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REVIEW OF EXPONENTIAL FUNCTIONS

Exponential Growth and Exponential Decay
Exponential functions are used to model very fast growth or very fast decay. Specifically, exponential functions model
e growth that involves doubling, tripling, etc. at regular intervals

e.g. Since 1950, the Earth’s population has been doubling approximately every 40 years.

e decay that involves cutting in half, cutting in thirds, etc. at regular intervals
e.g. Sodium-24 loses half of its mass every 14.9 hours. We say that the half-life of Sodium-24 is 14.9 hours.

Graphs of Exponential Functions

f(x):ax, a>1

Exponential Growth

=27 = ej 05"

=33

3

=15 ~(3] -

55432

Example

|

f(x)z a’, O<a<1
Exponential Decay

X
fi(x)=2 Ym0 [ 20 [ Y300 | vA) | ¥ | L vEm)
28x | "3 | 0055 | 1.8%x | 3%(-x) | 1.5 (-x)

5] 0.03125) 0.004115 32/ 0.131857 23| 7.59375
4] 0.0625/0.012345 16 0.187531 81 5.0625
. 3| 0.125/0.037037 3 0.296296 27 3.375
f(x)=3 2] .za0arn 4] 0.444444 ] 2.5
Al 0.50.33333 2 0.666667 3 1.5
0 T 1 1 i 1 1
1 2 3 0.5 1.5 0.333333 _ 0.566667
2 4 S 0.25 2.5 .111111] _ 0.444444
3 5 27| 0.125  3.375] 0.03707| _ 0.296298
4 16 81 0.0825 5.0825 0.012348 0.197531
5 32 243] 0.03125 7.58375 0.004115] _ 0.131687
\ 3" 6 84 728(0.015625] 11.3906] 0.001372] _ 0.087791
f,(x)=15"=| = 7 123]  2187(0.007813_17.0853] 0.000457| _ 0.058528
2 8] 256|6.56£+03(0.003906 25,6289 1.526-04]  0.039018
9| 512 1.97E+04(0.001953| 38.4434| 5.10E-05 0.028012
T 2 3 4 £ 6 10| 1024] 5.906+04[0.000977__ 57.665| _1.70E-05 __0.017342

In 1950, the Earth’s population was about 2.5 billion people. Since then, the world’s population has been doubling
roughly every 40 years. If the current trend continues, predict the world’s population in 2100. Do you think that the

current trend will continue?
Solution

Using a Table to help us
Understand the Problem

Year Population

1950 2.5x10°

1990 | 5x10° =(2.5x10°)(2)
2030 | 1x10" =(2.5x10%)(2%)
2070 = 2x10" =(2.5x10%)(2°%)
2110 = 4x10" =(2.5x10%)(2*)

Writing an Equation

To double means to multiply by 2.
Furthermore, we must multiply by 2
every 40 years. Thus, if we sett=0
years to correspond to 1950, it is clear
that the following exponential function
models the given situation:

P(t)= 2.5x109(2%0)

Solving the Problem

The year 2100 is 150 years after
1950. Therefore, ¢ = 150.

P(150) = 2.5x10° (215%0)

= 3.4x10%

If the current trend continues, in
2100 the Earth’s population will be
about 34 billion.

It is difficult to imagine that the current rate of population growth will continue indefinitely. First of all, it is very unlikely
that the Earth’s food supply can grow at a pace that matches or exceeds the growth of population. To compound matters,
as the population size increases, the amount of arable land tends to decrease because extra space is required for residential,

commercial and industrial purposes.
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General Form of an Exponential Function

Algebraic Form

f(x)=a’

g(x)=4f(b(x—h))+k
= Ad""" 4

Note

Since a is being used to
denote the base of the
exponential function, 4 is
used to denote the vertical
stretch factor.

