MHF4U0 Final Exam Review #3 – Rates of Change and Modelling

- 1. Shown at the right is a graph of a cyclist's elevation relative to her elevation above sea level at the start of a race. The graph covers the first 20 s of the race.
 - (a) List the intervals for which the instantaneous rate of change of height with respect to time is *positive*. What does a positive instantaneous rate of change imply about the elevation?
 - (b) List the intervals for which the instantaneous rate of change of height with respect to time is *negative*. What does a negative instantaneous rate of change imply about the elevation?
 - (c) Find the average rate of change of height with respect to time on the interval [0,20].
 - (d) Estimate the instantaneous rate of change of height with respect to time at 15.5 s.
 - (e) Over which intervals is the rate of change of height *speeding up*? Over which intervals is it *slowing down*?
- 2. Consider the function $f(x) = x^3 4x^2 + 4x$.
 - (a) Sketch the graph of f by using its zeros and your knowledge of the end behaviour of a polynomial of odd degree.
 - (b) Calculate the average rate of change of f(x) with respect to x over the interval [-1,4]. Sketch the secant line whose slope equals the rate of change that you just calculated.
 - (c) Estimate the instantaneous rate of change of f(x) with respect to x at x = 1. Sketch the tangent line whose slope equals the rate of change that you just calculated.
 - (d) Use your graph to estimate the intervals over which the instantaneous rate of change of f(x) with respect to x is positive, negative and zero.
- 3. The following table shows the monthly average number hours of sunshine for Toronto.

Month	J	F	М	А	М	J	J	А	S	0	Ν	D
Average Monthly Sunshine (h)	95.5	112.6	150.5	187.7	229.7	254.9	278.0	244.0	184.7	145.7	82.3	72.6

Source: Environment Canada

- (a) Create a scatter plot of the number of hours of sunshine versus time. (Let t = 1 represent January, t = 2 represent February, and so on.
- (b) Sketch the curve of best fit. (Do this part using graph paper.)
- (c) Find a function that models the data. (Use a graphing calculator or a computer to perform an appropriate regression. If necessary, consider a few alternatives.)
- (d) According to the function, when will the number of hours of sunshine reach a maximum? When will it reach a minimum?
- (e) How well does your model fit the data?
- 4.

The population of Canada is measured on a regular basis by taking a census. The table shows the population of Canada at the end of each period. From 1851 to 1951, each period is a 10-year interval. From 1951 to 2006, each period is a five-year interval.

- a) Use technology to investigate polynomial and exponential models for the relationship of the population and years since 1861. Describe how well each model fits the data.
- b) Use each model to estimate Canada's population in 2016.
- c) Which model gives the most realistic answer? Explain.
- d) Use the model you chose in part c) to estimate the rate at which Canada's population was increasing in 2000.

Period	Census Population at the End of a Period (in thousands)	Period	Census Population at the End of a Period (in thousands)
1851–1861	3 230	1951–1956	16 081
1861–1871	3 689	1956–1961	18 238
1871–1881	4 325	1961–1966	20 015
1881–1891	4 833	1966–1971	21 568
1891–1901	5 371	1971–1976	23 450
1901–1911	7 207	1976–1981	24 820
1911–1921	8 788	1981–1986	26 101
1921–1931	10 377	1986–1991	28 031
1931–1941	11 507	1991–1996	29 672
1941–1951	13 648	1996–2001	30 755
		2001–2006	31 613

Source: Statistics Canada, Demography Division