to all the others.

Examples of Problems that can be solved using Trigonometry

© How tall is Mount Everest? How tall is the CN Tower?

© What is the distance from the Earth to the sun? How far is the Alpha Centauri star system from the Earth?
© What is the diameter of Mars? What is the diameter of the sun?

© At what times of the day will the tide come in?

General Applications of Trigonometric Functions

Trigonometry is one of the most widely applied branches of mathematics. A small sample of its myriad uses is given below.
The power of trigonometry is that it relates angles to distances. Since it is much easier in general to measure angles than
it is to measure distances, trigonometric relationships give us a method to calculate distances that are otherwise inaccessible.

Application Examples

Modelling of cyclic processes | Orbits, Hours of Daylight, Tides

Measurement Navigation, Engineering, Construction, Surveying

Electronics Circuit Analysis (Modelling of Voltage Versus Time in AC Circuits, Fourier Analysis)
Why Trigonometry Works

If you study the diagram at the left carefully, you will notice...

C
/ e AAFE ~ AAGD ~ AACB (by AA similarity)

e Because of triangle similarity, the ratio of side lengths of

F . . FE GD CB
corresponding sides is constant! (e.g. —=—=—)

AE AD AB

e Therefore, trigonometric ratios, which are nothing more than
ratios of side lengths, depend only on the angles within a right
triangle, NOT on the size of the triangle. Whether the right
triangle is as miniscule as an atom or as vast as a galaxy, the

A0 [ [ ] [l ratios depend only on the angles.
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Extremely Important Note on the Notation of Trigonometry

Input (Argument)

Name of Function gk : Parentheses can be used but are usually omitted.

Output (Function Value)

X |:> sin sinx X |:> cos cosx X |:> tan tan x

Trigonometry of Right Triangles — Trigonometric Ratios of Acute Angles
Right triangles can be used to define the trigonometric ratios of acute angles (angles that measure less than 90°).

0= s SOH CAH TOA

o &, hypotenuse
g: O‘(@og% C0S6 adjacent “Shout Out Hey” “Canadians Are Hot” “Tight Oiled Abs”
& hypotenuse  ave fun by creating your own mnemonic! BUT REMEMBER!
opposite THIS ISNOTHING MORE THAN A MNEMONIC. Itisnota
1 0 tanf=——— . .
substitute for the understanding of concepts!

Adjacent adjacent

The Special Triangles — Trigonometric Ratios of Special Angles

For certain special angles, it is possible to calculate the exact value of the trigonometric ratios. As | have mentioned on
many occasions, it is not advisable to memorize without understanding! Instead, you can deduce the values that you need

to calculate the trig ratios by understanding the following triangles!

45° B e |sosceles Right Triangle
2 i it. | I I
L+ \ o Let the length of the equal sides be 1 unit Gind5°— 1 00s45°= 1  tand5° =11
o By the Pythagorean Theorem, the length f \E |

of the hypotenuse must be V2.

e Begin with an equilateral triangle having
sides of length 2 units. Then cut it in half
to form a 30°-60°-90° right triangle.

e Use the Pythagorean Theorem to calculate
the height of the triangle. (\/5)

2
1 3 1
sin30°=—  ¢c0s30°=— tan30°=—
2 2 Ng
60° 3 1
- sinﬁo°=£ c0s60° = tan60° -3

2
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Homework

Click anywhere in the following box to open a PDF document that contains your homework.

Part II) Practice Problems

(=]

. Calculate the value of 2 to the nearest hundredth:

W

4. Determine the length of side x to the nearest tenth.

n

6. Determine the length of side 2 to the nearest inch.

. Calculate the value of v to the nearest tenth: cos52%= $

tan 24% =

. Determine the length of side v to the nearest hundredth.

1. Calculate the value of x to the nearest tenth: sin 38 = %

34.627

www MathWorksheetsGo.com

In-Class Practice

Use special triangles to complete the following table. The value of each trigonometric ratio must be exact!

30° 45° 60°
sin sin30° = sin45°= sin60° =
coS cos30°= cos45° = cos60° =
tan tan30°= tan45°= tan 60°=
sin sin30° _ sin45° sin60° _
cos cos30° cos45° cos60°

What did you notice about the last two rows of the table? Do you think it’s true for all angles?
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SUMMARY: ESSENTIAL IDEAS OF TRIGONOMETRY

Trigonometry Relates Angles to Distances

e Trigonometry is powerful because it relates angles to distances.
e Distances can be difficult to measure directly.

e Angles are generally easy to measure directly.

e Trigonometric relationships allow us to calculate distances that are difficult or impossible to measure directly.

Trigonometric Relationships in Triangles

e Ratios of side lengths in triangles depend only on the interior angles of triangles

not on the “size” of the triangle. This is the case because of triangle similarity. s
.g ’-'2?'()
e Trigonometric relationships in right triangles: g f%@@
sing opposite oS0 = adjacent tang — op!oosne o)
hypotenuse hypotenuse adjacent = p)
Adjacent
e Trigonometric relationships in all triangles (Law of Sines, Law of Cosines):
inA sinB sinC ; S
sihA_sine _sin ¢ =a’*+b®-2abcosC
a b c B _ c

The Law of Cosines is a generalization of the Pythagorean Theorem. When angle C has a measure of 90°, the
term —2abcosC =0. The reason for this will become clear when we study angles of rotation.

Examples of Trigonometric Relationships in the Physical World

e Snell’s Law: When a ray of light passes from one medium to another, Snell's Law:
its path changes direction. This “bending of light” is known as refraction. " \2 i 0, — 1y sin G
The amount by which the path of the ray of light changes depends on the
angle that the incident ray makes with the normal to the surface at the point
of refraction and also on the media through which the light rays are
travelling. This dependence is made explicit in Snell’s Law via m
refractive indices, numbers which are constant for given media.

61

o All “well-behaved” periodic processes can be modelled using trigonometric
functions or some combination of trigonometric functions. For example, consider

a pendulum. Let t represent time and let &t) represent the angle between the b
positive if the pendulum is to the right of its rest position and negative otherwise. o(t)

|
|
current position of the pendulum and its rest position. The angle @is taken to be !
|
If the pendulum is initially held at a small angle o > 0 and then released, that is, i

6 (0) = a, then if friction is ignored, it can be shown that H(t) = acos(\/%tj , Where g represents acceleration

due to gravity and b represents the length of the pendulum.
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RADIAN MEASURE

Summary of Various Units for Measuring Angles

Degree Measure

Radian Measure

Grad (also known as Gon,
Grade, Gradian) Measure

360 degrees in one full revolution

Very well suited and widely used for
practical applications because one degree is a
small unit

For greater precision, one degree can be
subdivided further into minutes (') and
seconds (")

There are 60 minutes or arcminutes in a
degree, 60 seconds or arcseconds in a minute

27 =6.28 radians in one full
revolution

Not well-suited to practical
applications because one
radian is a rather large unit
Very well-suited to theory
because the radian turns out
to be dimensionless. Thus,
the form of equations of

400 grads in one full
revolution

Very well suited for practical
applications because one grad
is a small unit

The creation of the grad was
an attempt to bring angle
measure in line with the metric
system (i.e. based on ten)

e.g. Central Peel’s location
43°,41',49" N (or 43.6969°)
79°,44', 59" W (or —79.7496°)

trigonometric functions is
simplified, especially for the
purpose of differentiation and
integration in calculus.

e This idea never gained much
momentum but most scientific
calculators support the grad

Calculator Use

Scientific Calculator

Windows Calculator

: : Windows 7
DRG} @ Degrees Radians Grads
This key is used to switch among degrees, radians and grads mode. Whenever you | windows 10 lick to Change Mode
are working with angles, make sure that your calculator is in the correct mode. m F-E
Why 360 Degrees in one Full Revolution? ) :Y " ::Y . ji;, ! fé; “ ‘%Y ! ﬁ;
The number 360 as the number of “degrees” in a circle, and hence the | = w7 | - 7| = «(TT7| == <77 | .x SETT = L
unit of a degree as a sub-arc of Yseo Of the circle, was probably | 1 | o | 5 | 12 T =
adopted because it approximates the number of days inayear. Itsuse | s | o <30 | > <@ | s <P | .. 5% K
is thought to originate from the methods of the ancient Babylonians, T | o | e 4| 0 T | = TR = L
who used a sexagesimal number system (a number system with sixty | T | T | o | T | 0 LT
as the base). Ancient astronomers noticed that the stars in the sky, | 0T | T | T | B -4
which circle the celestial pole every day, seem to advance in that ST | o< | T | T | ST | &LF
circle by approximately one-360th of a circle, that is, one degree, T I I P & o LT
each day. Primitive calendars, such as the Persian Calendar used 360 >
i i i i The 59 symbols used by the Babylonians. These symbols are built from
days_for a year' Its appllcatlon to_measurlng angles I-n gmy can the two basic symbols T and '( representing one and ten respectively.
possibly be traced to Thales of Miletus, who popularized geometry

among the Greeks and lived in Anatolia (modern western Turkey) among people who had dealings with Egypt and

Babylon.

Another motivation for choosing the number 360 is that it is readily divisible: 360 has 24 divisors (including 1 and 360),
including every number from 1 to 10 except 7. For the number of degrees in a circle to be divisible by every number from
1 to 10, there would need to be 2520 in a circle, which is a much less convenient number.

Divisors of 360: 1, 2, 3, 4,5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360
The division of the circle into 360 parts also occurred in ancient Indian cosmology, as seen in the Rigveda:

Twelve spokes, one wheel, navels three.

Who can comprehend this? :

On it are placed together W A Nt
three hundred and sixty like pegs. ' .
They shake not in the least. @

(Dirghatama, Rig Veda 1.164.48) I e )

“Dividing the circle (wheel) into 12 parts (spokes), and 360 degrees (pegs), we know that
the circle in question is the ecliptic plane where Earth and all the planets travel in their
respective orbits around the Sun. These are our 12 months of the year.
To locate where the number 3 falls we see that 3 is one of the angles of the inner triangle
(gold-orange colour), and that it falls in the second quarter of the wheel, the Vital.”
Source: http://www.aeoncentre.com/articles/conundrum-india-choice-destiny-4)

Warning: The site from which this information was taken relies a great deal on supernatural
beliefs, mysticism, numerology and astrology, none of which has any basis in science.
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Definition of the Radian

radian

the size of an angle that is
subtended at the centre of a
circle by an arc with a length
equal to the radius of the circle;
both the arc length and the
radius are measured in units of
length (such as centimetres)
and, as a result, the angle is a
real number without any units

@

Investigation — The Relationship among 8, r and |

It is important to note that the size of an
angle in radians is not affected by the size of

the circle. The diagram shows that a, and a;
— a| — 3

2

subtend the same angle 6,508 = 7 = 3.

'/1 radian is defined as the angle
subtended by an arc length, |,
equal to the radius, r. It appears as
though 1 radian should be a little
less than 60°, since the sector
formed resembles an equilateral
triangle, with one side that is

\ curved slightly.

Verb: subtend sub'tend
1. Be opposite to; of angles and sides, in geometry

Important Note
Whenever the units of angle measure are not
specified, the units are assumed to be radians.

When &is measured in radians, there is a very simple equation that relates r (the radius of the circle), & (the angle at the
centre of the circle) and | (the length of the arc that subtends the angle 6). The purpose of this investigation is to discover
this relationship. Complete the table below and then answer the question at the bottom of the page.

Diagram r o I
Q 1 1 |
Q 1 2
I
1 3
This angle is called a
central angle.
Q 3 15
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A more Analytical Approach to finding the Relationship among 6, r and |

How many Radians are there in One Full Revolution?

First, we need to establish the number of radians in one full revolution. We
can accomplish this by considering a unit circle (a circle of radius 1). Itis
easy to see that for such a circle, 1 =6 . For example, if =1, then by the
definition of a radian, 1 =1. Similarly, if §=2,then I =2. Foranarc
whose length is equal to the circumference of the circle,

| =C =27r=27(1)=2x. Since | =0, for one complete revolution & =27 .

\
(b
ZO

Therefore, one full revolution = 2z radians.

How is @related to the “Amount of Rotation?”

It should be obvious that the angle @ determines the fraction of one full revolution. For instance, consider the examples in
the table given below.

d(rad) Fr%c;\l/g?u?ifogne How Fraction is Calculated
T 1 o V4 7\ 1 1
T i | 2@ )5
4 8 27 \ 4 4 )\2x) 8
r 1 0 7;) / (ﬂ'j( 1 j 1
—_ —_ —_—] — ﬂ'): —_ —_— = —
2 4 27 2 2)\2x) 4
1 o / Vs 1
= = o= 2 |==
" 2 2.~ (7)/(27) [mj 2
AR EEEIHRE
2 4 2w 2 2 \2x) 4
0 0 angle of rotation
0 2 27 angle for one full rotation

How is | related to the Circumference of a Circle?
It should also be obvious that | determines the fraction of the circumference of a circle. Consider the following table for a
circle with r = 3 units and C =271 = 27(3) =67 units.

(D

A (rad) I Fraction of the Circumference
; 1
T (8 ofacircle) | E=3"_39 '=(3”j /(67;):(3_”)(_j:
4 8 4 C 4 4 )\ 6rx
Vs . 6r 3r I 3z 3z 1
— (1/4 of acircle —=—=30 — == /(6r)=| = || = |=
g Wt ofaceld) |55 c (2)/( ™) (2)(%)
67

7z (1/2 of acircle)

—=37=30

%T (3/4 of acircle)

2
(¥)-Z-s
2 2

[ )

4

30

1
8
1
: >
3
4

\

An important observation to make at this point is that ézzi . That is, the ratio of the length of the arc to the

T

circumference of the circle is equal to the ratio of the angle subtended by the arc to the number of radians in one full
revolution. Now, by recalling that C =27zr , we can write the above proportion as

I 0

2rr :E

By multiplying both sides by 2zr, we obtain | =ré.

Copyright ©, Nick E. Nolfi
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Summary: Calculating the Length of an Arc

Let r represent the radius of a circle and & represent the measure of an angle at the centre of the circle. If @is subtended
by an arc whose length is I, then
l=ro

C =2zr is a Special Case of | =r@
Note that the equation ! =1 is a generalized form of C =271 In the case of C =277 | =Cand 0= 2x.

Converting between Radians and Degrees
We know that one full revolution is equal to 2z radians and that one full revolution is equal to 360°.

.2z rad = 360°

. rad = 180°

By remembering that z rad = 180°, you will be able to convert easily between radians and degrees

Radians to Degrees Degrees to Radians
7 rad =180° 180° =7 rad
~lrad = 180 ~10 =7 rad
Vg 180
x(180°) X7
. = SX® =——rad
s X rad - 180
Examples
1. Convert 6 radians to degrees. 2. Convert 972° to radians.
Solution Solution
7 rad =180° 180° = 7 rad
lrad = 180 1° =2 rad
T 180
6(180°
6 rad = ) o720 =127 (g
T 180
1080° _21x
= =——rad
T
=343.8° =16.96 rad

We can be confident that this answer is correct
because 972° falls short of 3 full revolutions by about
100°, as does 16.96 rad. (3 full revs =18.85 rad)

We can be confident that this answer is correct because
6 radians is just short of one full revolution, as is 343.8°.

Special Angles
As shown in the following table, it is very easy to convert between degrees and radians for certain special angles.

Angle in o o o .
Degrees 30 45 60 920
Angle in 180° 7 180° 7 180° 7 180° 7
Radians 6 6 4 4 3 3 2 2

In addition, it is also very easy to convert between radians and degrees for multiples of the special angles. Examples are
shown below.

1

315°=7(45°) = o 37

57 ar 270°=3(00°) =7~

150°=5(30°) = 5 A= 4(60°) = 5
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Radians are Dimensionless

Since | =0r , it follows that 0 = . Because both | and r are measured in units of distance, the units “divide out.”

I Both are measured in units of distance. Therefore, the units
o= F:> “divide out” and @turns out to be dimensionless.
This means that when @is measured in radians, it is a dimensionless number, that is, a pure real number. Because of this,

the radian is very well-suited to theoretical purposes since functions operate on real numbers and not on angles measured
in degrees or any other unit.

Angular Frequency (Angular Speed)
Angular frequency or angular speed is the rate at which an object rotates. The Greek letter @ (lowercase omega) is
often used to denote angular frequency.
Example 1

The RPM gauge of a car measures the speed at which the crankshaft (see pictures below) rotates in
revolutions per minute. While Victor was driving through a school zone, his RPM gauge read 9500
RPM. Convert this value to radians/second.

Solution
“———  Piston
o =9500 RPM
= w Connecting Rod
60 s/min
475 Crankshaft
=— rot/s
3 ‘v'-i‘ (" (o,
. Y )
=(% rot/s)(Zﬂ rad/rot) Valve Train |
9507 o/
B radrs Pistons, Connecting
~994.8 rad/s Rods and Crankshaft

The angular frequency of Victor’s crankshaft is about 994.8 rad/s.

Example 2

While Victor was driving his turbo-charged Volvo on the 410, the wheels of his car were spinning with an angular
frequency of 200 rad/s. If the radius of each wheel is 40 cm, how far will Victor’s Volvo travel in 15 minutes?
Solution

The crux of this problem is to make the connection /
between the circumference of the wheel and the
distance travelled.

As shown in the diagram at the right, the distance
travelled after one rotation of the wheel is equal to
the circumference of the wheel.

C=2znr= 27[(0.4 m) =0.87 m

< C >

In one second, the wheel moves through 200 rad. Therefore, the distance travelled in one second can be calculated easily
using the relation 1 =ré@:

| =r&=(0.4 m)(200 rad)=80 m
Therefore, the car’s speed is 80 m/s.

Consequently, in 15 minutes, Victor’s car travels (80 m/s)(15 min)(60 s/min) = 72000 m = 72 km.
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Example 3

The London Eye Ferris wheel has a diameter of 135 m and completes one

revolution in 30 min.

a) Determine the angular velocity, (@, in radians per second. (Think of the rider as a point on the circumference of the wheel.)

b) How far has a rider travelled at 10 min into the ride?

¢) What is the linear speed of the rider?

Solution
] L 60 s ' Since the question asks for angular
a) 30 min = 30 g X L mig < velocity in radians per second,
1 convert the time to seconds.
= 1800 s -
' Each revolution of the Ferris wheel
] 27 ] represents an angular mation
Angular velocity, w = 1800 radians/s .| through an angle of 27 radians.
Therefore, the Ferris wheel moves
_ T radians/s kthrough 2 radians every 30 min.
900 : -
= 0.003 49 radians/s
p
135 The rider maoves in a circular

b) Radius, 7 = ——m motion on the edge of a circle that

has a radius of 67.5 m.
= 67.5m '\:
The wheel turns through one
revolution every 30 min, so the

30 mfﬁ rider has gone through % of a

] | revolution at 10 min.
= —revolution -

1
10 mm

Number of revolutions, #n =

1 ~ (Theri 1
Distance travelled, 4 = —(27 X 67.5 m) <! Tlhe rider travells 5 of the
3 \ circumference in 10 min.

e

= 457 m
= 141.4m
c) Linear speed = d_ro_4on m = 4'5”_ m_45zm_Sz m/s = 87 m/s =0.24 m/s
t t 10min  1min 60 s 120 40
In general, we can convert between angular speed ® and linear speed v as follows:
linear speed = v= % = rt_e = E(?j = re = (radius)(angular speed)

L

_ 8 O(r\ 6r d(1 1) v linear speed
angular speed = w=—=—| - |=—| = |=—| = |=V| = |= - =————
t t\r t\r) t\r r) r radius
Homework

Precalculus (Ron Larson)
pp. 270 — 271: #35-46, 51-56, 62-68, 75, 77
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RADIAN MEASURE AND ANGLES ON THE CARTESIAN PLANE

Trigonometry of Right Triangles — Trigonometric Ratios of Acute Angles
Right triangles can be used to define the trigonometric ratios of acute angles (angles that measure less than 90°).

csco = hypotenuse _ _ 1 SOH CAH TOA

_ _Opposite opposite  siné
’ﬁg)%] hypotenuse hypotenuse 1 Shout Out Hey” “Canadians Are Hot”
25 = =

z ; secd = «“Ti ; »
£ s adjacent adjacent  cos0 Tight Oiled Abs
5 hypotenuse adjacent 1 Have fun by creatir_1g your own
Adjacent opposite = ite 1 0 mnemonic!
tang=—"— opposite tan

adjacent csc=cosecant, sec=secant,
cot=cotangent C H O S HA C OTAO

The Special Triangles — Trigonometric Ratios of Special Angles

For certain special angles, it is possible to calculate the exact value of the trigonometric ratios. As | have mentioned on
many occasions, it is not advisable to memorize without understanding! Instead, you can deduce the values that you need
to calculate the trig ratios by understanding the following triangles!

N e Isosceles Right Triangle

Let the length of the equal sinZ = _— cosZ = tan
sides be 1 unit. 4 2 4 2

Il
[

By the Pythagorean Theorem, V4
the length of the hypotenuse CSCZ

must be \/5 .