Example

f(x)=2

g(x)=-5f(-15(x+1))+6
=-5(2%)+6

To obtain the graph of g from
the graph of £, do the
following:

Horizontal

1. Compress horizontally by
a factor of 1/1.5=2/3,
reflect in the y-axis.

2. Translate 1 unit to the left.

Vertical

1. Stretch vertically by a
factor of 5, reflect in the
x-axis.

2. Translate 6 units up.

Transformations expressed in Words
Horizontal
1. Stretch/compress by a factor of 1/b=5""
depending on whether 0<b <l or b>1. Ifbis
negative, there is also a reflection in the y-axis.
2. Shift & units right if 2>0 or A units left if 2<0.
Vertical

1. Stretch/compress by a factor of 4 depending on
whether 4>1 or 0< A<1. If 4 is negative, there

is also a reflection in the x-axis.

2. Shift & units up/down depending on whether & is
positive or negative.

(x, y)—)(—%x—l,—5y+6j

Transf. in Mapping Notation

(x,y)—)(%x+h,Ay+k)

Pre-image

Image

(0)

(-11)

Horizontal Asymptote
y=6

12)

|
=

|
w
|

/—\/T\/—\
N
Al | NP
e N N

/
IS
&
-

[g(x) %_—5f(—1.5(x+1))+6

N _5(2—1.5(x+1) ) 6

Why are the Horizontal Transformations the Opposite of the Operations Performed to the Independent Variable?

y=gx)=af (b(x—-h))+k

X2 —h—>xb—> b(x-h)— f

- f(b(x=h)) —xa— +k—af (b(x-h))+k

g

As can be seen very clearly from the above diagram,

e The operations that affect x are performed before the function f'is applied.
e The operations that affect y are performed after the function f'is applied.

o Theinputtofis b(x—h). Recall thatf(b(x—h)) means “the y-value obtained when b(x—#) is the input given to /.

e The input to the function g, however, is x, not b(x—h).

e To find out the output obtained when g is applied to x, it is first necessary to “see” what output is produced by applying
fto b(x —h). In other words, we first must “look ahead” to see what happens when f'is applied to b(x - h) , then

“reverse our steps” back to x, to determine what happens when g is applied to x.
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Very Important Restriction on Bases of Exponential Functions

1. Negative bases are not allowed! When the bases are allowed to be negative, the resulting functions are “badly
behaved” in the sense that they are not continuous and smooth. For instance, the table of values below (for the

function f (x) = (-2)") illustrates some of the problems associated with allowing negative bases.
-1/2 0
N2

(undefined)

X -2 -1

y4 -y

f(x)=2

14 12 1
42 J-2
(undefined) | (undefined)

e f(x)=(=2)" is undefined at an infinite number of points

3/2 2
3

(2]
(undefined)

o f (x) =(=2)" “jumps” across the x-axis, from positive to negative values and vice versa, at an infinite number of

points

e Functions like f (x) =(—2)" behave very erratically. They do not model natural processes such as radioactive

decay or population growth.

2. The bases 0 and 1 are not allowed. This is very easy to accept because 0 =0 and 1" =1 forall xeR. That s, the
functions f(x)=0" and g(x)=1" are nothing more than constant functions, which means that their graphs are

horizontal straight lines. To make matters even worse, their inverses are not even functions (graphs are vertical lines).

25 7
x=0 e
1.5# >
f(x):O =0 1k d
Ve
Ve
05—
P
L 1 1 L s L 1 L 1
-2 -8 1 05 s os 1 15 2
/—/DE
//
A -1
7
~ 15F
Ve
ya _2_

Summary

51

F a5 1 —DIE/

/-/DE-
-

s

;;;;;

7O+
GO+
S0+
40+
30+
20+
10+

oot
Aot
gl

Functions that we call exponential must be of the form f'(x)= 4a"*") +k, where a>0 and a=1. If a<0 or a=1, the

resulting functions do not exhibit the behaviour of natural processes such as population growth and are not called
exponential. (In addition, 4, b, k and 2 must all be real numbers but 40 and 5=0.)

