ANSWERS TO TRIG FUNCTIONS PRACTICE TEST

Multiple Choice Questions

1.	b	2.	с	3.	d	4.	b	5.	с
6.	b	7.	a	8.	d	9.	d	10.	с
11.	d	12.	a	13.	b	14.	b	15.	a
16.	a	17.	a	18.	a	19.	b	20.	d

Short Answer Questions

21. 2π rad/min= $\frac{\pi}{30}$ rad/s	22. 263.89 m	23. $\frac{2\pi}{3}$	24. sine and cosine
25. 3.67 cm ²	26. $y = -4\cos x - 2$ $y = 4\cos x + 2$	$27. y = \frac{75}{2}\cos 14\pi t + \frac{75}{2}$	28. 28 days, $\omega = \frac{2\pi}{28} = \frac{\pi}{14}$

29.
$$h(t) = 4\sin\left(\frac{\pi}{3}\left(t+\frac{3}{2}\right)\right) + 144$$
 30. -3.3079

Problems

31. Solution

The graphs of $y = \sin x$ and $y = \cos x$ are out of phase by $\frac{\pi}{2}$ radians. That is, the graph of $y = \sin x$ can be obtained by translating the graph of $y = \cos x$ by $\frac{\pi}{2}$ radians to the right and the graph of $y = \cos x$ can be obtained by translating the graph of $y = \sin x$ by $\frac{\pi}{2}$ radians to the left. This suggests the identities $\sin x = \cos(x - \frac{\pi}{2})$ and $\cos x = \sin \left(x + \frac{\pi}{2} \right)$.

32. Solution

If $0 \le \theta \le 2\pi$, then $\theta \doteq 0.7227$ or $\theta \doteq 2\pi - 0.7227 \doteq 5.56048$ (first and fourth quadrant solutions). If there are no restrictions on θ , then we can write $\theta \doteq 0.7227 + 2\pi n$ or $\theta \doteq 5.56048 + 2\pi n$ for all $n \in \mathbb{Z}$.

33. Solution

 $\frac{\pi}{2}$

34. Solution

The result is the function $f(x) = x \sin x$, which is a function with a variable amplitude. Like a sinusoidal function, this function has an "up and down" behaviour. However, it is not a periodic function.

35. Solution

The period of the tangent function is π while the period of cosine is 2π .

36. Solution

The given function has a period of 1, an angular frequency of π , a vertical displacement of -1 and a phase shift of $\frac{1}{2}$.

The range of the function is \mathbb{R} and the domain is $\{x \in \mathbb{R} : x \notin \mathbb{Z}\}$ (the function is defined for all values of *x* except for the integer values).

37. Solution

The minimum value of the given function is -2, which indicates that the point on the spinning wheel would be underground for a certain interval of time. Thus, the student's proposed equation must be incorrect.

38. Solution

We want to model the pendulum's side-to-side motion. Knowing that the rope is 3 m long and the pendulum creates a central angle of $\frac{\pi}{3}$ when it is at its widest, we can determine how far away it is from perpendicular using $\sin \theta = \frac{o}{h}$.

Our hypotenuse in this case is 3 and our $\theta = \frac{\pi}{3}$. So our opposite side of the triangle is $\frac{3\sqrt{3}}{2}$, which will be the amplitude of the function. Since it takes 2 seconds to move from vertical to its furthest point, we can assume that it takes 8 seconds for one period, so $k = \frac{2\pi}{8}$. Since the starting point is not asked for we can take *d* to be 0 and when the rope is perpendicular to the ground is given as 0 we can take *c* to be zero. Putting all the pieces together we get $x(t) = \frac{3\sqrt{3}}{2} \sin\left(\frac{\pi}{4}t\right)$, where x(t) is the horizontal distance from vertical.

39. Solution

Zero at x = 4 and 12 Negative for 4 < x < 12Positive nowhere

40. Solution

The instantaneous rate of change of distance (position) with respect to time is *velocity*. Whenever the instantaneous rate of change is zero, the distance is not changing. Therefore, the object in question has come to a complete stop, that is, its speed is zero.