Il
-

NI N
Ll

e Begin with an equilateral triangle having
sides of length 2 units. Then cut it in half

T T T . .
to forma —, —, — right triangle.
6 3 2

e Use the Pythagorean Theorem to
calculate the height of the triangle. (\/§)

Trig Ratios of % Trig Ratios of %
1
SinZzl COSZZE tanZZ— sinzzﬁ Coszzl tanzz,\/g
6 2 2 6 3 3 2 3 2 3
T 2 T 2 T \/5 T \/5 T 2 T 1
csc—=—=2 seC—=— t—=— =4/3 = seC—=—=2 cot—=—7
6 1 6 \/5 CcO 1 \/_ CSC3 2 3 1 3 \/5
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Trigonometric Ratios of Angles of Rotation — Trigonometric Ratios of Angles of any Size

We can extend the idea of trigonometric ratios to angles of any size by introducing the concept of angles of rotation (also
called angles of revolution).

10 101
sl Terminal Arm al e A negative angle of
- - revolution (rotation) in
ST e A positive angle of revolution or standard form.
41 (rotation) in standard form. 4T e “Standard form” means
ol e “Standard form” means that the 2t that the initial arm of

.......... ... initial arm of the angle lies on O ENEEEEEEN the angle lies on the

6 4 2

A0 -8 & 4 -2 L 2 4 BA8 10 the positive x-axis and the vertex 108 7 .4 648 10 positive x-axis and the
2r 7\ of the angle is at the origin. 2r 3 vertex of the angle is at
< Initial Arm e A positive angle results from a Ar Initial Arm the origin.

IR counter-clockwise revolution. ! i1 e A negative angle results
a8l (The British say “anti- Terminal Arm_a'a from a clockwise

clockwise.”) revolution.

gl -10

Why Angles of Rotation?

To describe motion that involves moving from one
place to another, it makes sense to use units of
distance. For instance, it is easy to find your
destination if you are told that you need to move 2 km
north and 1 km west of your current position.

Consider a spinning figure skater. It does not make

clockwise rotation: negative angle

counter-clockwise rotation: positive angle

sense to describe his/her motion using units of
s 6 distance because he/she is fixed in one spot and
B+ 8

rotating. However, it is very easy to describe the
motion through angles of rotation.

The four quadrants

sing = opposite _y ¢ Since r represents the length of the terminal
i i hypotenuse  r arm, r>0.
adjacent X e Inquadrantl, x>0 and y>0.
1 v Cos6 = m = Therefore ALL the trig ratios are positive.
) e InquadrantIl, x<0 and y>0.
tang = 2PPOSIe _ y Therefore only SINE and cosecant are
x |y lr x 'y r adjacent  x positive. The others are negative.
UL S B B e Inquadrant I1l, x<0 and y<O0.
(x, ) S A cscl = hypotenuse _ r Therefore only TANGENT and cotangent
i o I opposite are positive. The others are negative.
Vi 9 e Inquadrant IV, x>0 and y<0.
L A secH = w _r Therefore only COSINE and secant are
M v adjacent X positive. The others are negative.
T C adjacent  x e Hence the mnemonic,
cotd = opposite =— “ALL STUDENTS TALK on
x|y r x 'y r pp y CELLPHONES”
- + + +

Coterminal Angles

Angles of revolution are called coterminal if, when in standard position, they share the same terminal arm. For example,
3 7 . . . . .
—%, 77[ and 77[ are coterminal angles. An angle coterminal to a given angle can be found by adding or subtracting any

multiple of 27 .
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Principal Angle

Any angle dsatisfying 0<6 <27 is called a principal angle. Every angle of rotation has a principal angle. To find the
principal angle of an angle «, simply find the angle &that is coterminal with « and that also satisfies 0< 6 <2z . An

example is given below.

Angle of Rotation a = —

L3z Principal Angle of @, 6 = 37”

Al

08 6 4 2 [ 2 4 6 8 10
2f ol
L i
e I
=T Bl
-10- Aol
Quadrant I1 %<X<7z’ IA Quadrant I 0<x<%
»
p -
SN sin 9=2 T =+ sin 9=2 =
4 P r ; r :
: X - X x il
X X cos == — cos == =
r ¥ r +
tan 6=2 = tan O=2 £
X X ¥
adrant 111 = N
R/ Quadrant 7r<><<7 Quadrant IV 7<><< 7y
o sin 9=2 = — sin =2 =
—_—r r . r
418 4 cos == = cos =% + N
:P r r :
tan =2 —= + tan @=2. e
x P" S

Example — Evaluating Trig Ratios by using the Related First Quadrant Angle (Reference Angle)

Find the trigonometric ratios of % .

Solution

From the diagram at the right, we can see that the principal

angle of % is 5?” Furthermore, the terminal arm is in

Every angle of rotation has a related (acute) first quadrant
angle (often called the reference angle). The related first
guadrant angle is found by taking the acute angle between the

terminal arm and the x-axis.

11z .
For T , the reference angle is 5

the fourth quadrant and we obtain a 30°-60°-90° right triangle in quadrant I\V. By observing the acute angle between the

terminal arm and the x-axis, we find the related first quadrant angle (reference angle), % :

Therefore,

S|n—=sin5—”=X=£=__3
3 r 2 2
57 1

C0S—— =coS—=—==
3 2

Copyright ©, Nick E. Nolfi

Compare these answers to

. 3
sin= =——
3 2
r 1
COS— ==
3 2
tan%:«@
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Question

How are the trigonometric ratios of the principal angle ?ﬂ related to the trigonometric ratios of % ?

Answer

Notice that the right triangle formed for 5?7[ is congruent to the right triangle for % .

Therefore, the magnitudes of the trig ratios of 5?” are equal to the magnitudes of

those of the related first quadrant angle % . However, since the

y-co-ordinate of any point in quadrant IV is negative, the ratios may differ in sign. To
determine the correct sign, use the ASTC rule. In case you forget how to apply the
ASTC rule, just think about the signs of x and y in each quadrant. Keep in mind that r
is always positive because it represents the length of the terminal arm. Thus, the above
ratios could have been calculated as follows:

Angle of Rotation: S?ﬁ (quadrant 1V)

In quadrant 1V, sin&:l<0 because —=—, c056=5>0 because oy and tanezi
r + r + X
Hence, sin5—”=—sin£=—£, coss—”:coe‘,z:1 and tan5—”=—tan£=—\/§.
3 3 2 3 3 2 3 3

Additional Tools for Determining Trig Ratios of Special Angles

<0 because —
+

Related First Quadrant (Reference) Angle:

57 .
Ay
(NI
N
2\ |
s (1-45)

The Unit Circle
A unit circle is any circle having a radius of one unit. For any point (x,y) lying on the

unit circle and for any angle 6, r =1. Therefore, cosé = ; X X and

y_y

sing = Pl y . Inother words, for any point (X, y) lying on the unit circle, the

x-co-ordinate is equal to the cosine of @and the y-co-ordinate is equal to the sine of 6.

The Rule of Quarters (Beware
of Blind Memorization!)

The rule of quarters makes it
easy to remember the sine of
special angles. Be aware,
however, that this rule invites
blind memorization!

0
. in(0°) =4/ - =0
(cosd,sinb) sin(0%) 4
\ . 1 1
"\. 300 = —_ = —
\ sin(30°) i 5
1% , . 2 vz 1
\_I_\. Sll'l(45 ) = Z = T - \/5
™ n(eor) = | J3 = V3
sin Vi =3
4
n(90°) =4/ - =1
sin(90°) 1
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N

Note that —= =
2

follows by multiplying both
the numerator and the

denominator of iz by 2.

2

IS

# (degrees) | 0° | 30° | 45° | 60° 90° 180° 270°
. T T T T 3w
@ (radians) | 0 6 2 3 > T 2
. 1 | V2|3
N N N I R s e
2
1
s R ]
1 A F F
2
tan # 0 "—f 1 | V3 | Undef.| 0 | Undef.
Notice the Pattern! —0 ﬂ —2 —3 ﬂ
2 2 2 2 2
This pattern can also bewrittenasfollows:\/g, 1 E § 4
4 4 4 4 4

(x,y) = (cos#,sin6)

By expressing

remember the unit circle.

i in the

J2

form g it is very easy to

(“Rule of Quarters” see page 17)

|5

Homework

Precalculus (Ron Larson)
pp. 269 — 271: #1-46, 71-74, 78

p. 277: #1-22
p. 286: #5-12

p. 296 — 297: #1-22, 37-68, 75-90
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INTRODUCTION TO TRIGONOMETRIC FUNCTIONS
Overview
Now that we have developed a thorough understanding of trigonometric ratios, we can proceed to our investigation of
trigonometric functions. The adage “a picture says a thousand words” is very fitting in the case of the graphs of trig
functions. The curves summarize everything that we have learned about trig ratios. Answer the questions below to
discover the details.

Graphs
X y =sinx ¥ 3. State a suitable subset of the domain of
0 0 T f(x)=sinx over which f*(x) is defined.
08}
z 2=05 -
6 J_l/ 06}
z 2 =0.70711 i . .
‘ Y 0 0.4F £ (x) =sin x 4. How can the graph of the sine function help you
3 V/3/2 £ 0.86603 0.2 to remember the sign (i.e. + or ) of a sine ratio
% 1 H 1 |£|| Iil Iiﬂ-l I 1 Iﬁl Ii‘ IL”I I ;T for any angle’)
2 J3/2 < 0.86603 02F 4 2 4 42 4
2 . V4~ > < I > < ><1V,
= 12 = 0.70711 06k ) )
o 08T 5. How can the graph of the sine function help you
O 12-05 08F to remember the sine ratios of the special
7 0 Ar angles?
= ~1/2=-0.5 _ _
| o QIO e
. State the domain and range of the sine — i
s | _ /2 086603 Fnction 9 6. Sketch the graph of f(x)=sinx for
ar 1 ' —2m <X<2rm.
2 - Aib
52| _\[3/2=-0.86603 o e |
I | _yy2=-070711 2. Isthesine function one-to-one or HEH
11n many-to-one? -2z _8z| -7 Zlo=|f Z||z 32 g 5z 8z 1z 27
5 —]/2:—0.5 2 ot 4 2 2 42 (4
2r 0 REES ;
X y =CO0S X b 3. State a suitable subset of the domain of
0 1 't f (x) =cosx over which f(x) is defined.
z 3/2 = 0.86603 081
= 1/42 =0.70711 EE | |
z 12-05 AL f(x) =cosx 4. How can the graph of the cosine function help
> 02 you to remember the sign (i.e. + or -) of a
2 0 cosine ratio for any angle?
z ~1/2=-05 0.2
2| _yz=-0707121 04
% | —3/2=-0.86603 08 5. How can the graph of thq cosine function help
” L 0.8 you to remember the cosine ratios of the special
7 ) -1 angles?
z | J3/2=-0.86603
sz | _YJy2=-070711 Questions about cos x
4z 1/2--05 1. State the domain and range of the 6. Sketch the graph of f(x)=cosx for
2 . cosine function. 27 <X<2r.
2 ne
5 s
i 1N2=0.70711 2. Is the cosine function one-to-one or idils
2 2r B3z =xr Lz o =f x|z 3z x 57 3z 1z 271
MTﬂ \/§/2 = 0.86603 many'tO'One. 2 2:272 ; 4 2 14 4712 4
27[ l 70:? ;
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3. State a suitable subset of the domain of

Asymptotes ] 1 ) .
f (x) =tanx over which f (x) is defined.
X y=tanx
-z undefined A 107 ,
2 | [3=_173205 i B i i 4. How can the graph of t_he tangent function help
oz - . Al | i you to remember the sign (i.e. + or -) of a
4 : r ! : tangent ratio for any angle?
—Z | _1/JB=-057735 | 4T . i
| | |
0 0 ENENEJENDLAN |
z 13 =0.57735 _x i 37 5. How can the graph of the tangent function help
z 1 ? t you to remember the tangent ratios of the
) <l > <> special angles?
3 3 £1.73205 ! |
0 undefined | |
t |
F | —3=-173205 ] ! 6. Sketch the graph of f(x)=tanx for
O -1 v 3= <x< s
5| 1/ J3= 057735 Questions about tan x 2 "7 2
T 0 1. State the domain and range of the 1o
; tangent function. e
= 1/J3= 057735 6
4 -
5 ! 2f
iz J3=173205 2. Isthe tangent function one-to-one or —3 T AT % % S B S O B
& undefined many-to-one? af
o
al
LqgL
3. State a suitable subset of the domain of
Asymptotes . 1 . .
X y =Cscx f (x) =cscx over which f~(x) is defined.
0 undefined
z 2 .
j 4. How can the graph of the cosecant function
4 V2 2141421 help you to remember the sign (i.e. + or -) of a
z 2/\3 =1.15470 cosecant ratio for any angle?
Z 1
Zz 2/\/3=1.15470 _
a0 5. How can the graph of the cosecant function
o V22141421 help you to remember the cosecant ratios of the
= 2 special angles?
T undefined
= 2
: _
- 6. Sketch the graph of f(x)=cscx for
| 2z-1414: ey gﬂ P )
iz | _2/3=-1.15470 . T
33 /3 Questions about csc x 0
S 81
2 -1 1. State the domain and range of the gL
2| —2/\B=-1.15470 cosecant function. af
T 2zoraar HEE i e
i 2 e o b S Rl
. 2. Is the cosecant function one-to-one or -
27 undefined many-to-one? &L
: T
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3. State a suitable subset of the domain of
Asymptotes

X y =Secx f (x) =secx over which f~*(x) is defined.
-z undefined A 10 A
1 B 1 I
3 2 : A F (0= secx I 4. How can the graph of the secant function help
-7 J2 2141421 : Al j | you to remember the sign (i.e. + or —) of a
-5 2/\/3=1.15470 | al | | secant ratio for any angle?
1 1 I
0 1 ! of ! :
Z 2/3 £1.15470 ! ! | .
: /3 i x 5. How can the graph of the secant function help
T V2 2141421 f £ you to remember the secant ratios of the special
Z 2 ! angles?
Z undefined |
2z -2
33” 6. Sketch the graph of f(x)=secx for
4 —V2 =-141421 27 <X<L2r.
5r . R
¥ | -2/\3=-115470  Questions about sec x 10t
g -1 1. State the domain and range of the 2 -
1z | —2/3=-1.15470 secant function. af
57z & B
v 2 =-1.41421 ST SRR I SEETHERE TSNS
ix _2 2 T e e e e e
N _ 2. Is the secant function one-to-one or e
7 undefined many-to-one? il
L4gLC
3. State a suitable subset of the domain of
Asymptotes . 1 ] .
X y =cot X f (x) =cotx over which f~(x) is defined.
0 undefined
g V32173208 4. How can the graph of the cotangent function
s 1 help you to remember the sign (i.e. + or -) of a
z 1/\3 = 057735 cotangent ratio for any angle?
z 0
2z | —1/3=-057735 .
33 VB 5. How can the graph of the cotangent function
v -1 help you to remember the cotangent ratios of
2 | _\3=-1.73205 the special angles?
T undefined
Iz -
. Y3 =173205 6. Sketch the graph of f (x) =cotx for
44 ! —2r<X<2r.
% | YNB=057735  (estions about cot x waf
7T - 8
5 0 1. State the domain and range of the al
2z | 1Bz -057735 cotangent function. af
i 1 “r
4 B A T FARNEN EREIREANCT AP % 87 77 D,
i _J3 = _173205 -2 37 PP 72:7737”5737772”
° o 2. Is the cotangent function one-to-one or I
2 undefined many-to-one? 5[
-3}
L4gLC
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TRANSFORMATIONS OF TRIGONOMETRIC FUNCTIONS

What on Earth is a Sinusoidal Function?

o A sinusoidal function is simply any function that can be obtained by stretching (compressing) and/or translating the
function f(x)=sinx. That is, a sinusoidal function is any function of the form g(x) = Asin (a)(x - p)) +d.

e Sinusoidal functions are very useful for modelling waves and wave-like phenomena.

Since we have already investigated transformations of functions in general, we can immediately state the following:

Transformation of f (Xx) =sinx expressed in Function Notation Transformation of f(x) =sinx Why ot X+ p in Mapping

f's x-coordinate |  expressed in Mapping Notation
nN Notation and not @(x— p)?

g’s x-coordinate \? f_A—1
9 X) = Asin (w(x N p)) +d r ' f's x-coordinate g’s x-coordinate
¥ R TV~ Fsy-coordinate s (% y\)—>((u - p"Akﬁy +,—Jd) o(X—p)—> ~0—> +p —PX
g’s y-coordinate multiplied by A,
then d isadded | f: pre-image g: image X—>+0—P>+pD—> o X+ p
Horizontal Transformations Vertical Transformations
1. Stretch or compress horizontally by a factor of 1. Stretch or compress vertically by a factor of A. If
o =1/w. If » <0, then this includes a reflection in A <0, then this includes a reflection in the x-axis.
the y-axis. 2. Translate vertically by d units.
2. Translate horizontally by p units. (x, y) > (x, Ay + d)

(xy) > (@ x+p.y)

Since sinusoidal functions look just like waves and are perfectly suited to modelling wave or wave-like phenomena,
special names are given to the quantities A, d, pand o.

° |A| is called the amplitude (absolute value is needed because amplitude is a distance, which must be positive)

o dis called the vertical displacement These quantities are described
o pis called the phase shift in detail on the next page.

e  (also, written as k) is called the angular frequency

Exercise

The purpose of this exercise is to emphasize that there is nothing magical about the symbols A, d, p and @. Any symbols
whatsoever can be used to represent the various transformations algebraically. Complete the following table:

Transformation of f(x)=sinx expressed in Mapping Transformation of f(x)=sinx expressed in Function
Notation Notation

(x,y)—(ax+b,cy+d)

Horizontal Transformations Vertical Transformations
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Periodic Functions

There are many naturally occurring and artificially produced phenomena that undergo repetitive cycles. We call such
phenomena periodic. Examples of such processes include the following:

orbits of planets, moons, asteroids, comets, etc. 7
rotation of planets, moons, asteroids, comets, etc. T ™

730 O e e b . ot e
phases of the moon \/\ N /v / A
the tides / AN/ \/\\ :
changing of the seasons £ - QPeHOY. T : Pyod N
hours of daylight on a given day I°
light waves, radio waves, etc.

alternating current (e.g. household alternating current has a frequency of
60 Hz, which means that it changes direction 60 times per second)

One Cycle

An example of a periodic function.

Intuitively, a function is said to be periodic if the graph consists of a “basic pattern” that is repeated over and over at
regular intervals. One complete pattern is called a cycle.

Formally, if there is a number T such that f (x+T )= f (x) for all values of x, then we say that f is periodic. The smallest

possible positive value of T is called the period of the function. The period of a periodic function is equal to the length of
one cycle.

Exercise
Suppose that the periodic function shown above is called f. Evaluate each of the following.

@ f(2) (b) f(4) © f(1) d f(0) ) f(16) (f f(18) (@) f(33) (h) f(-16)
i f(81) @G f(-28) ( f(-27) @ f(-11) (m) f(-6) (n) f(-9) (o) f(-5) (p) f(-101)

Characteristics of Sinusoidal Functions

1. Sinusoidal functions have the general form f (x) = Asin(w(x—p))+d , where A, d, p and e are as described above.

2. Sinusoidal functions are periodic. This makes sinusoidal functions ideal for modelling periodic processes such as
those described on page 22. The letter T is used to denote the period (also called primitive period or wavelength) of a
sinusoidal function.

3. Sinusoidal functions oscillate (vary continuously, back and forth) between a maximum and a minimum value. This
makes sinusoidal functions ideal for modelling oscillatory or vibratory motions. (e.g. a pendulum swinging back and
forth, a playground swing, a vibrating string, a tuning fork, alternating current, quartz crystal vibrating in a watch, light
waves, radio waves, etc.)

4. There is a horizontal line called the horizontal axis that exactly “cuts” a sinusoidal function “in half.” The vertical
distance (maximum displacement) from this horizontal line to the peak of the curve is called the amplitude.
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Example
The graph at the right shows a few cycles of the function
f(x) :1.55in(2(x—%))+1. One of the cycles is shown as a

thick green curve to make it stand out among the others.
Notice the following:

e The maximum value of fis 2.5.
e The minimum value of fis -0.5.
e The function f oscillates between —0.5 and 2.5.

e The horizontal line with equation y =1 exactly “cuts” the
function “in half.” This line is called the horizontal axis.

« The amplitude of this function is |A|=1.5. This can be

seen in several ways. Clearly, the vertical distance from
the line y =1 to the peak of the curve is 1.5. Also, the

amplitude can be calculated by finding half the distance

between the maximum and minimum values: 5

25-(-05) _

3

—=15

2

e The period, that is the length of one cycle, is T =z . This can be seen from the graph (Sf—%z 7)) oritcan be

determined by applying your knowledge of transformations. The period of y=sinx is 2z. Since f has undergone a
horizontal compression by a factor of 1/2, its period should be half of 2z, which is z. In general,

T = (period of base function) (absolute value of the horizontal compression factor) or T =27

w

1‘ . The reason that

absolute value is needed here is that the period is a distance and hence, must be positive. (Those of you who prefer to

use k to represent the angular frequency may write thisas T =27

1
k')

e The absolute value of the angular frequency determines the number of cycles in 2z radians. In this example, |a)| =2,

which means that there are 2 cycles in 2z radians = 1 cycle in z radians = 1 cycles in 1 radian = 1 cycles/radian.

T T

e The function g(x)=1.5sin (2(x —%)) would be “cut in half” by the x-axis (i.e. the horizontal axis y=0). The function

f has the same shape as g except that it is shifted up by 1 unit. This is the significance of the vertical displacement. In

this example, the vertical displacement d =1.

e The function g(x):1.53in(2(x—%)) has the same shape as h(x) =1.5sin2x but is shifted % to the right. This

horizontal shift is called the phase shift.
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Important Exercises

Complete the following table. The first one is done for you.