Furthermore, if an exponential function A4 is used as a mathematical model for a process that depends on time, then the
amount present at time t is given by A(t) =4, (a’/’) \where 4, represents the initial amount (amount at time 0), the base

of the exponential function a corresponds to the growth factor (e.g. if the amount doubles at regular intervals then a = 2),
and 7 represents how long it takes for the amount to increase by a factor of a.

Important Differences between Power Functions and Exponential Functions

Power Functions
f(x) =x",neZ
e.g. f(x) =x’
e The base is variable and the
exponent is constant.

e Power functions grow more
slowly than exponential
functions.

Copyright ©, Nick E. Nolfi
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Exponential Functions
g(x)zax,aeR,a >0,a#1
e.g. g(x) =27
e The base is constant and

the exponent is variable.

e Exponential functions
grow more quickly than
power functions.

MHF4UO Unit 1 — Exponential and Logarithmic Functions
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Problems

1. Given f(x):(%)x, sketch the graph of g(x)=3f(-2(x+1))-4.

Equation of g Transformations in Mapping Notation

Pre-image Image

Transformations of f expressed in Words

Copyright ©, Nick E. Nolfi

choose to swim across bodies of water in search of a new habitat. Many

lemmings drown during such treks, which may in part explain the myth of 0
mass suicide.

0.5
What is true about lemmings is that they reproduce at a very fast rate, 1
causing populations to increase dramatically over a very short time. 1.5
Possibly because of limited resources and the life cycles of their predators, 2
lemming populations tend to plummet every four years. These periodic 25
“boom-and-bust” cycles may also contribute to the mass suicide myth. 3
Using the data in the table at the right, model the lemming population for a 3.5
four year cycle. 4

. Since exponential growth is so fast, it usually cannot be sustained for very long. The
rate of growth of any system is constrained by the availability of resources. Once the
growth rate outstrips the rate of growth of resources, the system’s growth is necessarily
curbed. In such cases, a logistic function is likely a better mathematical model than an
exponential function.

Construct both an exponential model and a logistic model for the following.

(a) According to each model, how long would it take to reach the maximum rate of
infection?

(b) Which model describes the given situation more realistically?

A town has a population of 5000 people. During a March Break trip, one of the town’s
residents contracted a virus. One week after her return to the town, 70 additional people
had become infected with the same virus. Detailed scientific studies of the transmission
of this virus determined that it infects approximately 8% of a given population.

2. Lemmings are small rodents usually found in or near the Arctic. Contrary to popular belief, lemmings
do not commit mass suicide when they migrate. Driven by strong biological urges, they will migrate in
large groups when population density becomes too great. During such migrations, lemmings may

Time (Years)

Population Per Hectare

5

7.2

10.4

15

21.6

31.2

45

64.9

93.6

The general equation of a
logistic function is

(&
-
represents the carrying
capacity (upper limit) of the
function. The following is
an example of a graph of a
logistic function.

where ¢

x !

P
500+

FTo! ;O R T SN
300 /
200-] /

/

100
(0,1 /77)

o 4 8 1 1
-100-

t

. How long would it take for an investment of $5000.00 to double if it is invested at a rate of 2.4% per annum (per year)

compounded monthly?

MHF4UO Unit 1 — Exponential and Logarithmic Functions
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INTRODUCTION TO LOGARITHMIC FUNCTIONS

Introduction
As shown in the following examples, logarithmic and exponential functions to the same base are inverses of each other.

X f 2° X f—l Ing X
exponent power power exponent

o f(x)=2" % [ (x)=log, x
(exponent) ~ (power) (power) (exponent)

R %
-2 % % )

0 1 1 0

1 2 2 1

2 4 4 2

3 8 8 3

e 2" isread “2 to the exponent x” or “the x™ power of 2” ¢ log, x is read “the logarithm of x to the base 2”
o If y=log, x, then y is the exponent to which the base 2
) ) o must be raised to obtain the power x. Therefore, a
» Sometimes, the word power is used as if it were logarithm is an exponent.
synonymous with exponent. This is not strictly correct. | 14 functions F(x)=2" and f(x)=log, x contain
However, this mistake is so common that we are forced _ . 2 i
to accept that statements such as “2 to the power x” exact_ly the same mform_atlon. However, exponential
mean the same thing as “2 to the exponent x.” fqnctlons grow very rap_ldly and can be hard to manage.
Since logarithmic functions grow very slowly, they are
often much easier to work with.