Function | A d p o=k | T Description of Transformation
3r zh(x):Ssinx
f 1 0 0 1 2 None 257
1‘2' g(x)=2sinx
5y T
The graph of f(x)=sinx is 0_; i "
g 2 0 0 1 27  stretched vertically by a factor of 2. = i g
The amplitude of g is 2. Uj: YARF 37” L 37” o il
The graph of f(x)=sinx is 1;;:
h 3 0 0 1 | 27 stretched vertically by a factor of 3. 55|
The amplitude of g is 3. 3+
3t iy
2el g(x) =sinx+2
f 2
1?: f(x) =sinx
g
h = -
3k
f 1
05}
g
05
h 4l
f(x) =sinx g(x):sin(x—ﬁj
f 20 2
h(x):sm(x+5j
051
g
5_
h
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Example

Sketch the graph of f(x) :1.55in(2(x—

Solution
Ampli- Vertical
Transformations P Displace-
tude
ment
Vertical Horizontal
1. Stretch by a factor of -1
15 1. Compress by a factor of 27~ =— |A| -15 d=1

2. Translate 1 unit up.

Method 1 — The Long Way

4

i)+

2. Translate Z to the right.

Pha_lse Period Angular
Shift Frequency
T=27r l‘ w=2
p=" @ |o] = 2, which
4 =2r (1/2) means 2 cycles
=7 per 2z radians

The following shows how the graph of f(x) :1.55in(2(x—%))+1 is obtained by beginning with the base function

f (x) =sinx and applying the transformations one-by-one in the correct order. One cycle of f(x)=sinx is highlighted

in green to make it easy to see the effect of each transformation.

make it easy to see the effect of each transformation.

2T
TeF

fL(x)=sinx

e

I Juéﬂ
f(x) 155|n2x+1
AF

A5

2 L
15| f (X) =1.5sin x

1k

/-

Method 2 — A Much Faster Approach
f(x)=15sin(2(x-%))+1,A=15,d=1, 0=2, p=%

2T
B4
1 f(X)=sinx
il
A+
iE<ls
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(xy

—>(lx+

3ﬂj\,ﬁl M_

f (X)|=1.5sin2(x—§) +1
At

A 5L

2,15y +1)

1(0)+4,15(0)+1) =
()+— 1.5(1) +1)
Lr+4,15(0)+1) = (3,
(@ﬂ+415(D+Q=

1)
)
(7

I
—_—~

w
“l*‘ Nl Al

HI\)
(3]
~—~

~0.5)

—($@r)+7,150)+1)=(.1)

MCR3U9 Unit 3 — Trigonometric Functions
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In addition, five main points are displayed in red to

b (x)=1.5sinx+1

o The five key points divide each cycle
into quarters (four equal parts).

e Each quarter corresponds to one of
the four quadrants.

¢ Dividing one cycle into four equal
parts makes it very easy to sketch the
graphs of sinusoidal functions.

e The transformations are very easy to
apply to the five key points.

Ves

Sin2(x—4)+1

/'1
b, 2
= 15si

TF-26



Exercise 1

Using both approaches shown in the previous example, sketch a few cycles of the graph of

Solution
A:_y d:_l a)zk:_l pz_

T = (stretch/compression factor) (2z) = (

(xy)—>

) (2m) =

Transformations in Words

f(x)= —2cos(—3(x +£)) -1.

Vertical Horizontal
Method 1 — The Long Way
It It It
250 250 250
2t 2t 2t
15+ 15+ 156+
1t ' 1+ ' 1+
0.5F 05r 0.5k
_I I_I;I 1 1 Illl 1 1 1 I3I7Z—I 1 1 _I I_Ilﬂl 1 1 IIEI 1 1 1 1 I;[I 1 1 _I I_II£I 1 1 Illl 1 1 1 1 I;TI 1 1
T > 05k £ 7| 3 2r s S 05k SNEANE 2 s 05 A T 27
At Ar 1t
15k 150 15+
2t 2+ 2+
25+ 250 25
3l 3 / 3l
5t % Meaning
25¢ 25¢ Juam | Meaning
y
2t 2t
150 1.5+
_ A
1t 1+
05k 05r d
_I 1 _IIE 1 1 1 1 Iﬂ 1 1 7IZ. 1 Iﬁl 1 1 _I 1 _I I£ 1 1 1 1 Il 1 1 7lz- 1 1 Iﬂ: 1 1 1
T =% o5k 5 s 2r T =% o5k 5 2r »
ERE At
15 151
p
2 2l
2.5 2.5+ T
sl L3l
Method 2 — A Much Faster Approach
3t (xy)— 3t
250 250
2t 2t
150 1.5+
1t 1r
05k 0.5+
_I I_IIEI 1 1 IIEI I7IZ.I I&I 1 1 _I I_IIEI 1 1 I£ I;IZ.I Iﬁl 1 1
T 7 a5t 2 ey T o7 05 2 > 2
ERE L
15 15+
2 ol
2.5 2.5+
3L 3L
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Homework Exercises
Sketch at least three cycles of each of the following functions. In addition, state the domain and range of each, as well as

the amplitude, the vertical displacement, the phase shift and the period.

(@) f(x)=-cos3x-2 (b) g(X):3COS(X—%)
(©) h(x)=4sin(2(x+%))-1 (d) p(x)=-2sin(2x+%)+1
(&) a(t)=-5cos(3t+5)+2 (f) r(6)=-2sin(-2(0-%))-3
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GRAPHING TRIGONOMETRIC FUNCTIONS

One Cycle of each of the Trigonometric Base/Parent/Mother Functions

0.8F
06}
0.4}
0.2}

0ok
0.4e
06k
0sl

D=R, R={yeR:-1<y<l} D={xeR:x=nz,neZ}, R={yeR:y<-lory>1l
A=1d=0p=0, =1 T=2x A =1 but the amplitude is undefined, d =0, p=0, =1, T=2x

0.8}
06l
04}
0of

f(X)=cosx

a2k
0.4
06k
osl

— - . 2n+1
D=R, R={yeR:-1<y<l} D={X€RZX¢—( ; )”,nez}, R={yeR:y<-lory=x1j
A=1,d=0,p=0, =1 T=27x A = 1 but the amplitude is undefined, d =0, p=0, w=1, T =27
A ’ A
i of f(x)=tanx ] i
: of | :
| L 1 |
! 4+ 1 |
| - | |
i al | |
I - 1 1
A T ,
: /fl/;: ya 5 x
A P P2 B A S
I r 1 |
| -G: 1 |
:/ sl | :
v T v J
(2n+1) 7
D= XeRZXiT,neZ ,R=R D={xeR:x=nz,neZ}, R=R
A =1 but the amplitude is undefined, A =1 but the amplitude is undefined,
d=0,p=0, =1, T=x d=0,p=0, =1, T=nr
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Suggestions for Graphing Trigonometric Functions

1. Identify the transformations and express using mapping notation.

2. Think carefully about the effect of the transformations on the features of the base graph
Horizontal stretches/compressions affect the period and the locations of the vertical asymptotes.
Horizontal translations affect the locations of the vertical asymptotes and the phase shift.
Vertical stretches/compressions affect the amplitude and the y-co-ordinates of maximum/minimum points.
Vertical translations simply cause all the points on the graph to move up or down by some constant amount.

3. Apply the transformations to a few key points on the base function.

4. Sometimes it is easier to apply the stretches/compressions first to obtain the final “shape” of the curve. Then it is a
simple matter to translate the curve into its final position.

5. To find a suitable scale for the x-axis, divide the period by a number that is divisible by 4. The number 12 works

particularly well because it divides exactly into 360°, giving increments of 30° or % radians (see diagram).

=

[TTTTTTTTTe

L | | 1 | | | | 1 1 | | 1 1 | | | | | | | | 1 | | | | 1 1 | | 1 1 | | | |
27 3z - —Z Z x oz 2z 5z g In 4z 3z 5z 1z Qrp
2 2 6 3 2 3 6 6 3 2 3 6

Graphing Exercises

Now sketch graphs of each of the following functions by applying appropriate transformations to one of the base
functions given above. Once you are done, use Desmos or a graphing calculator to check whether your graphs are correct.
Detailed solutions are also available at http:www.misternolfi.com/courses.htm under “Unit 3 - Trigonometric Functions.”

a) y = 18 cos (E) - 14 €}y = —cos (S—ﬂ-(x— 1)) +1 h) y:_zsec(g[X+EJJ+5
4 3 T 6
4 (2 3T _ . x
e N A
7w\ _ 9 ) y=-2tan| 3| x+>||-3 5 7). 3
c)y = 101 cos (x - —) - — 9y i :—CSC[1.5X —j —
4 10 4 Doy 3 AR

d) y = Gsin (mx + 13) + 22
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USING SINUSOIDAL FUNCTIONS TO MODEL PERIODIC PHENOMENA

Summary

A sinusoidal function is any function of the form f(x) = Asin(w(x - p)) +d . Such functions can be used to model
periodic phenomena that involve some quantity alternately increasing and decreasing, “smoothly” and at regular
intervals, between a maximum and minimum value. In addition to exhibiting this smooth and regular “up and down”

behaviour, a sinusoidal function “spends” the same amount of “time” increasing as it does decreasing. Note also that the
horizontal axis of a sinusoidal function is located exactly at the average of the maximum and minimum values.

A Sinusoidal Periodic Function Periodic Functions that are NOT Sinusoidal

AAN | e el o i

iy e

A =the factor by which the base function y =sinx is stretched/compressed vertically
|A| = the amplitude of the sinusoidal function (must be positive since length/distance cannot be negative)
max-min
-

d =the amount by which the base function y =sinx s translated vertically

= the vertical displacement

max+min .
=——— =the average of the max and the min

=the average value of the sinusoidal function
y =d — the equation of the horizontal axis of the sinusoidal function
= the image of the x-axis under the transformation

Vertical Transformations

|d| = absolute value of the vertical displacement
= distance from the x-axis to the horizontal axis

é = the factor by which the base function y =sinx is stretched/compressed horizontally
o =the angular frequency
= how fast an object rotates (positive value—counterclockwise, negative value—clockwise)
|a)| = the absolute value of the angular frequency
= number of cycles in 2z radians
T =period
= length of one cycle (must be positive since length/distance cannot be negative)

= (period of base function y =sin x )(absolute value of the horizontal stretch/compression factor)
1
= 27[ —_
w

p =the amount by which the base function y =sin x is translated horizontally
= the phase shift

Horizontal Transformations

If it is difficult to determine the phase shift graphically, it can be calculated once A, d and @ are known.
Simply choose a point known to be on the curve, substitute into the equation and solve for p.

Alternatively, p can be determined by using the image of the point (0,0) , if y=sinxis used as the base

function, or the image of the point (0,1) , If y=cosxis used as the base function. (See the example on
page 37 for more details.)
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Activity 1
1. A cosine curve has an amplitude of 3 units and a period of 377 radians.

The equation of the axis is y = 2, and a horizontal shift of % radians

to the left has been applied. Write the equation of this function.
In addition, sketch two cycles of the graph of this function.

2. Determine the value of the function in question 1 if x = %, 3{,
d 1171
and =~

Copyright ©, Nick E. Nolfi MCR3U9 Unit 3 — Trigonometric Functions TF-32



3. Use your graph to estimate the x-value(s) in the domain 0 < x < 2,
where y = 2.5, to one decimal place.

4. The number of hours of daylight in Vancouver can be modelled by a

sinusoidal function of time, in days. The longest day of the year is
June 21, with 15.7 h of daylight. The shortest day of the year is

December 21, with 8.3 h of daylight.

a) Find an equation for /i( #), the number of hours of daylight on the
f th day of the year. In addition, sketch one cycle of the graph of this function.

b) Use your equation to predict the number of hours of daylight in
Vancouver on January 30th.

=

rrrrererrroerrrrrrnrrrrs
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Activity 2 — Ferris Wheel Simulation Helghtof Gar 1 above the ground: h=1377em

Angle of Rotation of Car 1: m B|F|Car 1 =55.2° .-
Download the Geometer’s Sketchpad Ferris wheel simulation Car 1 (4.034, 6.814) T
from www.misternolfi.com. Once you understand how to start a1 1
and stop the animation and how to interpret the given information, >
answer the questions found below. ]
Questions b I
This simulation involves finding out how the height of h
“Car 1” above the ground is related to the angle of rotation of the Radius N
line segment joining “Car 1” to the axis of rotation of the Ferris Reduszrsgem
wheel. \

1. Complete the table at the right. Stop the animation each 1 Groums
time that a car reaches the x-axis (the car does not need to

] . Angle of Rotation of Car 1 Height of Car 1
be exactly on the x-axis). Each time that you stop the 9 g
animation, record the angle of rotation of “Car 1” and its
height above the ground.
2. Now use the given grid to plot the data that you recorded
in question 1. Once you have plotted all the points, join
them by sketching a smooth curve that passes through all
the points. Does your curve look familiar? Try to write
an equation that describes the curve.
h
AP
16 |-
14 |
12 -
10 |-
=
= -
2
2
4 1 2 4 4 2 A A i 4 4 ;Z. 4 1 5._7[ 4 A 3!_” A 2 i A i 4 2l7z- } 6

SN

2 4 4 2 4

3. For this question, you may use either a graphing calculator or a spreadsheet. First, take the data from the above table
and create two lists. Then perform a sinusoidal regression. (Performing a regression means that the data are “fit” to a
mathematical function. A sinusoidal regression finds the sinusoidal function that best fits the data.) How does the
equation produced by the regression compare to the equation that you wrote in question 2?

4. Now use a graphing calculator or graphing program like Desmos to graph the function produced by the regression.
How does it compare to the graph that you sketched in question 2?

5. Use the equation obtained in question 4 to predict the height of “Car 1 when its angle of rotation is 2 radians.
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Activity 3 — Earth’s Orbit
The table below gives the approximate distance from the Earth to the Sun on certain days of a year.

Date Day of the Year | Earth’s Distance (d) from Sun (km)
January 3 2 1.47098x 108
February 2 32 1.47433x108

March 5 63 1.48349x10°
April 4 93 1.49599 x10°
May 5 124 1.50848x 108
June 4 154 1.51763x10°

July 5 185 1.52098 x10®

August 4 215 1.51763x10°

September 4 246 1.50848 x10°
October 4 276 1.49599 x10°
November 4 307 1.48349x10°
December 4 337 1.47433x10°
Questions

Perihelion is the point in the Earth’s
orbit at which it is closest to the sun.
Perihelion occurs in early January.

Aphelion is the point in the Earth’s
orbit at which it is farthest from the
sun. Aphelion occurs in early July.

1.6e+008

1.2e+008
ge+007

4e+007

-1.6e+008 -8e+007
-4e+007

-Be+007

-1.2e+008

-1.6e+008

Be+007 165+008

The Earth’s orbit around the Sun is an ellipse that is
very close to a perfect circle. The Sun is located at
one of the two foci (singular focus) of the ellipse.

1. Use the grid below to plot the data in the above table. Once you have done so, join the points with a smooth curve.
Use your knowledge of trigonometric functions to write an equation of the curve.

1.52 x10°%-
1.51x10% 4

1.50 x10°4
1.49x10°%4
1.48x10°%4
1.47 x10°4

Distance (Kilometres)

d
A

Distance from the Earth to the Sun

(The time “0 days” corresponds to January 1, 12:00 A.M.)

135 180 225 270 =15 3
Time (Days)

=10

! t

2. Now use graphing calculator or a spreadsheet to perform a sinusoidal regression on the data in the above table.
Compare the equation obtained by regression to the one that you wrote in question 1.

3. Are you surprised that perihelion occurs in early January and that aphelion occurs in early July? Explain.

4. Use the equation obtained in question 2 to predict the distance from the Earth to the Sun on Valentine’s Day.

5. Suppose that the Earth’s orbit were highly elliptical instead of being nearly a perfect circle. Do you think that life as

we know it would still exist? Explain.
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Activity 4 — Sunrise/Sunset

The table at the right contains Da Number of
sunrise and sunset data for Date of tr)(e Sunrise Sunset | Daylight | daylight hours to
Toronto, Ontario for the year Year (hh:mm) | (hh:mm) | (hh:mm) | the nearest 100" of
2007. (Data obtained from an hour
Www.sunrisesunset.com.) January 1 0 7:51am 4:51pm 9:00 9

Questions January 15 14 7:48am 4:58pm 9:10 9.17

2. Use the provided grid to plot a Eegruary ;Z ;:géam g:gipm
graph of number of daylight cbruary -ooam -02pm
hours versus the day of the March 12 7:36am 7:19pm
year. First plot the points and March 26 7:11am 7:36pm
then draw a smooth curve April 9 6:46am 7:52pm
through the points. April 23 6:23am | 8:09pm

3. Write an equation that describes | May 7 6:03am 8:25pm
the curve that you obtained in May 21 5:48am 8:40pm
question 2. June 4 5:38am | 8:53pm

4. Use graphing calculator or a June 18 5:36am 9:01pm
spreadsheet to perform a July 2 5:40am 9:02pm
sinusoidal regression. Compare July 16 5:51am 8:56pm
the equation obtained by the July 30 6:04am 8:44pm
regression to the one that you : :
wrote in question 3. August 13 6:19am 8:26pm

5 U tion t dict th August 27 6:35am 8:04pm

- s€ your equation to predict the September 10 6:50am 7:39pm
number of daylight hours on
December 25. September 24 7:06am 7:14pm

6. Suppose that you lived in a town October 8 7:22am 0:48pm
situated exactly on the equator. October 22 7539am 6525pm
How would the graph of number | November 5 6:57am | 5:05pm
of hours of daylight versus day | November 19 7:15am | 4:50pm
of the year differ from the one December 3 7:32am 4:42pm
for Toronto? December 17 7:44am | 4:42pm

December 31 7:50am 4:50pm

1a
16 |
12 |

n -
512 |
o -
10
5> Br
4 |

_2 |

T a5 90 135 180 225 270 315 360
Time (Days)
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Example
On a Ferris wheel, the maximum height of a passenger above the ground is 35 m. The wheel takes 2 minutes to complete
one revolution and the passengers board the Ferris wheel 2 m above the ground at the bottom of its rotation.

(a) Sketch two cycles of the graph of height of passenger (in metres) versus time (in seconds).
(b) Write an equation of the graph that you obtained in part (a).

(c) How high is the passenger after 25 s?

(d) If the ride lasts six minutes, at what times will the passenger be at the maximum height?

Solution
(a) For this question, we shall assume that the passenger is The value of p can be also be found in other ways:
2 m above the ground at time t = 0. Method 1
35'“_ < 120 : ~h(t)=16.5sin(&(t - p))+18.5 and h(0)=2
= | +.16.5sin( (0~ p))+185=2
& 30f | i - - -
g orp | : .'.sin( p”jzz 185 .'.sin(ﬂ]z—l
S of i 60 16.5 60
© ! |
S np0 = .ohr - 030
G 1BFFp 60 2
: Method 2
8 .F
L_ﬁ 12¢ In mapping notation, the transformation is
2 r expressed as (x,y) — (& 'x+p,Ay+d). Since
T L

the image of (0,0) is (30,18.5).

III\/IIIIIIIIIIII

30 60 90 120 150 180 210 240 s (0)+p=30 = p=30
Time (Seconds)
Method 3 (By Bobby B.)
(b) Maximum Height = 35 m, Minimum Height =2 m The sine function is one-quarter cycle out of phase
A= (35 _ 2) 2-165 with the negative cosine function (see graph).

Therefore, p =120 + 4 = 30.
(c) h(25)=16.5sin(&(25-30))+18.5=14.2
o 1 - The passenger was about 14.2 m above the ground.
, which implies that 277(;) =120. ~w=2o (d) The passenger is at the maximum height whenever
h(t)=35. From the graph, we can see that this
occurs at t=60sand t=180s. Since h is periodic,
h(180+120)=h(180)=35 (the period is 120

~.h(t)=16.5sin(Z(t-30))+18.5 radians). Therefore, the passenger is at the
maximum height at 60 s, 180 s and 300 s.

d =(35+2)+2=18.5 (the average of the max and min)

Since it takes 120 seconds to complete one rotation, T =120.

Bu'[T=27zl
w

Finally, it’s obvious from the graph that if we use
y=sinx as the base function, p=30.

Note on Angular Frequency
In the above problem, we determined that @ = £ . Since the angular frequency  is equal to the number of cycles in
2 radians, the Ferris wheel completes & cycles in a span of 2z radians. Since the mdependent variable is time and is

measured in units of seconds, the Ferris Wheel completes Z revolutions in 2z seconds or - of arevolution in 1 second.

60 0

revolutions/s = 3(27) radians/s =& radians/s. Therefore, the Ferris wheel turns at a rate of %

& & radians/s.

1
Now 135

Hence, the angular frequency o =% determines the rate of rotation of the Ferris wheel.

Homework
Precalculus (Ron Larson)
pp. 306 — 309: #39-66, 73-80, 83-87, 95-98, 93
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MODELLING PERIODIC PHENOMENA — MORE PRACTICE

Questions

5.
K]

B

10.

Copyright ©, Nick E. Nolfi

Mike is waving a sparkler in a circular motion at a constant speed.