e 2" 52 isthe base, x is the exponent, 2* is the power

Definition of a Logarithmic Function
Consider the exponential function y =™, where a >0 and a =1.
Since y =a" is one-to-one, its inverse (reflection in the line y =x) is also a function. We

could write the equation of the inverse in the form x =a”; however, it is preferable to
write equations of functions in such a way that the value of the dependent variable is

S, L
given by some expression that is specified only in terms of the independent variable. Fman; T*gf ﬁu
! I
Definition B _dﬂf*?
Thus, we define g(x)=1log, x to be the inverse of f(x)=a". AR
Thatis, g(x)=log, x=7""(x). (Recall that the base a of an exponential function is a ad 13

constant and that @ >0 and a #1.)

Base
'_ Exponent
Y = Y= IOgN X
v Base \ ¢ \
Power Exponent Power

In words, if y=1log, x, then y is the exponent to which a must be raised to obtain the power x.

Copyright ©, Nick E. Nolfi MHF4UO Unit 1 — Exponential and Logarithmic Functions ELF-7



Examples
1. Evaluate each logarithm.

-2
(a) log,32=5 because 2° =32 (c) log, 25=-2 because [%) =25

5

1 1
b) log,==-3 because 27° ==
(b) log, 3 3

(d) log ;49=4 because (ﬁ )4 =49 (e) log,,0.0001=-4 because 10 =0.0001

2. Express each exponential equation in logarithmic form.

(a) 27 =100 (exponential form) (b) &’ =x (exponential form)
log,100=y (logarithmic form) log, x=y (logarithmic form)

(c) 10° =1000 (exponential form)
log,,1000=3 (logarithmic form)

Important Note on Calculator Use

Scientific and graphing calculators usually have two buttons for computing logarithms, “log” and “In.” The “log” button
computes the logarithm of a number to the base 10 while the “In” button evaluates the logarithm of a number
to the base e. (Thatis, log=1log,, and In=1log,. See details below.) The function “In” is called the natural logarithmic

function (logarithme naturel in French, hence “In” and not “nl”) and is pronounced “lawn.”

I = R B N =R ==

loa | —  This button computes the logarithm of a number to the base 10.

This button computes the logarithm of a number to the base e. Like z, e is an
irrational number with a geometric significance. The function f'(x)=e" isthe

I | — unique exponential function whose tangent line at the point (0,1) has a slope of 1.

The importance of e will become apparent when you study calculus. (Note that e
is called “Euler’s number” and that e=2.718.)

£ 43z a

Important Note on Notation

In most cases, whenever the base is omitted, it is understood to be 10. That is, it is usually the case that log =1log,,. In
advanced mathematics, however, “log” is used to mean “log,” because the base 10 has no special significance in
mathematical theory.

Characteristics of Logarithmic Functions
For f(x)=log, x

The slope of any
tangent line is
positive.

\@Mmhmmw
T T T T T

3l

meaning that the rate of
change is positive.

e The function increases
as x increases but the

a vertical asymptote.

Domain of f(x)=1Ilog,x foranya>0,a=1

-10

1
2
3
Al
5
6
T

| 1.0 .2.0 | 3.[] .4.0 | 5.0 | EI[] | TI[] | 8|[]

The slope of any
tangent line is

7 (x)=log, x Whena>1 3r WhenO<a<1
2
e The slope of any 2r e The slope of any tangent
tangent line is positive, 1+ line is negative, meaning

that the rate of change is
negative.

e The function decreases
as x increases but the rate

rate of increase is negative. of decrease is extremely
-19/ 10 20 30 40 50 60 70 80 extremely slow. slow.
At * The y-axis (i.e. the line f{x)=log;x * The y-axis (i.e. the line
2r with equation x=0) is 2 with equation x=0)isa

vertical asymptote.

From the above, you should have noticed that f(x)=log, x is only defined for positive values of x. That is, the domain
of any such logarithmic function is {xeR:x>0}. Another way of expressing this is that one can only “take” the

logarithm of a positive number. To understand why this is the case, consider an example. Suppose that y =log, (-6).

Then a” =-6, which is impossible because a” >0 forall y e R. (Remember that « must be positive.)

Copyright ©, Nick E. Nolfi
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Key Ideas

* The inverse of the exponential function v = a* is also a function. It can be
written as x = a*. (This is the exponential form of the inverse.) An equivalent
form of x = a¥ is v = log,x. (This is the logarithmic form of the inverse and is

logarithmic function.

s Sincex = a¥ and y = log,x are equivalent, a logarithm is an exponent. The
expression log,x means “the exponent that must be applied o base a to get
the value of x.” For example, log,8 = 3 since 2° = 8.

read as “the logarithm of x to the base a.”) The function y = log,x is called the

Need to Know

* The general shape of the graph of the logarithmic function depends on the
value of the base.

When a = 1, the exponential y 2
function is an increasing function, y=a i
and the logarithmic function is ,/_ 3
also an increasing function. ol
4 .
-: _/ + /"/7
,,I 1
et y=lo
% BaX
When 0 < a = 1, the ny A
exponential function is a al
decreasing function and the .

' . _ y=a* Sy=Xx
logarithmic function is also a i
decreasing function. 130 L

A X
Ifl 1\
i y =log x
’I
54

* The y-axis is the vertical asymptote for the logarithmic function. The x-axis is
the horizontal asymptote for the exponential function.

* The x-intercept of the logarithmic function is 1, while the v-intercept of the
exponential function is 1.

* The domain of the logarithmic function is {x =R | x = 0}, since the range of
the exponential function is {¥=R | y = 0}.

* The range of the logarithmic function is {v = R}, since the domain of the
exponential function is {x =R}.

Homework
p. 451 1,2, 4
p. 466 1,23,

Copyright ©, Nick E. Nolfi MHF4UO Unit 1 — Exponential and Logarithmic Functions
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A VERY BRIEF HISTORY OF LOGARITHMS

(Adapted from Wikipedia Article http://en.wikipedia.org/wiki/Logarithms )

The method of logarithms was first publicly propounded in 1614, in a book
entitled Mirifici Logarithmorum Canonis Descriptio, by John Napier, Baron of
Merchiston, in Scotland. (Joost Birgi independently discovered logarithms;
however, he did not publish his discovery until four years after Napier.) Early
resistance to the use of logarithms was muted by Kepler’s enthusiastic support
and his publication of a clear and impeccable explanation of how they worked.

Their use contributed to the advancement of science, especially of astronomy, by
making some difficult calculations much easier to perform. Prior to the advent

of calculators and computers, they were used constantly in surveying, navigation,

LOGA'RITHMS, (from rye ratio, and wply-@
wumber), the )ud.lm of the ratios of numbers to
ooc another j I.fcrmof numbers in artthmetical
progreffica, |:|'.n"ltla to others in geometrical
progreffion § by nm whxh, lmhmucl.l calcula-
tions can be made with much more cafe and expedi-
tion. thas otherwife.

The 1797 Britannica explains logarithms as "a series of
numbers in arithmetical progression, corresponding to others
in geometrical progression; by means of which, arithmetical
calculations can be made with much more ease and
expedition than otherwise.”™

and other branches of practical mathematics. The methods of logarithms supplanted the more involved method of
prosthaphaeresis, which relied on trigonometric identities as a quick method of computing products.

Questions

1. What is meant by the following reference from the 1797 Encyclopaedia Britannica?

“... being a series of numbers in arithmetical progression, corresponding to others in geometrical progression; by means of which,
arithmetical calculations can be made with much more ease and expedition than otherwise.”