The tip of the sparkler is moving in a plane that is perpendicular to

the ground. The height of the tip of the sparkler above the ground,

as a function of time, can be modelled by a sinusoidal function.

At ¢t = 0, the sparkler is at its highest point above the ground.

a) What does the amplitude of the sinusoidal function represent in
this situation?

b) What does the period of the sinusoidal function represent in this
situation?

¢)  What does the equation of the axis of the sinusoidal function
represent in this situation?

d) If no horizontal translations are required to model this situation,
should a sine or cosine function be used?

To test the resistance of a new product to temperature changes, the
product is placed in a controlled environment. The temperature in
this environment, as a function of time, can be described by a sine
function. The maximum temperature is 120 °C, the minimum
temperature is —60°C, and the temperature at # = 0is 30°C. It
takes 12 h for the temperature to change from the maximum to the
minimum. If the temperature is initially increasing, what is the
equation of the sine function that describes the temperature in this
environment?

A person who was listening to a siren reported that the frequency of
the sound fluctuated with time, measured in seconds. The minimun
frequency that the person heard was 500 Hz, and the maximum
frequency was 1000 Hz. The maximum frequency occurred at

t = 0and # = 15. The person also reported that, in 15, she heard
the maximum frequency 6 times (including the times at ¢ = 0 and
# = 15), What is the equation of the cosine function that describes
the frequency of this siren?

. At one time, Maple Leaf Village (which no longer exists) had North

America’s largest Ferris wheel. The Ferris wheel had a diameter of

56 m, and one revolution took 2.5 min to complete. Riders could

see Niagara Falls if they were higher than 50 m above the ground.
Sketch three cycles of a graph that represents the height of a rider
above the ground, as a function of time, if the rider gets on at a height
of 0.5 m at # = 0 min. Then determine the time intervals when the
rider could see Niagara Falls.

The number of hours of daylight in Vancouver can be modelled by a

sinusoidal function of time, in days. The longest day of the year is

June 21, with 15.7 h of daylight. The shortest day of the year is

December 21, with 8.3 h of daylight.

a) Find an equation for n(#), the number of hours of daylight on the
nth day of the year.

b) Use your equation to predict the number of hours of daylight in
Vancouver on January 30th.

11. The city of Thunder Bay, Ontario, has average monthly temperatures
b hae vary between — 14.8°C and 17.6°C. The following table gives the
average monthly temperatures, averaged over many years. Determine the

equation of the sine function that describes the data, and use your
equation to determine the times that the temperature is below 0°C.

Month Jan. | Feb. | Mar. | Apr. | May | June
Lot -148|-127| -59 | 25 | 87 | 139
Temperature (°C) ) ' ) : i ;
Manth July | Aug Sop Oct Mo, D
Average

T o 176 165 1.2 56 27 1

12. A nail is stuck in the tire of a car. If a student wanted to graph a sine
B function to model the height of the nail above the ground during a trip
from Kingston, Ontario, to Hamilton, Ontario, should the student
graph the distance of the nail above the ground as a function of time or

as a function of the total distance travelled by the nail? Explain your

reasoning.
Extending

13. A clock is hanging on a wall, with the centre of the clock 3 m above
the floor. Both the minute hand and the second hand are 15 cm long,
The hour hand is 8 cm long. For each hand, determine the equation
of the cosine function that describes the distance of the tip of the
hand above the floor as a function of time. Assume that the time, # is

in minutes and that the distance, D(#), is in centimetres. Also assume

that £ = 0 is midnight.
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MODELLING PERIODIC PHENOMENA~-EVEN MORE PRACTICE

1. For several hundred years, astronomers have kept track of the number of
sunspots that occur on the surface of the sun. The number of sunspots
counted in each year varies periodically from a minimum of about 10 per
year to a maximum of about 110 per year. Between the maxima that
occurred in the years 1750 and 1948, there were 18 complete cycles.

(a) What is the period of the sunspot cycle? Sketch two sunspot cycles,
starting in 1948.

(b) Write four different equations (using base functions sin, cos, —sin,
—co0s) expressing the number of sunspots per year in terms of the year.

(c) How many sunspots would you expect this year?

(d) What was the first year after 2000 in which the number of sunspots was
about 35? When will it be a maximum?

2. An object hangs from a spring in a stable (equilibrium) position. The spring is —
pulled 1.5 m downward and the object begins to oscillate, making one complete
oscillation every 4 seconds.

(a) Write four different equations (using base functions sin, cos, —sin, —cos) that
describe the motion of this object. N T

(b) At what two times within one cycle is the spring 1 m below the equilibrium
position? Use these values to find the next two times it is in the same position.

3. ltis a well-established fact that average temperatures on Earth vary over periods of thousands of years.
Suppose that at one place, the highest average temperature is 25° C and the lowest is 15° C. Also, suppose
that it takes 20,000 years for the average temperature to change from the maximum of 25° C to the
minimum of 15° C. If in the year 2000 the average temperature was at a high point of 25° C, model this
change in average temperature over time in four different ways (using base functions sin, cos, —sin, —C0s).

4. A standard residential electrical outlet provides alternating current (AC) at a frequency of 60 Hertz (Hz) and
a root-mean-square potential difference of 120 Volts (V).

The frequency of 60 Hz means that the flow of electric charge reverses direction at a rate of 60 cycles per
second. Unlike a direct-current (DC) circuit, however, an AC circuit’s voltage is not constant. It actually
oscillates between a peak voltage of one polarity (e.g. 170 V) and the same peak voltage but of the opposite
polarity (e.g. —170 V). Thus, the root-mean-square potential difference of 120 V does not mean that the
current is delivered at a constant voltage of 120 V. Instead, it means that the time-averaged power delivered
is equivalent to the power delivered by a DC voltage of 120 V.

For a sinusoidal waveform, the peak voltage of an AC current is equal to the product of J2 and the root-
mean-square voltage. Use this to model the voltage change of the AC current supplied by a standard
electrical outlet. Once again, write four different equations (using base functions sin, cos, —sin, —cos).

5. When you board a Ferris wheel, you are 1 m above the ground. At the highest point of the ride, you are 30
m above the ground.

(a) If it takes 30 seconds for the ride to complete one full rotation, write four different equations (using base
functions sin, cos, —sin, —cos) that model your height above the ground at t seconds after the ride starts.

(b) Find at what two times within one cycle you are exactly 20 m above the ground.

(c) What is the linear speed at which you are travelling when you ride the Ferris wheel?

(d) How far have you travelled after the Ferris wheel has rotated through 10000 radians?
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Answers
1. (b) N(t)=50cos[2—ﬂtj+60, N (t) =50sin 2”(t+11j +60, N (t)=-50cos 27[(t+11J +60,
11 1\ 4 1l 2

N (t) = —50$in(i71[ (t —111]) +60  For all these equations, it is assumed that t = 0 corresponds to a
year in which the number of sunspots is at a maximum.

(c) Evaluate N (current year —1992), assuming t = 0 corresponds to 1992. e.g. evaluate N (2015-1992)
(Of course, there is nothing terribly special about 1992. Any year in which there was a max could be used.)

(d) The last maximum before 2000 occurred in 1992 (1992 — 1948 = 44, which is divisible by 11). Solve
N (t) =35, which has four solutions for 0 <t <22, t=3.67, t =14.67 and t=18.33. Using 1992 as the

baseline, the correct solution is clearly t =14.67 , which corresponds to the year 2007 (1992+14.67).
The first maximum after 2000 occurred in 2003, 11 years after the maximum of 1992.

TN /TN The time t = 0 corresponds to the year 1992.

.‘ ’ The solutions of the equation N (t)=35 are equivalent
, to the points of intersection of y=N(t) and y=35.

The points of intersection shown at the left correspond to
‘ ; the years (after rounding) 1996, 1999, 2007 and 2010.

\ ’ \ / Thus, the first year after 2000 in which the number of
sunspots was about 35 must have been 2007.

2. (a) h(t)=-1.5cos (%tj =-1.5sin (%(t +1)j = 1.5003(%0 + 2)) =1.5sin (%(t —1)j

D‘[osas 1] (32651}

(b) Use Desmos to solve the equation h(t) =-1.

3. A(t):5cos( z j+20 A(t):5sm( (t+10000))+20,
20000

A(t)=—5005[20

(t+20000) |, A(t)=-15sin| —— (t-10000) |+20
20000

4. Peak voltage = 12052 =170, V (t) =170sin (120zt), V (t) =170cos (120” [t ‘glon :

1

V()= —17Osin(1207r(t _ED’ v (t)=-170cos [120” (t +E10D

5. (a) h(t):—14.5003(%t)+15.5, h(t):—14.53in(%(t+7.5)j+15.5

h(t) :14.5cos(%(t —15)j+15.5 Ch(t) :14.53in(%(t —7.5))+15.5

d_C_2r(145) 207
T30 30

(b) Use Desmos to solve h(t)=20. (c) v= m/s =3m/s

(d) d =r6=14.5(10000) = 145000 m = 145 km
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TRIGONOMETRIC IDENTITIES

Important Prerequisite Information — Different Types of Equations

© Equations that are Solved for the Unknown

e.g. Solve x* —5x+9=3

hmm*—qmmfs
— T

y=x>—-5x+9

This means that we need to find the value(s) of x that make the left-hand-side equal to
the right-hand-side.

Geometrically, this equation describes the x-co-ordinates of the points of intersection I y=3
of the graphs of y=x?-5x+9 and y=3.

4
T

P ——
i ——

As can be seen in the graph at the right, there are only two points of intersection and S IR
hence, only two solutions x=2 and x=3.

© Equations that Express Mathematical Relationships (i.e. Functions, Relations)

e.g. f(x)=x>-x-1, x* +y? =16, c? =a’ +b? (Pythagorean Theorem)
e Such equations express a relationship between an independent variable (or a group il B S
of independent variables) and a dependent variable. For instance, in the graph of 2: §
f (x) = x> — x—1 shown at the right, any point lying on the curve must have co- S Xy
2

ordinates (x, x® — X —1) . Once the value of the independent variable x is chosen,
B8-F-6-654-3-2 JE 345678

the dependent variable y must have a value of x* —x—1.

Equations that express relationships are not solved in the same sense as equations

such as x* —5x+9 =3 are because there are generally an infinite number of
solutions. However, it does make sense to rewrite them in a different form.

For relationships between two variables in which the independent variable varies continuously, the equations
usually describe (piecewise) continuous curves.

If the independent variable is restricted to integral or rational values (i.e. whole numbers or fractions), the graphs
of such functions are a discrete collection of points in the Cartesian plane.

© ldentities
An identity is an equation that expresses the equivalence of two expressions.
. sing
e.g. (a+b)2:az+2ab+b2 cos? @ +sin®0=1, tanez—e
Ccos

The given equations are identities. For all values of the unknown(s) for which both sides of the equation are
defined, the left-hand-side equals the right-hand-side. That is, the expression on the left side is equivalent to the
expression on the right side.

For the identity (a+ b)2 =a’ +2ab+b?, there are no restrictions on the values of a and b.
For the identity cos” @ +sin®@ =1, there are no restrictions on the value of 6.
S sing . o
For the identity tané = poowg @ cannot take on values that make cosé =0 because this would lead to division by

zero, which is undefined.

Note

o Identities need not involve trigonometry!

e To discourage the mistaken notion that & is the only symbol that can be used to represent the independent variable of a
trigonometric function, other symbols will often be used in place of 6.

e Once an equation is proved to be an identity, it can be used to construct proofs of other identities.
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List of Basic Identities

Pythagorean Identities

Quotient ldentities

Reciprocal Identities

Forall xeR,
2 2
COS” X+sIn“ x=1
The following can be derived very easily from the
above identity. In mathematical terms, we say
that they are corollaries of cos? x +sin?x=1.
sin? x =1—cos? X
cos? x =1—sin?x
1+ tan? x =sec? x
1+ cot? x = csc? x

For all xe R such that

cosx =0,
sin x
tanx=——
COS X

The following identity can be
derived very easily from the
above identity.

For all xeR such that

sinx#0,
€OoS X
COtXZ_—
sin x

The following identities can be derived easily
from the definitions of csc, sec and cot.

For all xe R such that sinx=0,
1
CSCXZ_—
sin X
Forall xe R such that cosx =0,
1
SeCX=——
COoS X
For all xeR such that tanx=0,

1
CotX=——
tan x

Important Note about Notation

e sin®x is a shorthand notation for (sin x)?, which means that first sinx is evaluated, then the result is squared

&

e.g. sin’ % = (sin

2 T T 2 1Y 1
COS" —=|COS— | =| = | =
3 3 2 4

e This notation is used to avoid the excessive use of parentheses

e sinx?#sin?x

The expression sin x*> means sin (x2 ) that is, first x is squared and then “sin” is applied

Proofs of the Pythagorean and Quotient Identities
Prove the following identities. (Here L.S. means “left side” and R.S. means “right side.”)

Copyright ©, Nick E. Nolfi

the crux of a problem and
found a way to proceed,

the rest of the solution is
usually straightforward.

MCR3U9 Unit 3 — Trigonometric Functions

sind .
1. sin®*@+cos* @ =1 (Assertion) 2. tanf= 050 (Assertion)
Proof (Justification) y | r x y | Proof (Justification)
2 2 — o+ |+ + |+ |+
y
L.S.= (lj + (EJ (definitions of sin, cos) | (x,) s A ( J
r r : " \ ~—< (definitions of sin, cos)
2 2 N r X
- i U
s S
y2 + X2 " v
T ' c I
r2 x ly|r x|y |r y
=— (Pyth. Theorem) - + + X
-1 =tan@ (definition of tan)
=RS. CRUX of the =RS.
-~ L.S.=R.S. problem ..L.S.=R.S.
. ain2 29_1i danti Crux: a vital, basic, sing . S
.sin“ @ +cos” @=1 is an identity | [ o pivoral pol e - tang = S isan identity
Once you have identified
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Examples

Prove that each of the following equations is an identity

1. cotx=/2./1+tﬁ

sin x
Proof (Justification)

Assertions

Proof (Justification)

S~

" 1-cosX

sin? x
=1+cosx

Proof (Justification)

L.S. =cotX i -+ c0s® x+sin? x =1 (proved above in?
) / Assertions (p ) Lg o Sinx
= anx (reciprocal identity) COS x+sin’x 1 1-cosx
an .
COS X COS X l—C082 X . .
=———— (Pyth identit
=T (quotient identity) ~ cos’ X, sin?x 1 1 cosx (Pyt y)
(cosx) "Cos?X | Cos'X  cOS X _ (2—cosx)(1+cos x)
1 (cosx Justifications | --1+tan®x=sec”x - 1—cosX
:ix(sinx) Note =1+CosX
COS X e The final step is justified by one of the
=— quotient identities and one of the R.S.=1+cosx
sin x . A
oS X reciprocal |dent|_t|es. o _ LS =RS
=— o The nature of this proof is a little different sin? x
SIn X from the others because it does not begin - =1+cosX
LS.=RS. with the left side or right side of the given 1-cosx
cot x = 295X equation. Instead, it begins with an
sin x identity that has already been proved and
through algebraic manipulations, the
desired equation is derived!
Exercises

1. Prove the rest of the Pythagorean identities (i.e. the ones that have not been proved on pages 43-44).

y

2. Prove the reciprocal identities by using the definitions of sin, cos, tan, csc, sec and cot (i.e. sind = T cosd = T etc.).

Proofs that make use solely of definitions are known as proofs from first principles because they do not rely upon any

“facts” that are derived.

Logical and Notational Pitfalls — Please Avoid Absurdities!

1. The purpose of a proof is to establish the “truth” of a mathematical statement. Therefore, you
must never assume what you are trying to prove! A common error is shown at the right.
The series of steps shown is wrong and would be assigned a mark of zero! To write a
correct proof, the left and right sides of the equation must be treated separately. Only once
you have demonstrated that the left side is equal to the right side are you allowed to declare
their equality.

2. Keep in mind that words like “sin,” “cos” and “tan” are function names, not numerical
values! Therefore, you must not treat them as numbers. For example, it makes sense to write
sin2x

sin x

but it makes no sense whatsoever to “cancel” the sines. Many students will write

statements such as =2, which are completely nonsensical. First, dividing the

numerator and the denominator by “sin” is invalid because “sin” is not a number JLOSX _ cosx
sin 2x sin2 sinz / sinx sinx
Furthermore, a simple test reveals that #2: G ) 2 =2, Clearly,
sinx sinz  sinZ ]/ J_

J2#2. Therefore, the assertion that was made is false!
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Suggestions for Proving that Equations are Trig ldentities

1. Write the given expressions in terms of sin and cos.

2. Begin with the more complicated side and try to simplify it.

3. Keep a list of important identities in plain view while working.

4. Expect to make mistakes! If one approach seems to lead to a dead end, try another. Don’t give up!

Homework

Do a representative selection of questions 1 to 20.

b) sIn2 X
d) tan2 X
fH1- sin® x
h)1-— cos’ x

a) cos xtan x
2
c) cos x
e) tan xsin x
g) sin x tan xcos x
: 2 2
i) sin”" x+cos x

2. Prove each identity.
sin x

=Ccos x

2
b) sin xcos xtan x=1—cos” x

1 —cos’ x
) ——=sinx

2 sin xcos x _ 1
tan x

e .
lanz X Sln2 X

2 2 2
f) 2sin“x—1=sIn"x—cos x

e 1+

—cos x=sin x tan x

cos x
h) sin x+ tan x= tan x (1 + cos ¥)
1 2
i) 72=1+lan X
1—sin"x
5 2 2 2
j) cos” x—sin" x=2cos” x—1
2 2 2
k) sin x+ cos x+tan x= 12
cos x
sin x _ tanx
sin y+cos x 1 +tanx
1+tan’ x 1
m) z_ . 2 2
l—tanx cos y—sin"x

1. State an equivalent expression for each,

3. Use a graphing calculator to show that
each equation appears to be an identity.
Then, prove that the equation Is an ldentity.
a) cos x tan x =sin x

b) sin x + tan x = tan x (1 + cos x)

¢ 1+ tan’y= 12
cos'x
z 2 2
d)cos" x=sin" x+ 2cos x— |
1,12
l+siny 1-sinxy cpsx

f) tan’ x —sin” x = sin” x tan’ x

4. Prove each identity.
g Lo, L _
) z 2 2
sinf“x cos"x sin” xcos x
b) tan x+ 1 = —1—
tan x  sin xcos x
9 1 N 1 _ 22
l—cosx l+4+cosxy sin‘y

d) (sin x+ cos §)° =1 + 2sin xcos x

a) (]—coszfﬁ(l+ 12 )=1

tan"x
1 + 2sin xcos x
f) ————————— =sinx+cosx
sin X+ cos x
sinx 1+cosx
9 - =0
1 —-cos x sin x

h) sin® x —sin' x = cos” x — cos' x

) (1 +tan® 2)(1 — cos’ x) = tan’ x
— cos’x

(sin x+1)°

sinxy—1 _
sin x+ 1

5. Conical pendulum A conical pendulum is so named because of the
cone-shaped path traced by the bob and the wire. The length of the
pendulum wire, L, is related to the angle, x, that the wire makes with
the vertical by the formula L = — g

°cos x
to gravity and @ Is the angular velocity of the bob about the vertical, in

radlans per second. Another way of expressing the relationship is the

. where g Is the acceleration due

an x
formula L = gtz—
@'sin x o L
a) Verify that the two formulas are equivalent when x= % \
tan x emme A
b) Prove that —% — = gz Is an Identity. \
®cosx  @’sin x B )

6. Kicking a ball When a ball is kicked from the ground, the time of flight
of the ball can be determined by the formula
p 2y;sin X

g
[n this formula, # seconds Is the time of flight, %, metres per second is the
initial velocity of the ball, x is the angle that the path of the ball makes with
the ground when the ball is kicked, and gis the acceleration due to gravity.
a) Write another formula that determines the time of flight of the ball.
b) Equate the trigonometric expressions from the given formula and the
formula you found in part a) to write an equation.
¢) Use a graphing calculator to check if the equation appears to be an identity.
d) If the equation appears to be an identity, prove that it is an identity.
) The formula for the horizontal distance, & metres, travelled by a ball
2v,’sin x cos x

g
Write another formula for the horizontal distance.
f) Equate the trigonometric expressions from the two formulas in part e) to
write an equation. Use a graphing calculator to check if the equation appears
to be an identity.
g) If the equation appears to be an identity, prove that it Is an identity.

kicked from the ground is d=

7. Prove each identity.
4 4 2 2
a) sin x—cos x=sin" x—cos x
4 2 2 1
b) sin' x+ 2sin” x cos” x+cos x=1

sinx—6sin x+9 _sinx-3

° sin x+ 3

P
sin“x—9

4 2
) > —5=4tan"x-1
cos  x
3
€os X—sin x—cos x 2
d) =sin x—tan x
cos X

8. Find a counterexample to show that each equation is not an identity.

[ 2
a) sin x= sin” x

2
b) cos x=,cos x

9. Technology Use radian measure for the following.

a) In the same viewing window, graph y =sin x and y=x for -0.2 < x < 0.2
and —0.2 < y < 0.2. Do the graphs suggest that sin x = x Is an identity?

b) Repeat parta) for—2<x<2and-2<y<2.