The following example may help you to understand the above reference.

Geometric Progression

Powers

(Geometric Sequence) 1=2° 2=2! 4=2° 8=2° | 16=2* | 32=2° | 64=2°% | 128=2"

Arithmetic Progression
(Arithmetic Sequence) 0 1 2 3

Exponents = Logarithms

2. What is the main advantage of using logarithms? Give some examples to support your answer.

Copyright ©, Nick E. Nolfi MHF4UO Unit 1 — Exponential and Logarithmic Functions ELF-10




THE LAWS OF LOGARITHMS

Introduction — The Meaning of “Logarithm”

It is very important to keep in mind that a logarithm is simply an alternative way of writing an exponent! Whenever you
hear the word “logarithm,” think “exponent.” Whenever you hear the word “exponent,” think “logarithm.”

Review — Laws of Exponents

Law Expressed in :
Algebraic Form Law Expressed in Verbal Form
. - To multiply two powers with the same base, keep the _ _
1. @a”=a"" base and%élld thepexponents. P a'a’=(a)(a)(a)(a)(a)(a)=a"
5 A e To divide two powers with the same base, keep the base | @° _ (a)(a)(a)(a)(a) -4
TR a and subtract the exponents. a’ (a)(a)
oV x To raise a power to an exponent, keep the base and 4 _
3 (a ) =a” multiply the exponents. (as) B (a3)(a3)(a3)(a3) =a’

How the Laws of Exponents give Rise to Laws of Logarithms

Exponent Law Expressed in Verbal Equivalent Statement expressed in Logarithmic Law Suggested by
Form Language of Logarithms Law of Exponents
To multiply two powers with the same The logarithm of the product of two powers is
base, keep the base and add the exponents | equal to the sum of the logarithm of one power log, (xy) =log, x+log, ¥
(i.e. add the logarithms). and the logarithm of the other power.

To divide two powers with the same base, | The logarithm of the quotient of two powers is
keep the base and subtract the exponents equal to the difference of the logarithm of one
(i.e. subtract the logarithms). power and the logarithm of the other power.

X
log, (—J =log, x—log, y
Yy

The logarithm of a power raised to an exponent
is the product of the exponent and the logarithm
of the power.

To raise a power to an exponent, keep the
base and multiply the exponents.

log, (x")=ylog, x

Testing the Conjectures

The above table shows how logical reasoning can be used to suggest new mathematical laws. Although the reasoning
appears to be sound, there is still some doubt as to whether the suggested laws are correct. To determine the plausibility

of the laws, it is necessary to perform tests.

Suggested Law Tests

| ) | Letx=4,y=8,a=2.

0g, (xv)=log, x+log, y L.S.=log, (4x8)=log,32=5, RS.=log,4+log,8=2+3=5, ~LS=RS.

| X 0 | Letx=4,y=8,a=2.

09a| 5 | 7100, ¥ 7100, ¥ LS=log,(4/8)=log,(1/2)=-1,  R.S.=log,4-log,8=2-3=-1, ~LS=RS.

Letx=2,y=3,a=2.

log, (") = ylog, x L.S.=log,(2*)=log,8=3,  R.S.=3log,2=3(1)=3,

-~ L.S=R.S.

Copyright ©, Nick E. Nolfi MHF4UO Unit 1 — Exponential and Logarithmic Functions
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Proofs

The tests performed above all confirm the conjectures. Nevertheless, it is not possible to assert the validity of a
mathematical statement solely on the basis of examples! The fact that a statement is valid for a particular example does
not preclude the possibility that it could be invalid in other cases. Thus, a mathematical statement cannot be treated as
“true” until a proof is found that demonstrates its validity in all possible cases! The second table below gives arguments
that show irrefutably that the three conjectures given above are indeed true. Each of the proofs given below relies on
another very important property of logarithms, namely log, a* = x. This property must be proved before proofs of the

laws of logarithms can be constructed. In addition, another property will be stated and proved because it is closely related
to the required property.