¢) Write a conclusion about verifying identities graphically.

following identity.
cos @ _ 1l+sinf
1—sin @ cos 6

an identity or not.
_ cos x(1 +sin x)

10. Application Use the x, y, and rdefinitions of sin x and cos x to prove the

11. Inquiry/Problem Solving Determine if each of the following equations is

12. Communication Explain why you think that the equation

(a+ B =& + 2ab+ b can be called an algebraic identity.

13. Algebra If x = acos 8 — bsin fand y = asin 8+ bcos 6, show that
x2+y2=az+b2.

14. Since 1 — cos’ x=sin’ x is an identity, Is J1 = cos” x =sin xalso an

identity? Explain how you know.

tan x sin x
2 cos x
tan x sin x

b)
tan x

+cos x=tan x+sin x

15. a) Show graphically that sin® x + cos® x = (sin x + cos x)z Is not an

identity. Explain your reasoning.
b) Explain how the graph shows if there any values of x for which the equation

is true.
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16. Write a list of helpful strategies for proving trigopnometric identities, and
describe situations in which you would try each strategy. Compare your list
with your classmates’.

17. Formulating problems a) Create a trigonometric identity that has not
appeared in this section.

b) Have a classmate check graphically that your equation may be an identity. If
s0, have your classmate prove your identity.

18. Technology a) Use a graph to show that the equation

, .2 _'9 .lll‘(l' ® o 3 e

_ LIRS (A 8 "——— SAIS ejnuo}
cosx—1_ cos x— 1 appears to be an identity. I ( = ) 52
cos x+ 1 . ) ) QSO0 @ s
b) Compare the functions defined by each side of the equation by wegle's [4g ustg usBg 500 g o Dl @

of values. Find a value of x for which the values of the two functions are

Selected Answers “aapeSou

JaADU S IpIS puey-13a] M) JoN] "pi Ainuap ue (e Aipuap)
; sk CHES RN T > \

ue jou (q Aipuapi ue (@ "L SR # SH'T T = U_Z ,S00

‘%- = fz- $03 @ SHY *# SH'1 f% = (%-);”"’J‘\

@cor

Q. uis—1 09 s00—1 (g9 us (e Lea {few ssamsuy °

not the same. Have you shown that the equation is not an identity? Explain.

tan xsin x _ tan x—sin x

20. Prove that .
tan x+sin x tan xsin x

Exercises on Equivalence of Trigonometric Expressions
Complete the following table. The first row is done for you.

Justification using Right Triangle or

Identity Graphical Justification Angle of Rotation
since sin(%—x)=sin(~1(x—%)), the graph of A
y =sin(Z—x) can be obtained by reflecting zx
y =sinx in the y-axis, followed by a shift to the
right by 7. Once these transformations are applied,
lo and behold, the graph of y =cosx is obtained! |
sin(3 — X) =cosx gL X ¢
BC
COSX=——
‘ AC
4 . BC
sin(Z£-x)=——
(2 ) AC
~.cosx=sin(Z—-x)
cos(% —x) =sinx
cos(5 +6) =-sind
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Identity

Graphical Justification

Justification using Angles of Rotation

sin(z—6)=sin@

cos(z — ) =—cosé

sin(—0) =-sin@

cos(—6) =cosd

List of Important Identities that can be Discovered/Justified using Transformations

1. Read the summary on page 48 (i.e. the next page).

2. Do the questions on page 49 for homework.
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Key Ideas

* Because of their periodic nature, there are many equivalent trigonometric expressions.

* Two expressions may be equivalent if the araphs created by a graphing calculator of their corresponding functions
coincide, producing only one visible graph over the entire domain of both functions. To demonstrate equivalency
requires additional reasoning about the properties of both graphs.

Need to Know

* Horizontal translations that involve multiples of the period of a trigonometric function can be used to obtain two
equivalent functions with the same graph. For example, the sine function has a pericd of 27, so the graphs of
f(6#) = sin & and f(#) = sin (# + 247) are the same. Therefore, sing = sin (6 + 27).

e Horizontal translations of%that involve both a sine function and a cosine ¥

function can be used to obtain two equivalent functions with the same 29 -

. ) s ) - ¥=sinf y=cost
graph. Translating the cosine function 3 to the right (f(f}) = cos (ﬁ" - 3)) /?(\ 1/ m
results in the graph of the sine function, f(#) = sin 4.

R HRUEQN

Similarly, translating the sine function 'Zito the left (f(ﬁ*) = sin (H + %)) i
results in the graph of the cosine function, f(#) = cos #. 2]

sin # = cos (H - %)
sin (ﬁ' - %) = cos§
* Since f(#) = cos @ is an even function, reflecting its graph across the ¥

w=axis results in two equivalent functions with the same graph. 2]
¥ =cos {——6)] y=cosf

NINAVAV
P

_2_

cosf = cos (—0)

e f{#) = sing and f(#) = tan & are y
odd and have the property of y L dinl@ 2+ y = sin (—6)
rotational symmetry about the origin.

Reflecting these functions across both
the x-axis and the y-axis produces the
same effect as rotating the function -
through 180° about the origin. Thus, y =—sinf
the same graph is produced.

y=tant y=tan (=t}

sin (—#) = —sing
( ) y=—tanf

tan (—6) = —tan#

* The cofunction identities describe trigonometric relationships between the complementary angles # and (% — ﬁ)
in a right triangle.
sin# = cos z_ B)
(3

—sin(T _
cos@—sm(2 9)

w .
lanB—COt(E—H)

* You can identify equivalent trigonometric expressions by comparing principal angles drawn in standard position

in quadrants 11, lll, and IV with their related acute angle, 8, in quadrant 1.
Principal Angle in Quadrant Il | Principal Angle in Quadrant lll | Principal Angle in Quadrant IV
sin (7 — #) =sing sin (7w + H) = —sing sin (2@ — #) = —sing
cos (7w — 8) = —cosd cos (w + ) = —cos cos (2w — @) = cos 6
tan (m — #) = —tané@ tan (w + A) = tan @ tan (2@ — 6) = —tanéd
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Homework

1. a) Use transformations and the cosine function to write 6. Show that each equation is true, using the given diagram.
three equivalent expressions for the following graph. T
a) cos E—O = sin {}
y=x
Y »p
0
i w Ym 2 Q
2 2 0,
X
y=cosf
b) Use transformations and a different trigonometric function
to write three equivalent expressions for the graph.
2. a) Classify the reciprocal trigonometric functions as odd or even, and
then write the corresponding equation. T
orresp & cd .. b) cos| —+0 )= —sinf
b) Use transformations to explain why each equation is true. 2
3. Use the cofunction identities to write an expression that is equivalent p N
to each of the following expressions.
m T T Q
a) sin— c¢) tan—— e) sin—
6 8 8 \ x
™ 5T ™
b) cos— d) cos — f) tan —
12 16 6
4. a) Write the cofunction identities for the reciprocal trigonometric
funcrions. +
b) Use transformations to explain why each identity is true.
5. Wirite an expression that is equivalent to each of the following 7. State whether each of the following are true or false. For those that are
expressions, using the related acute angle. false, justify your decision.
7T 57T 13w a) cos (6 + 27) = cosf d) tan (7 —0) =rtanf
a) sin ? c¢) tan T e) sin 3 -
b) sin (m — @) = —sinf €) wt(—+8)=tan8
b 137 9 1l H 5T 2
cos cos an . .
12 6 3 o cosfl = —cos (0 + 47) f) sin (0 + 27) = sin (—6)
Answers s (o + Zpoo
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COMPOUND-ANGLE IDENTITIES

Question

If we know how to evaluate the trig ratios of the angles x and y, can we use these values to evaluate quantities such as
sin(x+y) and sin(x—y)? With a little hard work, we shall see that the answer to this question is “yes!”

Expressing sin(x+y) in terms of sin X, sin y, cos x and cos y
By the Law of Sines,

sin(x+y) sin(z/2—-x) d sin(x+y) sin(z/2-y)
b a an b c

Using the cofunction identity sin(;z/2 — 0) =C0sé, the above equations can be written

sin(x+y):cosx M and sin(x+Y)
b a b
By multiplying both sides of equations (1) and (2) by b, we obtain

COS
=55 (9
C

bcos x
a

bcosy

sin(x+y)=

@)

sin(x+y)= 4)
bcos x N bcosy

Adding equations (3) and (4), we obtain 2sin(x+y)= " .

.'.sin(x+y)=%+bczo%
Si”(X + y) = bCZC;CSX + abzc;)Cs y (expressing with a common denominator)
. b(ccosx) b(acosy
ssin(x+y)= (2ac )+ (Zac )
. 1({(AD+DC)DB (AD+DC)DB
.'.sm(x+y):E ( — ) +( — )
..‘Sin(xw):% (AD)(DB) , (DC)(DB) , (AD)(DB) (DC)(DB)
ac ac ac ac
[ ((AD)(DB DC)(DB
.'.sin(x+y)=% 2[( ;((: )]+2(( Ciﬁ )H
. AD)(DB DC)(DB
.'.sm(x+y)=( ;((: )+( a)1£ )

e (222

.'.sin(x+ y)=sinxcosy +cosxsiny

j (since b=AD+DC and ccosx=acosy=DB)

sin(Xx+ y)=sinxcosy +cosxsiny
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Using sin(x+y)=sin x cos y + cos x sin y to Derive many other Compound-Angle Identities

sin(x—vy) cos(Xx+Y) cos(x-y)
=sin(x+(-y)) =sin(z/2-(x+Y)) = cos(x+(-y))
=sinxcos(—y)+cosxsin(-y) =sin((z/2-x)-y) =cosxcos(—y)—sinxsin(-y)
=sinxcosy +cosx(-siny) —sin(z/2-x)cos(~y)+cos(z/2-x)sin(-y) ~ =Sin xcosy —sinx(-siny)
=sinxcosy —cosxsiny = C0SXCOS  +in X(—sin ) =COSXCOS y +sinxsiny

=C0SXCOS Yy —sinxsiny

tan(x+y) tan(x—y) cot(x+y) cot(x—vy)
_sin(x+y) =tan(x+(-y)) 1 =cot(x+(-y))
cos(x+y) _ tanx+tan(-y) tan(x+y) _ cotxcot(-y)-1
_sinxcosy+cosxsiny 1-tan xtan(-y) - ~ cotx+cot(-y)
COSXCOS Y —sinxsin y tanx -+ (~tan y) (1tar1;<n+ t;r:]y j cotx(~coty) —
smxcosy+cosxsmyj 1-tanx(—tany) ) y cotx+(—coty)
—tanxtany
COSXCOS Y _
- tan x — tan = - -
~ (cosxcosy —sinxsin = ! tanx+tany - “ootxeaty -1
y y 1+tanxtany cotx —coty
COSXCOS Y
—1(cotxcoty+1
sinxcosy  cosxsin ( cotxcot j - ( y+)
y yj = cotx—coty
COSXCOSY COSXCOSY
B cosxcosy sinxsiny (COIX cot j :_fz)g;i(oii;i,)
COSXCOSY COSXCOSY cotxcoty—1
\cotxcoty _cotxcoty+1
sinx sin = B
(er] cotx+coty coty —cotx
~ \cosx cosy -
= : : cotxcot y
L[ sinx(siny )
cosx ) cosy _ Cotxcoty -1
anx+tany cot X +cot y
1—tanxtany
Summary
el tanx+tany
sin(x +y)=sinxcosy +cosxsiny 1-tanxtany
tan x —tan y
_ _ : tan(x—y)=———2>
sin(x — y)=sinxcosy —cosxsin y (x-v) 1+ tanxtany
cos(X+y)=Cosxcosy —sinxsiny cot(x+y)=COttXC—0tyt_1
o cot X +cot y
cos(x—y)=cosxcosy+sinxsiny cot(x—y)—COtXCOty+1
cot y —cot x
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Using Compound-Angle Identities to Derive Double-Angle Identities

sin2x C0S2X

=sin(x+x) =cos(X+X)

=SiN XCOS X + COS XSin X =C0S XCOS X —Sin Xsin X

COS2X
=cos® X —sin? x

:(l—sin2 x)—sin2 X

COS2X
=cos’ X —sin® x

— cos? X — (1— cos? x)

— 2¢ij _ 2 )
= 2sinXcosx =C0S X—=SIn" X =1-2sin?x =2cos? x—1
tan 2x cot 2x
=tan(X+X) =cot(x+Xx)
_ fanx+tanx _cotxcotx—-1
1-—tan xtan X cot x + cot X
_ 2tanx cot’ x—1
1—tan®x ~ 2cotx
Summary
Sin2x = 2sin Xcos X 2tan x
) ., tan2x=————
COS2X =C0S” X —SIn‘ X 1-tan” x
cos2x =1-2sin” x cot2 x—1
5 Cot2X = ———
€cos2Xx=2cos” x—1 2cot x

Examples

1. Use compound-angle identities to evaluate each of the following. Exact values are required. Do not use calculators!

(@) sin75° (b) cos255° (c) tanl05°
sin75° €0s255° tan105°
=sin(45°+30°) =cos(315°-60°) =tan(45°+60°)
=sin(z/4+7/6) =cos(7z/4-7/3) =tan(z/4+ z/3)
=sin(z/4)cos(7/6)+cos(x/4)sin(7/6) =cos(7xz/4)cos(x/3)+sin(z/3)sin(7z/4) _ tan(7z/4)+tan(z/3)
1(43) 1(1 = cos(z/4)cos(/3)+sin(x/3)(-sin(z/4)) 1-tan(7z/4)tan(7/3)
= — |+ —=| —
{2\ 2 \/E[ZJ 1 1) \/§[ 1} _ 1+
= - |+—| —— =
_\B+1 2\2) 2\ &2 1-1(\3)
S22 _1-\8 1443
22 1-\3
Quick Check
341 >0 as we would expect for sin75° 3+1 =0.9659 sin 75°=0.9659
2.2 22
1-\3 <0 as we would expect for cos255° % =-0.2588 €0s255° = —0.2588
22 22
143 <0 as we would expect for tan105° L+3 =-3.732 tan105° =-3.732
1-43 1-+3
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2. Use double-angle identities to evaluate each of the following. Exact values are required. Do not use calculators!
(@) sin15° (b) c0s22.5°

Setting 0=§ in cos20=1-2sin’ @, we obtain

cosx:1—25in2§

Solving for sin g we obtain

. X 1-
sinX = + COS X
2 2

Setting Ozg in cos28 =2cos’ & —1, we obtain
cosx=2coszg—1

. X .
Solving for cosE , We obtain

X cosx+1
cos—=+=
2 2

Therefore, Therefore,

sin150 = ¢ |1~ 90830° c0s22.50 = ¢ [C0845°+1
V2 2

-+ 1—\/§/2 4 1/\/§+1
- 2 _‘\} 2

1(2-3 1(14+2
2l 2 2l 2
4 2\/5
2-43
=% 2 Since 22.5° is in quadrant I, cos22.5° = L2

22

Since 15° is in quadrant I,

sin15° = “2_ﬁ=%\/2—£

2
3. Prove that the following equations are identities.
sin2x 4 -
@) T cosox tan x There are 3 different (b) cos®@—sin” 8 =cos26
identities for cos2x. Proof
Proof

sin2x cos2x =2cos’ x—1 was L.S.=cos*&—sin* @
LS.=—— chosen because it leads =(cos® @ +sin” @)(cos’ @ —sin” @) (Factor diff. of squares)
1+ cos2x to the most convenient
SX

__2sinxco simplification of the =1(cos’ @ -sin’ @) (Pythagorean identity)
1+2cos?x—-1 denominator. oSO —sin? O
_ 2sinXCos X — 0520
~ 2cos’ X \ —
sinx Divide top and R.S. = cos 26
=22 bottom by 2cosx.
COS X -~ LS. =R.S.
=tanx . - i o
..C0oS™ @—sin” @ =cos20 is an identity.
R.S.=tanx
~.LS.=R.S.
sin 2x

.. —————=tanX is an identity.
1+ cos2x
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4. Use counterexamples to prove that the following equations are not identities.

(@) sin(x+ y)=sin X+siny (b) cos46 —cosé =cos3d
Proof Proof
_r Let 0=2
Let x=y= 2 2
L.S.:sin(x+y) L.S.=c0s46 —cosé
VA T
=sin(£+£j =cos(4(ED—cosE
4 4
T
. (7 =C0S 27 —COS—
=sin| = 2
5)
=1 =008272'—COS%
R.S.=sinx+siny -1-0
=sinZ +sinZ =1
4 4 R.S.=cos36
_ 1.1
_«/5 > :005(3(%D
2 ;
J2 = cos 2
-2 _0
w12 w1#£0
LS. #R.S. LS. #R.S.
sin(x+ y) =sinx+siny is not an identity. ..€0s46 —cosd =cos360 is not an identity.

5. Use identities that we have learned to derive an identity for sin3@ that is expressed entirely in terms of siné .
sin360
=sin(20+6)
=sin 26cos @ + cos26sin &
=(2sin@cos@)cos O +(1-2sin® 0)sin @
=2sin@cos’ @ +sind—2sin’
=2sin 9(1—sin29)+sin9—25in36
=2sin@—2sin® @ +sin@ - 2sin* @
=3sin@—4sin’ 6

-.sin30=3sin@—4sin’ @ is an identity.
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In Summary

Key Ideas

» A trigonometric identity states the equivalence of two trigonometric expressions. It is written as an equation that
involves trigonometric functions and the solution set is all real numbers for which the expressions an both sides of the
equation are defined. As a result, the equation has an infinite number of solutions.

* Some trigonometric identities are the result of a definition, while others are derived from relationships that exist
among trigonometric ratios.

Need to Know

* The following trigonometric identities are impartant for you to remember:

Identities Based Identities Derived from
on Definitions Relationships
Reciprocal Identities Quotient Identities Addition and Subtraction Formulas
cec x — .‘l tan x = M X sin (x + ¥) = sinxcosy + cosxsin y
sin x cosx sin (x — y) = sinxcosy — cos xsin y
Cos x . .
sec x = ot x = — Cos (X + y) = cosx cosy — sinxsiny
Cos X sin x . .
€os (x — ) = cosx cosy + sinxsiny
cotx = Pythagorean Identities tan x + tany
tan x - 5 tan (x +y) =————
sin® x + cos*x = 1 1T —tanxtany
+ 2x = sec? tan x — tan
1+ tan®x = sec* x tan(x—y)=1+t : Y
1+ cot? x = s x anxtany

Double Angle Formulas

5in 2x = 2 sinx cos x
cos 2x = cos? x — sin® x
=2cos?x — 1
=1-2sin"x
2 tan x

tanx = ———=—
1 —tan*x

* You can verify the truth of a given trigonometric identity by graphing each side separately and showing that the two
graphs are the same.
* To prove that a given eqguation is an identity, the two sides of the equation must be shown to be equivalent. This can
be accomplished using a variety of strategies, such as
« simplifying the more complicated side until it is identical to the other side, ormanipulating both sides to get
the same expression
» rewriting expressions using any of the identities stated above
+ using a common denominator or factoring, where possible
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Homework #1

4.

Determine the exact value of each trigonometric ratio.

m
a) sin 75" ¢ tan EE) e) cos 105°
i 237
b 15° d) sin| —— —
) cos 15 ) sin ( 12) f) tan 12

PRACTISING

1.

12.

Copyright ©, Nick E. Nolfi

Use the appropriate compound angle formula to determine the exact
value of each expression.

o m m T

i + =+ = —=
a) sm('lT 6) c) tan(4 'lT) €) tan(3 6)
o o T

_—— H E—— +_
b) cos (’lT 4) d) sm( 2 3)

. Use the appropriate compound angle formula to create an equivalent

expression.

a) sin (7 + x) e) sin (x — )

) Cos (x + Tl')
2

b) cos (x + %ﬁ) d) tan (x + ) f) tan (27 — x)

. Use transformations to explain why each expression you created

in question 6 is equivalent to the given expression.

Determine the exact value of each trigonometric ratio.

117 7T

4] —

a) cos75 € cos 2 €) tan o

13 —5T

150 .22

b) tan (—15°) d) sin 2 f) tan 5
Ifsinx = gmdsiny = —%,0 < x < %,%ﬂ << y < 27, evaluate
a) cos (x+ y) o cos (x—y) e) man (x +y)
b) sin (x + y) d) sin (x — y) f) tan (x — y)
@ and 3 are acute angles in quadrant I, with sin a = 215 and

cos B = 1—53 Without using a calculator, determine the values of
sin (@ + B) and tan (& + ).

Use compound angle formulas to verify each of the following

cofunction identities.
. o
b) cosx = sm(— - )
2

x5 )
a) sinx = cos| — —
2
Simplify each expression.

a) sin (m + x) +sin (7T — x) b) cos(x+ g) - sin(x+ %)

13.

14.

15.

. .osin( f+g) +sin(f—g)
SmpfY (o (74 9) + cos (/- '

Create a flow chart to show how you would evaluate cos (2 + &),

given the values of sin and sin 4, if both z and b e [0, g]

List the compound angle formulas you used in this lesson, and look
for similarities and differences. Explain how you can use these
similarities and differences to help you remember the formulas.

Extending

16.
17.

18.

19.

D+ ;-
Prove sin C' + sin D = ZSin(( 5 D) cos(c 5 D).

Determine cot (x + y) in terms of cot x and cot y.

. cC+ D cC—D
Prove cos C' + cos D = 2 cos ) cos 5 .

>+ ;-
Prove cos C — cos D = —23in(( 5 D) sin(c 5 D).
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Homework #2

1. Express each of the following as a single trigonometric ratio.

a) 2 sin 5x cos 5x
b) cos®@ — sin’ 0

¢ 1 — 2sin®3x

2 tan 4x
1 — tan® 4x
e) 4 sin@ cosf

d)

0
f) 200525— 1

2. Express each of the following as a single trigonometric ratio and then

evaluate.

a) 2 sin 45° cos 45°

b) cos® 30° — sin® 30°

LT T
¢) 2sin——cos ——
12 12

T ., T
d) cos® — — sin* —
12 12

e) 1 — 2sin23—ﬂ—
8

f) 2 tan 60° cos® 60°

3. Use a double angle formula to rewrite each trigonometric ratio.

a) sin 40
b) cos 3x
c) tanx

d) cos G
€) sinx

f) tan 50

5. Determine the values of sin 268, cos 26, and tan 26, given

tanf = —;;and'gsasw.

7. Determine the values of sin 26, cos 26, and tan 26, given

12.

13.

15.

a) Use a double angle formula to develop a formula for sin 4x

in terms of x.
b) Use the formula you developed in part a) to verify that
Z;T = sin S;I .
Use the appropriate compound angle formula and double angle
formula to develop a formula for
a) sin 30 in terms of cos 0 and sin 0
b) cos 36 in terms of cos # and sin @
¢) tan 36 in terms of tan @

sin

The angle x lies in the interval % = x =1, and sin’* x = g Without

using a calculator, determine the value of

. x

a) sin 2x ) cos
2
b) cos 2x d) sin 3x

Describe how you could use your knowledge of double angle formulas
to sketch the graph of each function. Include a sketch with your
description.

a) f(x) = sinxcosx

b) f(x) = 2cos’x

9 f(x) _ tan x

1 — tan’x

4 m
cosfl = ——and 5 =60 = 7. . . . .
552 16. Eliminate A from each pair of equations to find an equation
8. Determine the value of # in the following equation: that relates x to y.
B 2tanx— wan2x+ 22 =1 — tan 2x tan® x. a) x=rtan2d,y= tnA o x=cos2A,y = cscA
. . T T 1 b) x = cos 24,y = cos A d) x = sin 24, y = sec 44
9. Jim needs to find the sine of e If he knows that cos i= v how ) y ) Y
. . m Y
can he use this fact to find the sine of 8? What is his answer?
. . ™ 7 _\V3
10. Marion needs to find the cosine of 5. If she knows that cos = = ==,
. . m .
OW can she use this ract to fn 1€ cosine of -5« 14l 18 Der answers
h h this fact to find tf f 152 Whatis h ?
L
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TRIG IDENTITIES — SUMMARY AND EXTRA PRACTICE

1. Complete the following statements:

(a) Anequation is an identity if

(b) There are many ways to confirm whether an equation is an identity. List at least three such ways.

(c) There is a very simple way to confirm that an equation is not an identity. In fact, this method can be used to show

the falsity of any invalid mathematical statement. Describe the method and use it to demonstrate that the equation

Jx+y =[x +.[y is not an identity.

2. Mr. Nolfi asked Uday to prove that the equation T co

the following response? Explain.

sin2x
———— =tanx
1+ cos2x
_2sinXxcosXx
"1+2cos? x—1
2sin Xcos X
So—————=tanx
2C0s° X

(thsinxj(cosx)
S == == |=tanx
2 J\ . cosx J\ cos X
~.1(tan x)(1) =tan x

s tanx =tanx

=tanx

n2x

o tan x is an identity. What mark would Uday receive for

3. List several strategies that can help you to prove that an equation is an identity.
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Justify each of the following identities by using transformations and by using angles of rotation.

(@) sin(—x)=-sinx (b) sin(z/2—x)=cosx (©)
(d) cos(—x)=cosx (e) cos(z/2—x)=sinx ®
(9) tan(—x)=—tanx (h) tan(z/2-x)=cotx (i)

Prove that each of the following equations is an identity:

cos’ ) — sin’ 6

a)

b) tan’x — sin?

2 2.
¢) tan“x — cos x =

1

cos> @ + sin 6 cos @

=1—rtnf

x = sin® x tan® x

1
cos® x

1 2

2
— 1 —cos"x

d)

+ =3
1 + cos@ 1 —cosf sin“ @

Prove that each of the following equations is an identity:

a) Cosx tan’

b) sin®f + cos* @

¢ (sinx + cos x)(

d) tan’B + cos* B + sin® B =

x = sin x tan” x

= cos’ § + sin* 6
tan® x + 1) 1 1

tan x COSX  sinx

1

cos” 3

Copy and complete the following Frayer diagram:

Definition Methods of Proof

Examples

wﬁtiu

Mon-Examples

sin(x+7)=-sinx
CoS(X+ ) =—COSX

tan(x+ ) =tanx

Express 8cos* x in the form acos4x+bcos2x+c. State the values of the constants a, b and c.

Give a counterexample to demonstrate that each of the following equations is not an identity.

a) Cosx —
cos X

¢ sin (x + y) = cosxcos y + sin xsin y

b) 1 —tan’x = sec’x d) cos2x =1 + 2sin’x

Copyright ©, Nick E. Nolfi

10. Demonstrate graphically that each of the equations in 9 is not an identity.
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SOLVING TRIGONOMETRIC EQUATIONS

Introduction — A Graphical Look at Equations that are not Identities
Let “L.S.” represent the expression on the left side of an equation and let “R.S.” represent the expression on the right side.

An Equation that is an Identity: sin®x+cos® x =1 An Equation that is not an Identity: 2sinx =1

e If an equation is an identity, the expression on the L.S. | e If an equation is not an identity, the expression on the

is equivalent to the expression on the R.S. of the
equation. That is, the equation is satisfied for all real
numbers for which the expressions are defined.

If an equation is an identity, then the graph of “y =
L.S.” is identical to the graph of “y =R.S.” The graphs
intersect at all real values for which the expressions are
defined. In other words, every such value is a solution

L.S. is not equivalent to the expression on the R.S. The
expressions may agree for some real values but they do
not agree for all values.

If an equation is not an identity, then the graph of
“y=1L1.S.” is not identical to the graph of “y = R.S.”
The expressions agree only at the point(s) of intersection
of the two graphs. The number of points of intersection

to the equation.

-

,| y=sin’ x+cos’x

is equal to the number of solutions of the equation.

I+

S e
BEEAL:

1008 6 4 -2 246 8 10

e
LT \/ EZ \/ \/

=2sinx
y 2.5

- 3l

Examples

1. Use an algebraic method to solve the trigonometric equation 2sinx—1=0. State all solutions in the interval
—4x < x<4x. Verify the solutions graphically. (Note: An alternative notation for writing the interval -4z <X <4rx

is [—47r, 47r] . The square brackets indicate that the endpoints are included in the interval.)

Solution
26inx—1=0 If your calculator is in “degrees mode,” this will produce an answer of 30°. In
-~ 2sinx =1 “radians mode,” an answer of about 0.5326 is obtained. Naturally, since % isa
sinx = 1 trig ratio of a special angle, you should be able to state the exact answer x = % .
2 1 To state the other solutions in the interval [—47r,47r] , use the concept of related
sox=sin™ (E] angles and a graph.
SoX= z YA
6 lir
As shown in the diagram at the right, 5z 6
6
5 - . . . .
o % and % are the principal-angle solutions to the equation (since the sine % :
function is positive in quadrants | and 1) \/ X
e All the other solutions in [—47r,47r] are found by taking all angles in this
. . . 5
interval that are coterminal with % and %

Therefore, the solutions in the interval [-47,47] are

Copyright ©, Nick E. Nolfi
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The following is a graphical verification of the solutions given above.

2. Solve for x given that x €[0,27].

(@) 2sec’x—3+tanx=0

Solution

~.2(tan® x+1)-3+tanx =0 (Pyth. identity)

s.2tan® x+tanx—-1=0
~.(2tanx—1)(tanx+1)=0
s2tanx—1=0 or tanx+1=0

1
.'.tanx=§ or tanx=-1

s x=tan? (%) or x=tan™(-1)

~.x=0.46 or x=37” (calculator gives —%)

These solutions are in quadrants I and Il. There are
also solutions in quadrants Il and IV:

5 Ny A

%

0.46
T , C
. . T Ix
SX=046+7r=36 0r X=2r——=—
4 4
S.X=046, x=3.6, x=3—” or x=7—”
4 4

S MW R MmO N DB D

r

Copyright ©,
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The points of
intersection of

y =2sec’ x—3+tanx
and y =0 agree with
the solutions obtained

above.

5115225 33544555886
47 28350 X2

Nick E. Nolfi
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(b) 3sinx+3cos2x=2

Solution

c.3sinx+ 3(1— 2sin’ x) =2 (double-angle identity)
-.6sin’ x—3sinx—1=0

A quick check of the discriminant of this quadratic
equation in sinx demonstrates that it does not factor:
b? —4ac =(-3)" —4(6)(~1)=33, which is not a
perfect square. Therefore, the quadratic formula must
be used.

~(-9)£\(-3) ~4(6)(-) _3:43

sinx =
2(6) 12
sx=sin™ @ or x=sin! 3-V33
12 12

. Xx=0.82 or x=-0.23 (solutions given by
calculator)

y / 5 Y A

0.82 o.szx B
0,235_,,1»!? =TI 10,23

T C T C

Therefore, the solutions in the interval [0,27] are

Xx=0.82, x=7-082=2.32, x=7+0.23=3.37
and x=27-0.23=6.05

The points of
intersection of

y =3sin X+ 3c0s2x
and y =2 agree with
the solutions obtained
above.

o wos
H“\.

Ja
NS

05115225 33644565556

R I R Ca
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3. Use an algebraic method to solve the trigonometric equation 2sin 2x—+/3=0. State all solutions in the interval
0<x<2x. Verify the solutions graphically.

Solution
First, observe that since 0< x< 2z, then 0<2x<4x. Thus, we must find all solutions for 2x in [0,47:] . This will
give us all solutions for x in [0,27].

2sin2x—+/3=0
- 2sin2x=+/3
2_;?
3
87
3
z , — in [0,27]
6 6 6 6 J3
r r Ir A4r The solutions for 2x of the equation sin2x=-— in [0,4r]
Xx==, =, —, —in[0,27] 2
6 3 6 3
Graphical Verification ) )
1 _Solutionsto 2sin2x-y3=0 ,
in the interval [0,27]
(w6, 0) |[ (rz.0 ) | | ; (76, 0)| (4n3,0) | |
st 4 _ _ — - ts R _
0 AT/E 3, m2 213 am/e i1 J/6 4G a2 oma 1111/6 21
/ ] L4 __ X\ S I A
Horizontal Axis: |\ | YA ? | o\ YA
oy=-fB N A N
| | TN / \yzzsinzx—:ﬁ .; |
4. How many solutions would you expect each of the following equations to have in [O, 27z] ?
@) cos3x=% (b) cos3x=1 (c) tan3x =+/3 (d) cot5x=1

Solution
To be discussed in class.
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Key Idea

* The same strategies can be used to solve linear trigonometric equations when
the variable is measured in degrees or radians.

Need to Know

* Because of their periodic nature, trigonometric equations have an infinite

number of solutions. When we use a trigonometric model, we usually want

solutions within a specified interval.

To solve a linear trigonometric eauation. use special triangles, a calculator, a

sketch of the graph, and/or the ASTC rule.

A scientific or graphing calculator provides very accurate estimates of the value

for an inverse trigonometric function. The inverse trigonometric function of a

positive ratio yields the related angle. Use the related acute angle and the

period of the corresponding function to determine all the solutions in the given

interval.

You can use a graphing calculator to verify the solutions for a linear

trigonometric equation by

- graphing the appropriate functions on the graphing calculator and
determining the points of intersection

+ graphing an equivalent single function and determining its zeros

Homework #1
4. Solve cos x = —0.8667, where 0° = x = 360°
a) How many solutions are possible?
b) In which quadrants would you find the solutions?
o) Determine the related angle for the equation, to the nearest degree.

d) Determine all the solutions for the equation, to the nearest degree.

5. Solve tan @ = 2.7553, where 0 = 6 = 277.
a) How many solutions are possible?
b) In which quadrants would you find the solutions?
¢) Determine the related angle for the equation, to the nearest

hundredth.
d) Determine all the solutions for the equation, to the nearest
hundredth.
6. Determine the solutions for each equation, where 0 = 6 = 277.
“ ) tanf = 1 ) 0= V3 ) 0= !
nf = cos ) = — cosfl = ——=
: € 2 ¢ V2
. 1 ) V3
b) smf):E d) smﬂ=—7 f) tanfd = V3

8. Using a calculator, determine the solutions for each equation, to two
decimal places, on the interval 0 = x = 277.
a) 3sinx =sinx+ 1 ¢ cosx— 1= —cosx

b) 5cosx — V3 = 3cosx d) Ssinx+ 1= 3sinx

9. Using a calculator, determine the solutions for each equation, to two
decimal places, on the interval 0 = x = 277.

Key Ideas

+ In some applications, the formula contains a square of a trigonometric ratio.

This leads to a quadratic trigonometric equation that can be solved algebraically
or graphically.

* A quadratic trigonometric equation may have multiple solutions in the interval

0 = x = 2q. Some of the solutions may be inadmissible, however, in the
context of the problem.

Note: The solutions to ax? + bx + ¢ = 0 are determined by x =

Need to Know

* You can often factor a quadratic trigonometric equation and then solve the

resulting two linear trigopnometric equations. In cases where the equation
cannot be factored, use the quadratic formula and then solve the resulting

linear trigonometric equations.
b+ Vb? — dac
2a °

* ‘You may need to use a Pythagorean identity, compound angle formula, or

double angle formula to create a quadratic equation that contains only a single
trigonometric function whose arguments all match.

10.

12.

13.
15.

17.

Using a calculator, determine the solutions for each equation, to two
decimal places, on the interval 0 = x = 27.

1 1
a) sin 2x = E ¢) sin 3x = —% e) cos2x = —5
1 1 V3
b) sin4x=£ d) cos4x=*ﬁ f) cos§=7

. A city’s daily high temperature, in degrees Celsius, can be modelled by

the function #(4) = —28 cos %d + 10, where 4 is the day of the

year and 1 = January 1. On days when the temperature is
approximately 32 °C or above, the air conditioners at city hall are
turned on. During what days of the year are the air conditioners
running at city hall?

The height, in metres, of a nail in a water wheel above the surface of
the water, as a function of time, can be modelled by the function

h(t) = —4sin Z(z — 1) + 2.5, where zis the time in seconds.

During what periods of time is the nail below the water in the first
24 s that the wheel is rotating?

ﬂ): V2cosxfor0 = x = 27.

Solve sin (x + y;

Explain why the value of the function f(x) = 25 sin Sﬂ(-](x + 20) — 55

atx = 3 is the same as the value of the function atx = 7.

Solve the trigonometric equation 2 sin x cos x + sin x = 0. (Hint: You
may find it helpful to factor the left side of the equation.)

a) 2—2cotx=10 d) 2cscx+ 17 =15 + cscx
b) cscx—2=10 e 2secx+1=6 18. Solve each equation for 0 = x = 277,
© 7secx =7 f) 8+ dcotx=10 a) sin2x — 2cos’x =0 b) 3sinx + cos2x = 2
9 7.9
Selected a0 s =x @
Answers LA T A £k
u_gmlb_r;EE x (e gL 1y o 6a
¥ ¥
1= 62y ‘L —— CSTYIOIIL =% (3 Fls =f (@
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Homework #2
6. Solve each equation for x, where 0 = x = 277. 11. The quadratic trigonometric equation cot’ x — bcot x + ¢ = 0 has
a) (2sinx— 1)cosx =0

b) (sinx+ 1)2=0
o (2cosx + V3)sinx =0

%, %, :%T, and %’T in the interval 0 = x = 27. What are

the values of # and ¢?

the solutions

d) (2 cos x — 1) (2 sin x + \/5) =0 12. The graph of the quadratic trigonometric  function f (X) =sin’x—c¢
o (\/stx— ])(\/stx'l']):ﬂ is shown. What is the value of ¢?
f) (sinx+ 1)(cosx— 1) =0 r
0.5
X
7. Solve for 6 to the nearest hundredth, where 0 = 6 = 277. 0 ZANS A‘&
—0. o \TE/ 3w
a) 2cos’0 + cosfl —1=10 2 2

Y .

b) 2 51211 0=1~sing 13. Natasha is a marathon runner, and she likes to train on a 277 km

¢ cos"f) = 2+ cos ) B sirecch of rolling hills. The height, in kilometres, of the hills above
d) 2sin’0 + 5sinf@ —3=0 sea level, relative to her home, can be modelled by the function

e) 3 tan’f — 2tand = 1 h(d) =4 cos> d — 1, where d is the distance travelled in kilometres.
f) 12 sin@ + sinfl — 6=0 At what intervals in the stretch of rolling hills is the height above sea

level, relative to Natasha's home, less than zero?
8. Solve each equation for x, where 0 = x = 27.

a) scxoscx— Zacx=0 d) 2 cotx+ sect x = 0 13 Solve the equation 6sin’ x = 17 cos x + 11 for x in the interval
b) 3sec’x—4=10 e) cotxescex = 2 cotx 0=x=2m.
° . 3 15. a) Solve the equation sin® x — V2cosx = cos’x + V2cosx + 2
c) 2sinxsecx — 2V3sinx = 0 f) 3tan”x — tanx = 0 for x in the interval 0 = x = 277.
9. Solve each equation in the interval 0 = x = 277. Round to b) Write a general solution for the equation in part a).
two decimal places, if necessary. 16. Explain why it is possible to have different numbers of solutions for

a) 5cos2x —cosx+3=0 o 4cos2¢+ 10sinx—7=0 @ quadratic trigonometric equations. Give examples to illustrate your

b) 10cos2x — 8cosx+ 1 =0 d) —2cos2x = 2sinx explanation.
10. Solve the equation 8 sin”x — 8 sinx + 1 = 0 in the interval 18. Solve the equation 2 cos 3x + cos 2x + 1 = 0.
0=x=2T. 20. Solve V2sinf = V3 — cos 0, 0 = 0 = 27.
Selected
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INVERSES OF TRIGONOMETRIC FUNCTIONS

Review — Inverses of Functions

e Inverse of a Function — Think “Opposite” e.g. x> and Jx are inverses

The inverse of fis written f ™ — This is NOT the reciprocal of f

Perform transformation (X, y)—(y,x) to form f from f

Graphically — Reflect f in the line y = x to obtain the graph of f™

To form f ' when f is not one-to-one, the domain of f must be restricted to an interval on
which f is one-to-one

e Domain of f™ = Range of f Range of f = Domain of f
Example: The Inverse of the tan Function
i it 2m t i Legend
: : : : f(x):tanx,XGR,x;tin?” for odd n
(1 I I M —r P
(' /| | [ g(x)=tanx, —<x<=
| | | [ 2 2
! i m I 1 h(x)=tan™ x =arctan x
/1 /| I 1
tané
| Il o I | y=X
T T 7 I Y S A e S e _ _
| Fa t /o The function f(x)=tanx is not one-to-one
I VAN I I s0 its inverse is not a function. However, f is
—I—I | | _
A | (-3.732, -51/12) | T | y 2 one-to-one on the interval 7”< X <%. Thus,
: I I 1/
—'———-I-— -/—- —-——— —|—/———| the inverse of f on this interval is a function.
|| ' | - x
| (-5m/12, -3.732) | Domain of g: {XGRZ7<X<E}
Il r—': |
I | | || Range of g: R
| I | tan@ |
1] I 0 I 1| Domainof gt=h: R
I I ] | —z P
| | | | Rangeof g'=h: ;yeR:—<y<—
Il 2 I | 2 2

tan?
X |:> tan tan x tanx |:> aka
arctan

1. When you use a calculator to evaluate tan™ x for any value of x, the result is always between % and % . Why is

Questions

this the case?

2. Solve the equation tanx=2, 27 <Xx<4r.
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Activity

Create a table like the one shown below. Use Desmos to create the graphs (as shown on the previous page).

Trigonometric
Function f

Interval on which
f is One-to-One

Domain and
Range of fand f !

Graph of f and f ** on the same Grid

f (x)=sinx

f (x)=cosx

f (x)=cotx

f (x)=cscx

f (x)=secx
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OPTIONAL TOPICS

Applications of Simple Geometry and Trigonometric Ratios

1. As shown very crudely in the diagram at the right, the data stored on a compact disc are
arranged along a continuous spiral that begins near the centre of the disc. Because of this, a p e
CD must spin at different rates to read data from different parts of the disc. For instance, O —
audio CDs spin at a rate of about 28000° per minute when data are read near the centre, e |
decreasing gradually to about 12000° per minute when data are read near the edge. ‘\ \\ ® ‘ 1
(a) Through how many degrees per second does an audio CD spin when data are read near the 7

centre of the disc? Through how many degrees per second does an audio CD spin when
data are read near the edge of the disc?

(b) Computer CD-ROM drives rotate CDs at multiples of the values used in audio CD players. A 1x drive has the
same angular velocity as a music player and an nx drive is n times as fast. Through how many degrees per second
does a CD rotate in a 52x drive when data are read near the centre of the disc?

2. Itis a popular misconception that until the time of Christopher Columbus, people believed that the Earth was a flat
plate. In reality, the spherical shape of the Earth was known to the ancient Greeks and quite likely, even to earlier
civilizations. In the fourth century B.C., Aristotle put forth two strong arguments for supporting the theory that the
Earth was a sphere. First, he observed that during lunar eclipses, the Earth’s shadow on the moon was always circular.
Second, he remarked that the North Star appeared at different angles of elevation in the sky, depending on whether the
observer viewed the star from northerly or southerly locations. These two observations, being entirely inconsistent
with the “flat Earth” hypothesis, led Aristotle to conclude that the Earth’s surface must be curved. Even sailors in
ancient Greece realized that the Earth’s surface was curved. They noticed that the sails of a ship were always visible
before the hull as the ship emerged over the horizon and that the sails appeared to “dip” into the ocean as the ship
would retreat beyond the horizon.

A Greek named Eratosthenes (born: 276 BC in Cyrene, North Africa, which is now Shahhat, Libya, died: 194 BC,
Alexandria, Egypt) took these observations one step further. He was the chief librarian in the great library of
Alexandria in Egypt and a leading all-round scholar. At his disposal was the latest scientific knowledge of his day.
One day, he read that a deep vertical well near Syene, in southern Egypt, was entirely lit up by the sun at noon once a
year (on the summer solstice). This seemingly mundane fact probably would not have captured the attention of
someone of ordinary intellectual abilities, but it instantly piqued Eratosthenes’ curiosity. He reasoned that at this time,
the sun must be directly overhead, with its rays shining directly into the well. Upon further investigation, he learned
that in Alexandria, almost due north of Syene, the sun was not directly overhead at noon on the summer solstice
because a vertical object would cast a shadow. He deduced, therefore, that the Earth’s surface must be curved or the
sun would be directly overhead in both places at the same time of day. By adding two simple assumptions to his
deductions, Eratosthenes could calculate the Earth’s circumference to a high degree of accuracy! First, he knew that
the Earth’s surface was curved so he assumed that it was a sphere. This assumption was strongly supported by
Aristotle’s observations in the fourth century B.C. Second, he assumed that the sun’s rays are parallel to each other.
This was also a very reasonable assumption because he knew that since the sun was so distant from the Earth, its rays
would be virtually parallel as they approached the Earth.

Now it’s your turn to reproduce Eratosthenes’ calculation. The diagram below summarizes all the required
information.

Vertical object does Vertical object does Eratosthenes hired a member of a camel-powered
Alexandria cast a shadow at noon not cast shadow at trade caravan to “pace out” the distance between
on summer solstice. noon on summer Syene and Alexandria. This distance was found
solstice. to be about 5000 “stadia.” The length of one
Centre of “stadion” varied from ancient city to ancient city

so there is some debate concerning how to
the Earth S convert Eratosthenes’ measurement in stadia to a
yene modern value in kilometres. However, it is
usually assumed that Eratossthenes’ stadion
measured 184.98 m. Eratosthenes measured the
- “shadow angle” at Alexandria and found that it
was approximately 7.2°.

-
-
-
-
-
-
-

-
-
-
=
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3. Have you ever wondered how astronomers calculate distances from the Earth to celestial bodies? In this problem, you
will learn about how the distance from the Earth to the Sun was first calculated in 1882.

(@) Using the angle of separation (as measured from the Earth) between a body in
our solar system and the Sun, its distance from the sun can be determined in
terms of the distance from the Earth to the Sun. To facilitate this process, the
“AU” (astronomical unit) was created, the distance from the Earth to the sun
being defined as 1 AU. As a result of astronomical measurements made prior
to 1882, the distances from the Sun of all the planets known at the time had
been calculated in terms of the AU. Unfortunately, however, it was not
possible to convert these distances into kilometres because the distance from
the Earth to the Sun was not known. The diagram at the right shows how
astronomers calculated the distance from Venus to the sun in terms of the AU. When Venus and the sun were
conveniently positioned in the sky to make the angle of separation as large as possible, the angle & was measured to
be approximately 46.054°.

Use this information to calculate the distance from Venus to the Sun in terms of the astronomical unit. In addition,
explain why ASVE must be a right triangle.

V8 —zing
E

to that of the Earth. (The actual orbital inclination of Venus is only 3.39° Noi’:;iif\ .
SR

but it is highly exaggerated in the illustration for the sake of clarity.)

(b) As shown in the diagram at the right, the plane of Venus’ orbit is inclined ‘_7
Earth's

._..'-"""5;ascendjng“

Notice that Venus passes through the Earth’s orbital plane twice per orbit. " Hode wendmg -
When Venus intersects both the orbital plane of the Earth and the line K‘\ o e
connecting the Earth to the Sun, a transit of Venus occurs. From the i T

Earth, Venus is observed as a small black disk that slowly makes its way b Ve’ Obit

across the face of the Sun. Transits of Venus are exceedingly rare,
usually occurring in pairs spaced apart by 121.5+8 years (4 transits
per 243-year cycle).

In 1882, a transit of Venus occurred. This opportunity was seized
by astronomers to calculate, once and for all, the Earth-Sun
distance. Observers on Earth separated by a North-South distance
So (separation of observers) would observe transits separated by a
North-South distance St
(separation of transits). Observer Sgpararion of transits
A in the northern hemisphere &
would see Venus lower on the Transit seen by
. Observer A Observer B
face of the Sun than observer B in )
the southern hemisphere. This is
due to an effect called parallax, Earth _ - B
the same phenomenon that causes Ve
an apparent shift in the position Observer B

- . Transit seen by
of objects when viewed sepdon ot on N
- - - aration o Servers N
successively with one eye and P g greatly exagg
then with the other.

Use the information in the following table and your answer from 3(a) to express 1 AU in kilometres.

Symbols Measured Values RTF Strategies / Hints
So = separation of observers S = 2000 km S =2 Use similar triangles to calculate St. Your answer
St = separation of transits 0~ T from 3(a) is important!
S16 :_separation_of transits on r,  0.5(16)
circle of radius 16 cm S16 = 0.059198 cm rs="7? P —
rs = radius of the sun Sy S16
6=0.534° il
6= angle of separation (see This is the average of —n =
diagram at the right) many measurements ES =" E 9=0.534°
made by astronomers. .
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4. The circumference of the Earth at the equator is approximately 40074 km. A sidereal day is defined as the time
required for the Earth to make one complete rotation relative to its axis of rotation. Careful scientific measurements
have shown that the length of a sidereal day is about 23.9344696 hours (23 hours, 56 minutes, 4.09056 s) and that the
circumference of the Earth at the equator is approximately 40074 km.

Therefore, a point on the equator moves in a very large circle at a speed of _ 40074 km =1674.3 km/h .
23.9344696 h
(a) Use the given information to calculate the North Pole
rotational speed of a point on any line of “Top” View
latitude, relative to the Earth’s axis of
rotation. A A
Hint: Take any point A located at & degrees
north or & degrees south. Keeping in mind D
that a line of latitude is nothing more than a C B
large circle, you should be able to calculate
its circumference in terms of the Earth’s The great circle at latitude
radius and the angle 6. degrees north as seen when
. looking “down” from a point
(b) Central Peel is located at 43.6964 degrees directly above the North Pole . :
north. How fast is CPSS moving in a large “Side” View

circle about the Earth’s axis of rotation?

(c) What is the speed of the North Pole relative to the Earth’s axis of rotation? What is the speed of the South Pole
relative to the Earth’s axis of rotation?

5. To measure the height XY of an inaccessible cliff, a surveyor recorded the data shown in the diagram at the right. If the

theodolite used to take the measurement was 1.7 m above the ground, find the height of the cliff.
s

|
|

31.1° 4 \
V 7t SR T T Ty AW
i i L o

6. From point P, the distance to one end of a pond is 450 m and the distance to the other end is 520 m. The angle formed
by the line of sight is 115°. Find the length of the pond

450 m 115° 520 m

I
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7. In 1852, as part of the Great Trigonometric Survey of India, Radhanath Sikhdar, an Indian mathematician and surveyor
from Bengal, was the first to identify Mount Everest (called Sagarmatha by the Nepalese people) as the world’s
highest peak. Sikhdar used theodolites to make measurements of “Peak XV,” as it was then known, from a distance of
about 240 km. He then used trigonometry to calculate the height of Sagarmatha. Based on the average of
measurements made from six different observation stations, Peak XV was found to be exactly 29,000 feet (8,839 m)
high but was publicly declared to have a height of 29,002 feet (8,840 m). The arbitrary addition of 2 feet (0.6 m) was
to avoid the impression that an exact height of 29,000 feet was nothing more than a rounded estimate.

(@)

(b)

(©)

(d)
)
(f)

nlnulcll’f,
P4

r
Uppw Padml
it

|
&
o

& = Preucsioning
o= Sacontuy Le elag

L. & URERA LK e
| N o | A ST Tl W6 uae * LapheQe b
ST T R e i LVO) A theodolite is an instrument for measuring
The Survey of 1849 - 1850 The 1952 - 54 Survey both horizontal and vertical angles,

In the diagram at the right, the point P represents the peak of a
mountain. Points A, B and C represent points on the ground that
are at the same elevation above sea level. From these points, the
angles of elevation 6, , 6, and 6. are measured. As indicated in

the diagram, the lengths of AB and BC are known, as are the
measures of the angles 6,, 65 and 6. . Does this give us enough

information to calculate h, the height of the mountain above the
surface of the plane through quadrilateral ABCO? If so, use an
example to outline a method for calculating the height h in terms of
the given information. If not, describe what other information
would be needed.

Is it necessary for the points A, B and C to be at the same elevation
above sea level? Explain.

Explain why it would be impractical to measure directly the lengths of AO, BO and CO. (Obviously, the length of
PO = h cannot be measured directly.)

Describe the orientation of quadrilateral ABCO relative to the surface of the Earth.
Once h is calculated, how would the height of the mountain above sea level be determined?

What is the currently accepted height above sea level of Mount Everest? Are you surprised that Sikhdar’s
measurement from 1852 is so close to the modern value?
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Rates of Change in Trigonometric Functions
Introductory Investigation

Vyshna was walking through a playground minding his own business when suddenly, he felt little Anshul tugging at his
pants. “Vyshna, Vyshna!” little Anshul exclaimed. “Please push me on a swing!” Being in a hurry, Vyshna was a little
reluctant to comply with little Anshul’s request at first. Upon reflection, however, Vyshna remembered that he had to
collect some data for his math homework. He reached into his knapsack and pulled out his very handy portable motion
sensor. “Get on the swing Anshul!” Vyshna bellowed. “T’ll set up the motion sensor in front of you and it will take some
measurements as I push.” Gleefully, little Anshul hopped into the seat of the swing and waited for Vyshna to start

pushing.

The data collected by Vyshna’s motion sensor are shown in the following tables. Time is measured in seconds and the
distance, in metres, is measured from the motion sensor to little Anshul on the swing.

Time (s) 0 01 |02 |03 |04 |05 [06 |07 |08 [09 |1 1.1
Distance (m)| 3.8 | 368 | 333 | 281 |22 | 159|107 | 072 |06 |0.72 | 1.07 | 1.59
Time (s) 12 |13 (14 |15 |16 |17 |18 |19 |20 |21 |22 |23 |24
Distance (m)| 2.2 | 281 | 333 | 368 | 3.8 | 368 333|281 |22 | 159|107 |072 |06
Scatter Plot Curve of Best Fit Mathematical Model
|Al = Amplitude = 1.6
4 l 4r 1
36[° - 36 ik T =Period = 1.6 =|=|27
g 3-2: - L ] - - 3-2: a)
B 7 28f o o o = 16 o = Angular Frequency
= § 24 SEo 1 1 57
E§ Tk . . . c s 2'4:__ A S A == 2r=| — |27 =—
g < 2f S 2 of T 1.6 4
Q@ - - - <] B - -
g2 1o 8 g 161 d = vertical displacement = 2.2
z » 12r P . o 12 2.2 p =phase shift = 0
08: ... .. o 08F
04f 04l 57
V| d(t)=16c0s| —t |+2.2
04 08 12 16 2 24 04 08 12 16 2 24 4
Time (Seconds) Time (Seconds) (Alternatively, we could write
. (57
d(t)=1.6sm(7(t—1.2))+2.2)
Questions

1. What gquantity is measured by

() the slope of the secant line through the points (t,,d(t,)) and (t,,d(t,))?

(b) the slope of the tangent line at (t,d ()2

2. Complete the following table.

Intervals of Time over
which Anshul approaches
the Motion Sensor

Intervals of Time over
which Anshul recedes
from the Motion Sensor

Intervals of Time over
which Anshul’s Speed
Increases

Intervals of Time over
which Anshul’s Speed
Decreases
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3. Explain the difference between speed and velocity.

4. Describe the “shape” of the curve over the intervals of time during which
(@) Anshul’s velocity is increasing

(b) Anshul’s velocity is decreasing

5. Use the function given above to calculate the average rate of change of distance from the motion sensor with respect
to time between 0.2 sand 1.0 s. Is your answer negative or positive? Interpret your result geometrically (i.e. as a
slope) and physically (i.e. as a velocity).

6. Use the function given above to estimate the instantaneous rate of change of distance from the motion sensor with
respect to time at 0.6 s. Is your answer negative or positive? Interpret your result geometrically (i.e. as a slope) and
physically (i.e. as a velocity).
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Rectilinear (Linear) Motion
e Rectilinear or linear motion is motion that occurs along a straight line.

o Rectilinear motion can be described fully using a one-dimensional co-ordinate system.

e Strictly speaking, Anshul’s swinging motion is not rectilinear because he moves along a curve (see diagram).

e However, since only the horizontal distance to the motion sensor is measured, we can imagine that Anshul is moving
along the horizontal line that passes through the motion sensor (see diagram). A more precise interpretation is that the
equation given above models the position of Anshul’s x-co-ordinate with respect to time.

The Origin of the One- i
CO_E:&?ﬁZ::g'altem : Distance from Motion
ys ' Sensor Measured
' Horizontally
- 1
Motion Sensor ! /
1
Negative < 1 I 1 1 1 1 1 I 1 1 1 1 1 > Positive
Direction L Frrr i Direction
0 -9 8 -7 46 5 4 5 6 7 8 9% 10

The table below lists the meanings of various quantities that are used to describe one-dimensional motion.

Quantity Meaning and Description Properties
The position of an object measures . . L
where the object is located at any given Atany time t, if the object is located
time. In linear motion, the position of an | (a) at the origin, then s(t)=0
Position object is simply a number that indicates (b) to the right of the origin, then s(t) >0

where it is with respect to a number line
like the one shown above. Usually, the
position function of an object is written

as s(t).

(c) to the left of the origin, then s(t)<0

Also, |s(t)| is the distance from the object to the origin.

Displacement

The displacement of an object between
the times t, and t, is equal to its change

in position between t, and t,. That s,
displacement =As=5(t,)—s(t,).

If As> 0, the object is to the right of its initial position.
If As<0, the object is to the left of its initial position.

If As=0, the object is at its initial position.

Distance measures how far an object has
travelled. Since an object undergoing
linear motion can change direction, the

The position of an object undergoing linear motion is
tracked between times t, and t,. In addition, the object

changes direction at times t;, t,,..., t,_, (and at no other

Distance distance travelled is found by summing | times), where t, < t, <...< t,, < t,. If As; represents the
(adding up) the absolute values of all the | displacement from time t, , to time t,, then the total
displacements for which there is a distance travelled is equal to
change in direction. d =|A51|+|A52|+---+|ASn,1|+|ASn|
Velocity is the instantaneous rate of At any time t, if the object is
change of position with respect to time. | a3y moving in the positive direction, then v(t)>0
Velocity measures how fast an object T o

Velocity moves as well as its direction of travel. | (b) moving in the negative direction, then v(t)<0
In one-dimensional rectilinear motion, (c) atrest, then v(t)=0
velocity can be negative or positive, ] )
depending on the direction of travel. Also, |v(t)] is the speed of the object.

Speed is simply a measure of how fast
Speed an object moves without regard to its | speed =|v(t)

direction of travel.
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Table continued from previous page...

Quantity Meaning and Description Properties

At any time t, if the object is

gigeéirfgf:gf;??’elrcféi;t@ﬂious (a) moving in the positive direction and speeding up or moving

respect to time. In one-dimensional in the negative direction and slowing down, then a(t) >0
Acceleration | rectilinear motion, acceleration can | (b) moving in the positive direction and slowing down or
be negative or positive, depending moving in the negative direction and speeding up, then

on the direction of the force causing a(t)<0
the acceleration.

(c) moving with a constant velocity, then a(t)=0

Example
Determine the quantities listed in the following table. (All times are specified in seconds.)
(a) Anshul’s position at t=2 (b) Anshul’s displacement over the (c) Anshul’s average velocity over
interval [0,2.6] the interval [0,2.6]
(d) Anshul’s average speed over (e) The total distance travelled by (f) An estimate of Anshul’s
the interval [0,2.6] Anshul over the interval [0,2.6] instantaneous velocity at t=2
Solution

(@) s(2) =1.6cos(57”(2)j +2.2 =1.6005(5?”] +2.2=1.6(0)+22=22

Anshul’s position at t =2 is 2.2 m to the right of the origin.

vs(t)=d(t) :1.6005(57”tj+ 2.2

(b) As=s(2.6)—s(0) Position at time 0 4
5r 5z =s(0) — %%
=1.6005(—(2.6)j+2.2—{1.6003(—(0))+2.2} 33 32

4 4 ‘ 28

137 24

=1.6cosT—1.6coso

Position at time 2.6

Distance from
Motion Sensor (m)

I
S R ]

1
=1.6| ——= |-1.6(1 =5(2.6)
%) 1
0.8
=1.6| —— [+2.2
= —1.6(% +1J ( \EJ 0.4
2 =1.07 S ¥ 7 i e v ¥
__16 1+42 Time (s)
2 Over the interval [0,2.6], Anshul’s displacement is —2.73 m. This means that at 2.6 s, his
=_273 position was 2.73 m to the left of his initial position (i.e. his pgsition at 0 s).
As
(C) avg = . g
At Average velocity over the interval [0,2.6]
_5(2.6)-s(0) = slope of secant line between (0,5(0)) and (2.6,5(2.6))
26-0 =-1.05 m/s
—1.6[13\5/5]
e Over the interval [0,2.6], Anshul’s average velocity is —1.05 m/s. This means that Anshul’s
105 ' position decreases at an average rate of 1.05 m/s over the interval [0,2.6]. That is, Anshul

moves to the left with an average speed of 1.05 m/s.
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(d) average speed =

()

(f)

= :|—1.05| =1.05 m/s.

AS
Vavg E

Over the interval [0,2.6], Anshul’s average speed was 1.05 m/s.

Examine the graph at the right, showing Anshul’s position over time. s(t)=d(t) :1_6005(5_”tj+2,2
Notice that over the interval [0,2.6] , Anshul changes direction at 0.8 s, 3: g
1.6sand 2.4s. Therefore, N
d =|As [ +|As,|+|As,| +|As,| e E28f
2 3 24f
=[s(0.8)—5(0)|+|s(1.6)—5(0.8)|+s(2.4) — 5(1.6)| +[s(2.6) - 5(2.4) 83 2of
B S 16}
=10.6—-3.8|+|3.8—0.6|+|0.6 — 3.8/ +[1.07 - 0.6| - g 12f
=32+3.2+3.2+0.47 08}
~10.07 g 5 e o B
Over the interval [0,2.6], Anshul travelled about 10.07 m. e 0e T;rﬁe (;55 2o

v(2) = Instantaneous velocity at 2 seconds

= slope of tangent of position-time graph at 2 seconds (see graph at right)
Since we do not yet have the tools of calculus at our disposal, the best we can do is to approximate the slope of the
required tangent line by using a secant line that passes through two points that are very close to t = 2. If we use the
centered interval [1.99,2.01], then

17,4
2)=53 (if At | I g A,
v( )_E (if At is very small) 357 |
~5(2.01)-5(1.99) 32 i
T 201-1.99 ” ;
Approximate [t !
16COS(547Z(201)j+22—[16C05(?(199))+22j Coriro)rdinates 2: i
16} ;
B 0.02 12} |
10.05~ 9.95rx 981 )
1.6 -16 S |
) cos( A j cos( . ] 0_4\ |
0.02 04 g 12 16 2 g%
= -6.28 K(z.ss,o)/

At t = 2 seconds, Anshul’s instantaneous velocity is approximately —6.28 m/s, which means that he is moving to the
left (toward the motion sensor) with a speed of about 6.28 m/s. Notice that the answer —6.28 m/s agrees with the
graph shown above. The tangent line at t = 2 goes downward to the right, which means that its slope should be

. . . . i . 4— S .
negative. In addition, a quick, rough calculation of % yields ﬁ =-6.15, which is in close agreement with

the answer obtained above.
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Now use the following graphs to confirm the answers given above for the instantaneous quantities.

vs(t)=d(t) =1.6cos[57ﬂtj+ 2.2

LS T |
{5 T = I =

I
-
T -

Velocity
(m/s)

Distance from
Motion Sensor (m)

(== R e
ES == T S T T S

P S CR,

04 08 12 16 2 24 - .
. Tim
Time (s) e(s)

FEE A T S B SO s T |
TT T T T T T T T T 77T

F

Time (s)
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Homework

2. For this graph of a function, state two points where the function has
an instantancous rate of change in f(x) that is

a) zero

b) a negative value

) a positive value

Ay flx)=4cos [x——) +2

¥

. Use the graph to calculate the average rate of change in f(x) on the
interval 2 = x = 5.

ARG

. Determine the average rate of change of the function

. State two points where the function y = — 2 sin (27x) + 7 hasan

instantaneous rate of change that is
a) zero

b) a negative value

¢) a positive value

. The height of the tip of an airplane propeller above the ground once

the airplane reaches full speed can be modelled by a sine function. At
full speed, the propeller makes 200 revolutions per second. At ¢ = 0,
the tip of the propeller is at its minimum height above the ground.
Determine whether the instantaneous rate of change in height at

1. . ..
= ﬁ 1sa ncgauvc VQ.II.IC, a p(}SlUVC Va.] ue, or 7ero.

A ship that is docked in a harbour rises and falls with the waves. The

function A(¢) = sin (gt) models the vertical movement of the ship,

4 in metres, at ¢ seconds.

a) Determine the average rate of change in the height of the ship
over the first 5 s.

b) Estimate the instantaneous rate of change in the height of the ship
att = 6.

. For a certain pendulum, the angle § shown is given by the equation

o= % sin (%‘n’t) where ¢ is in seconds and # is in radians.

a) Sketch a graph of the function given by the equation.

b) Calculate the average rate of change in the angle the pendulum
swings through in the interval &[0, 1].

) Estimate the instantaneous rate of change in the angle the
pendulum swings through at £ = 1.5 s.

d) On the interval €0, 8], estimate the times when the pendulum’s
speed is greatest.

15. In calculus, the derivative of a function is a function that yields the
= 2 cos ( ) + 1 for each interval. instantaneous rate of change of a function at any given point.
T T T a) Estimate the instantaneous rate of change of the function
g 0=x= E <) g =x= 5 [f(x) = sin x for the following values of x: — 7, —g, 0, %, and 77.
T T T 57 b) Plot the points that represent the instantaneous rate of change,
b) E =x= E 4 E =x= ? and draw a sinusoidal curve through them. What function have
you graphed? Based on this information, what is the derivative of
flx) = sinx?
Answers X500 S1x Ul = (%))
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End Behaviours and other Tendencies of Trigonometric Functions

Notation

Examples are given in the following table of notation that is used to describe the behaviour of some function f as x

undergoes some change such as tending toward a value or getting larger and larger without bound.

e Note that x — oo can also be written X — +oo.

e “Arbitrarily far from” means “as far as desired from.”

e “Arbitrarily close to” means “as close as desired to.”

Notation used
in this Course

Calculus
Notation”

Meaning

What it Looks Like

ASX—> o,

f(X)—)oo

lim f (x) =

X—>00

Read:

Meaning:

As x approaches (positive) infinity, f (x)
approaches (positive) infinity.

We can make f (x) arbitrarily far from the
origin in the positive direction by making x far

enough from the origin in the positive direction.

AS X —> 0,

f(x)—> -0

lim f (x)=—o0

X—00

Read:

Meaning:

As x approaches (positive) infinity, f (x)
approaches negative infinity.

We can make f(x) arbitrarily far from the
origin in the negative direction by making x far

enough from the origin in the positive direction.

AS X — —0,

f(X)—)oo

Read:

Meaning:

As x approaches negative infinity, f(x)
approaches (positive) infinity.

We can make f(x) arbitrarily far from the

origin in the positive direction by making x far
enough from the origin in the negative
direction.

)

AS X — —0

f(X)—)—oo

lim £ (x)=—o0

X—>—0

Read:

Meaning:

As x approaches negative infinity, f (x)
approaches negative infinity.

We can make f(x) arbitrarily far from the

origin in the negative direction by making x far
enough from the origin in the negative
direction.

\

As x—>a

f(X)—)oo

lim f (x) =0

X—a

Read:

Meaning:

As x approaches a, f (x) approaches (positive)
infinity.

We can make f(x) arbitrarily far from the
origin in the positive direction by making x

close enough but not equal to a (from both the
left and right sides).

G--Tirm==——my

* This is just a preview of calculus. You are not required to use calculus notation in this course.
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making x close enough but not equal to a.

Notation used Calculus . . .
in this Course Notation* Meaning What it Looks Like
Read:  As x approaches a from the right, f (x) N=a
approaches negative infinity. |
As x—a’, . . N :
lim f(x)=—c0 | Meaning: We can make f (x) arbitrarily far from the !
F(x)>—e0 | *2 origin in the negative direction by making x |
close enough to a from the right side but not :
equal to a. '
Read:  As xapproaches a from the left, f(x)
approaches (positive) infinity.
As x—>a, . . o
lim f (x)=00 | Meaning: We can make f(x) arbitrarily far from the
f (X) —® o origin in the positive direction by making x
close enough to a from the left side but not
equal to a.
Read:  Asxapproaches a, f(x) approaches L.
As x—>a )
f(x)—>L lim 1 (x)=L Meaning: We can make f (x) arbitrarily close to L by

Lo . 5 1 . .
In the example given in the previous row, as x — ?ﬂ , f(x)—> > This means that we can make f (x)=sinx as close

. 1 . 5 L
as we desire to 5 by making x close enough but not equal to ?ﬁ . In the language of calculus, this is written

* This is just a preview of calculus. You are not required to use calculus notation in this course.
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Exercises
Determine the tendency of

] ~ -
- As x>0, f(x)—> 12 : " As x>0, f(x)—>
06} 5| : :
oF £ =sinx As x—0, f(x)—> o : L AS x>0, f(x)o
1 L 1 1
o ST ET ¥ s xoZ. t(0o
4f b
06F _anééuﬂ :
0.8} o | ! .
1t b 1 1 ASX—);, f(X)—)
As x>z, f(x)>
As x>, f(x)>
x—0", f(x)> As x>0, f(x)>
x—>0, f(x)> As x—>r, f(x)>
x—>0, f(x)> As x_>% , f(x)>
T -
x—>§ , fF()—>__ As X_’E (x>
z Y4
As x—>§ , f(X)—>___ As X_>7 f(x)—>
ﬂ- +
As x—>E, f(x)»>____ Asx->3—” ()
2 E—
/E\ 12; f(X)=tanx: As X0 f(X)—) 12§f(x):cotx ,?\
| | : o |
: i !
; I e I As x—>%, f(x)—> 21 :
i r z 3
:/ﬁf'/;: # +
j TSI Asxo L, ()
1 1 6 —_—
| 3 i
J 40 \'/ +
As x—>—% Cf(x)—>
As x—>%_, f(x)—>
As x—>37” , f(x)>
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Law of Sines and Law of Cosines

Law of Cosines )
While the Pythagorean Theorem holds

only for right triangles, the Sine Law and
the Cosine Law hold for all triangles!

c®=a’ +b?-2abcosC

The law of cosines is a generalization of

the Pythagorean Theorem.
A
The law of cosines is most useful in the

following two cases.

e .
a
The law of cosines also can be used in the
following case. However, a quadratic
equation needs to be solved.

P

However, you should not use these laws
when working with right triangles. Itis
much easier to use the basic trigonometric
ratios and the Pythagorean Theorem.

w_/‘“: ?
? v

¥

Law of Sines
sinA_sinB _sinC
a b c

The law of sines is used in the following
two cases. However, you must beware
of the ambiguous case (SSA).

Important Exercise
Rearrange the equation for the law of cosines in such a way that you solve for cosC.
solve for cosC?

Examples
1. Solve the following triangle.
A
100 b
B LA C
900
Solution

Given: a=900, ¢=100, ZB =45°

In what situation might you want to

\/i :?
v ?

v

Required to Find (RTF): b=?, ZA=?, ZC=? (Note that “RTF” should not be confused with “WTEF.”)

b? =a? +c? —2accos B sinA _sinB

= 9002 +100% — 2(900)(100) cos 45° a b
810000 + 10000 —180000| — (SinA Sin 457
2 900 (82000042 — 180000
_ 820000 . 180000 2
V2 900( ! j
_ 8200002 180000 ~sinAz—V2) - 07606483
NA 832.2985
. ZA=sin"(0.764624834) =50° or 130°
' 820000+/2 —180000
~b =\/ N =832.2985 This is an example of how the ambiguous

Because the given angle (45°) is enclosed by the two given sides (SAS), we must
conclude that A=130°. If we allow ZA to have a measure of 50°, then the only
triangle that can be constructed is the one shown at the right. Clearly, this
triangle contradicts the given information because it lacks a 45 ° angle.
Final Answer: b=832.2985, ZA=130°, LC=5°
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case of the sine law can arise.

(=)

{—x. ).

.\]32‘:

The problem here is that
sin50° =sin130°.
Which answer is

correct, 50° or 130°?

100
125°

900
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2. Answer the following guestions.
(a) Explain the meaning of the word “ambiguous.”
(b) Explain why the law of sines has an ambiguous case.
(c) Explain why the law of cosines does not have an ambiguous case.

(d) Refer to example 1. Explain why it is not possible for £A to have a measure of 50°.

That is, explain why it is not possible to construct the triangle shown at the right.

(e) Suppose that a solution of the equation sin@ =k is the first quadrant angle a. What
would be a second quadrant solution?

() In AABC, LA=37°,a=3cmand c =4 cm. How many different triangles are possible?

Solutions

50°
100

45°

85°

900

(@) Ambiguous: Open to two or more interpretations; or of uncertain nature or significance; or intended to mislead

e.g. “The polling had a complex and ambiguous message for potential female candidates.”

(b) Since sin@ >0 in quadrants | and Il, solving an equation such as sin@=0.5 will result in two answers for 6, one
that is in quadrant | and one that is in quadrant Il. Since angles in a triangle can have any measure between 0° and

180°, then both answers are possible!

(c) Since cos@ >0 inquadrant | and cosé <0 in quadrant Il, there is no ambiguity. A positive cosine implies a first

guadrant angle while a negative cosine implies a second quadrant angle.

(d) Inany triangle, the largest angle must be opposite the longest side. In the triangle shown above, the largest angle is
opposite the shortest side, which is impossible. To confirm that this is the case, we can calculate ZA by using the

law of cosines. Beginning with the equation a? =b?+c? —2bccos A, we solve for cos A:

2,2 .2
COSA= b+C—a
2bc
S.COSA= :
2(832.2985)(100) .. 2bccos A=b? +c? —a®
.c0s A= —0.64447555 . b2 +c2 — a2
. ZA= cos ™ (—0.64447555) N R ohe
o ZA=130°
(e) Consider the diagram at the right.
sina = b
r
sin(180°— @) = ¥ (-x,y)
r

~.Sina =sin(180° — )
Therefore, if o is a first quadrant solution to the given equation, then
180° — « is a second quadrant solution.

(F) As shown at the right, there are two possible triangles that meet the
given criteria. To confirm this algebraically, the law of cosines can be used.

a?=b?+c®>-2bccos A

32 —b? + 4% — 2(b)(4) cos 37° The number of roots of this quadratic
N ) equation can be determined very
~.9=b"+16—(8cos37°)b quickly by calculating the
~.b? —(8c0s37°)b+7=0 discriminant:
D =(8c0s37°)* —4(1)(7) =12.8
| 8c0537°+4/(8c0s37°)% —4(1)(7) ( ) =)

~.b

2(1) Since D > 0, there are two real roots.

~b=4990rb=1.40
Since we obtain two answers for b, there are two possible triangles.
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3. The light from a rotating offshore beacon can illuminate
effectively up to a distance of 250 m. A point on the shore is Beacon
500 m from the beacon. From this point, the sight line to the
beacon makes an angle of 20° with the shoreline.

(a) What length of shoreline is illuminated effectively by the
beacon?

(b) What area of the shore is illuminated effectively by the
beacon?

500 m

20°
Shoreline

Solution

(a) Using the diagram at the right, it is clear that CD is the
portion of the shoreline that is illuminated effectively by B
the beacon.

Using AABD and the law of sines, we obtain
sinD sinA 500
"AB BD A C D
_sinD _sin20°
500 250

500 m 250 m

. sin 20° Using ABCD and the law of sines, we obtain
..sin D =500
250 COD  BC
-.sin D =2sin 20° sinZCBD sinD

. /D =sin"}(2sin 20°) ._Cb _ 20
- /D =43.2° sin93.6° sin43.2°
Since ABCD s isosceles, .'.CD=sin93.6°( 250 ]

- /BCD=432° sin43.2°
-. /CBD =180° - 43.2° — 43.2° = 93.6° . CD=364

Therefore, the length of the shoreline effectively illuminated by the beacon is approximately 364 m.

(b) Let S represent the required area. The portion of the shore illuminated by the beacon is shaded in the diagram
below. The area of this portion of the shore can be found by subtracting the area of ABCD from the area of sector
BCD (shape of a slice of pie). That is,

S = (area of sector BCD) — (area of ABCD)
Since ~ZCBD =93.6°, the area of sector BCD is about LT Tt

% the area of the entire circle. Thus, \H

LS= %(;;(250)2)—%(364)\/2502 182
-.$ 219857

The area of the shore effectively illuminated by the
beacon is approximately 19587 m?.
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Homework

Law of Sines

7. A building of height 4 is observed from two points, P and @, that are
K3 105.0 m apart as shown. The angles of elevation at P and Q are 40° and 32°,
respectively. Calculate the height, 4, to the nearest tenth of a metre.

Q
P 105.0 m

8. A surveyor in an airplane observes that the angle of depression to two points
on the opposite shores of a lake are 32° and 45°, respectively, as shown. What
is the width of the lake, to the nearest metre, at those two points?

9. The Pont du Gard near Nimes, France, is a Roman aqueduct. An observer in
a hot-air balloon some distance away from the aqueduct determines that the
angle of depression to each end is 54° and 71°, respectively. The closest end
of the aqueduct is 270.0 m from the balloon. Calculate the length of the
aqueduct to the nearest tenth of a metre.

10. A wind tower at the top of a hill casts a shadow 30 m long along the side of

K the hill. An observer at the farthest edge of the shadow from the tower
estimates the angle of elevation to the top of the tower to be 34°. If the
slope of the hill is 13° from the horizontal, how high is the tower to the

nearest metre?

15. A sailor out in a lake sees two lighthouses 11 km apart along the shore and
gets bearings of 285° from his present position for lighthouse A and 237° for
lighthouse B. From lighthouse B, lighthouse A has a bearing of 45°.

a) How far, to the nearest kilometre, is the sailor from both lighthouses?
b) Whart is the shortest distance, to the nearest kilometre, from the sailor to
the shore?

Law of Cosines

5. The posts of a hockey goal are 2.0 m apart. A player attempts to score by
B3 shooting the puck along the ice from a point 6.5 m from one post and 8.0 m
from the other. Within what angle # must the shot be made? Round your

answer to the nearest degree.

6. While golfing, Sahar hits a tee shot from 7T 'toward a hole at /7, but the ball veers
23" and lands at B. The scorecard says that H'is 270 m from 7. If Sahar walks
160 m to the ball (B), how far, to the nearest metre, is the ball from the hole?

9. Two roads intersect at an angle of 15°. Darryl is standing on one of the roads
i 270 m from the intersection.
a) Create a question that requires using the sine law to solve it. Include a
complete solution and a sketch.
b) Create a question that requires using the cosine law to solve it. Include a

complete solution and a sketch.

10. The Leaning Tower of Pisa is 55.9 m tall and leans 5.5 from the vertical. If
its shadow is 90.0 m long, what is the distance from the top of the tower to
the top edge of its shadow? Assume that the ground around the tower is level.
Round your answer to the nearest metre.

14. Two hot-air balloons are moored to level ground below, each at a different
location. An observer at each location determines the angle of elevation to the
opposite balloon as shown at the right. The observers are 2.0 km apart.

a)  What is the distance separating the balloons, to the nearest tenth of a
kilometre?

b) Determine the difference in height (above the ground) between the two
balloons. Round your answer to the nearest metre.

80° 0 255 AT5°
—— 2.0 km ——»

Three-Dimensional Problems

1. Morana is trolling for salmon in Lake Ontario. She sets the fishing rod so
that its tip is 1 m above water and the line forms an angle of 35° with the
water’s surface. She knows that there are fish at a depth of 45 m. Describe the
steps you would use to calculate the lcngth of line she must let out.

2. Josh is building a garden shed that is 4.0 m wide. The two sides of the roof
are equal in length and must meet at an angle of 80°. There will be 2 0.5 m
overhang on each side of the shed. Josh wants to determine the length of each
side of the roof.

a) Should he use the sine law or the cosine law? Explain.
b) How could Josh use the primary trigonometric ratios to calculate x?
Explain.

4. As a project, a group of students was asked to determine the altitude, 4, of a
promotional blimp. The students’ measurements are shown in the sketch at
the left.

a) Determine 4 to the nearest tenth of a metre. Explain each of your steps.
b) Is there another way to solve this problem? Explain.

Copyright ©, Nick E. Nolfi
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6. The observation deck of the Slcylon Tower in Niagara Falls, Ontario, is
B} 166 m above the Niagara River. A tourist in the observation deck notices two
boats on the water. From the tourist’s position,
* the bearing of boat 4 is 180° at an angle of depression of 40°
* the bearing of boat B is 250° at an angle of depression of 34°
Calculate the distance between the two boats to the nearest metre.

7. Suppose Romeo is serenading Juliet while she is on her balcony. Romeo is
facing north and sces the balcony at an angle of elevation of 20°. Paris, Juliet’s
other suitor, is observing the situation and is facing west. Paris sees the
balcony at an angle of elevation of 18°. Romeo and Paris are 100 m apart as
shown. Determine the height of Juliet’s balcony above the ground, to the
nearest metre.

@
rﬂ 100 m !:1

15. An airport radar operator locates two planes flying toward the airport. The
first plane, P, is 120 km from the airport, 4, at a bearing of 70° and with an
altitude of 2.7 km. The other plane, @, is 180 km away on a bearing of 125°
and with an altitude of 1.8 km. Calculate the distance between the two
planes to the nearest tenth of a kilometre.
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Proofs of the Pythagorean Theorem, the Law of Cosines and the Law of Sines

Introduction

“A demonstration is an argument that will convince a reasonable man. A proof is an argument that can convince even
an unreasonable man.” (Mark Kac, 20th century Polish-American mathematician)

Until now, you have simply accepted the “truth” of much of what you have been taught in mathematics. But how do you
know that the claims made by your math teachers really are true? To be sure that you are not being duped, you should
always seek proof, or at the very least, a very convincing demonstration.

Nolfi’s Intuitive Definition of “Proof”

A proof is a series or “chain” of inferences (i.e. “if...then” statements, formally known as logical implications or
conditional statements) that allows us to make logical deductions that lead from a premise, which is known or assumed
to be true, to a desired conclusion.

Hopefully, my definition is somewhat easier to understand than that of a former Prime Minister:

Jean Chrétien, a former Prime Minister of Canada, was quoted by CBC News as saying, “A proof is a proof. What kind
of a proof? It's a proof. A proof is a proof. And when you have a good proof, it's because it's proven.”

Pythagorean Theorem Example -
. e
) ) s [P conclusion
In any right triangle, a c
the square of the hypotenuse is equal to the sum of the squares of the other two sides.
That is, ¢ =a® +b? AN
b
Proof:
Begin with right AABC and construct the altitude AD.
Since AABC ~ ADBA (AA similarity theorem),
. AB_BD
BC AB
Since AABC ~ ADAC (AA similarity theorem), B
_Ac_DC
"BC AC’ D
Therefore,
(AB)(AB) = (BD)(BC) and (AC)(AC) = (DC)(BC)
Summing up, we obtain
(AB)(AB) + (AC)(AC) = (BD)(BC) + (DC)(BC)
=BC(BD + DC)
= (BC)(BC)
= BC? C
-.AB2 + AC2 = BC?// A

See http://www.cut-the-knot.org/pythagoras/index.shtml for a multitude of proofs of the Pythagorean Theorem.

Now that we have proved the Pythagorean Theorem we can use it to derive more relationships.
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For the following proofs,
refer to the diagram at the
left.

Proof of the Law of Cosines Proof of the Law of Sines

2 _ 12 2 2 12 2
By the Pythagorean Theorem c“ =h“+BD” and b°=h“+DC". D:sinB and EzsinC

c
Since a=BD + DC, a? =(BD + DC)? = BD? + 2(BD)(DC) + DC?.
~.h=csinB and h=bsinC
Therefore, . cSiNB = bsinC
¢ —a? —b? = h? + BD? — (BD? + 2(BD)(DC) + DC?) — (h? + DC?) ~-esInE =hsin
—h? + BD? - BD? — 2(BD)(DC) — DC2 — h? - DC? . sinB _sinC
b c
=—2(BD)(DC)-2DC* sinA sinB
= -2DC(BD + DC) Similarly, it can be shown that = o
=-2(DC)(a i i i
(DC)(a) Therefore. sn;Azsn;B =S|r::C p

But cosC =%, which means that DC =bcosC . Hence,

c? —a?—b? =—2(DC)(a) = -2(bcosC)(a) =—2abcosC .
s.c?=a%+b?-2abcosC //

Important Questions — Test your Understanding
1. Would it be correct to use the law of cosines to prove the Pythagorean Theorem?

2. Complete the proof of the law of sines. (The word “similarly” was used to indicate that the remaining part of the proof
would proceed in the same manner.)

3. In the given proof of the Pythagorean Theorem, it is stated that AABC ~ ABDA and that AABC ~ AADC. Explain why
each of these statements must be true.
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