Property Explanation Proof
The exponent to which the base a must be raised to Let x=log, y.
obtain a* is equal to x. Alternatively, since y=log x | 1NeN @ =y

log, a” =x | and = 4" are inverses of each other, log, a* must be Therefore, log, a* =log, y .
equal to x. (In general, f(f’l(x)) = f’l(f(x)) =x.) But x=log, y .

Therefore, log, a* =x.
The base a is raised to the exponent to which a must be | Let y =log, x.
g raised to obtain x. Therefore, the result must be equal to | Then, 4” = x.

a ™ =% |y Alternatively, since y=log, x and y=a" are But y=log x.
inverses of each other, ¢"** must be equal to x. Therefore, ¢ * = x.

The Laws of Logarithms

Product Law Quotient Law Power Law

log, (xy)=log, x+log, y

X
Ioga(—} log, x—log, v
Y

log, (x")=ylog, x

Proof

Let x=a" and y=a".
Then, xy=a"a’ =a"". Then, X _a
Therefore, log, xy=log, " =w+z.
But w=log,x and z=log, y.
Therefore, log, xy =log, x+log, v .

Proof
Let x=a" and y=a".

a w—z

y a

Therefore, log, = log,a" " =w-z.
y
But w=1log,x and z=1log, y.

Therefore, log, [EJ =log,x—log, y.
Y

Proof
Let x=a".

Then, x” :(aw)y =a".
Therefore, log, x” =log, a™ =wy .
But w=log, x.

Therefore, log, (x*)=ylog, x .

Examples

1. Use the laws of logarithms to evaluate each of the following expressions.

(@) log,12+log,6.75 (D) log,96~log,6  (C) |og, 3343
= log, (12x6.75) | (96) !
=100z & = log, 3433
=log, 81 ‘L6 1097
—4 =log,16 =Zlog, 343
_a 3
B 1
==(3
‘o)
=1

Copyright ©, Nick E. Nolfi
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(d) log,12
log,6.75

Unlike the others, this expression cannot be
simplified because there is no law of
logarithms that corresponds to the form of
this expression. This expression can be
evaluated with a calculator but first we need
to have a method to convert to a base that a
calculator can evaluate directly.
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2. Graph the functions f(x)=1og,,100x and g(x)=2+log,, x.

4+ 41

/(x)=log,,100x

2(x)=2+log,, x

3t 3l
2t 2f
1 1

How do the graphs compare? Explain algebraically.

As we can see, the graphs of the two functions are
identical. This is due to the fact that log,,100x and

2+log,, x are equivalent expressions:
log,,100x

I .
- 12 3 4 5 6 7 8 310 -1
18 4l

2L -2h

2_5
3. Use the laws of logarithms to write log,, 3 al %:
Solution
1
2.5 2.5\3
Ioga3x): =log, x{ ]
w w

172345678910

=log,,100 + log,, x
=2+log,, x

in terms of log, x, log, vy and log, w.

1
2.5 2.5\3
Xy X'y
log, ,3/ 4 :Ioga[ 4j
w w
5

1
3
5 4 _ 1 2.5 4
=Ioga(x3y§)—loga(w5) OR _§(|Oga () ~log, (w ))
2 5 1 2 5
=log, (x§)+ Ioga(yi)—iloga w =§(Ioga (x*) +log, (»*)-4log, W)
3
2 5 4 1
=Zlog x+=log y——log w ==(2log, x+5log, y —4log, w)
3 9, 3 9,y 3 9, 3
=gloga x+§loga y—ﬂloga w
3 3 3
The Change of Base Formula
The Formula Explanation Proof
Let y=log, x .
The logarithm of a value to the base b | than ¥ = &
is equal to the quotient of the There;fore Io. 2 = 1lo
I logarithm of the value to the base a 109,07 =10g, x. I
log, x = 0g, x and the logarithm of 4 to the base a. Thus, ylog, b=log, x , which means that y = 09, x
log, b (This is called the change of base log, b
formgla. It is used to convert a But y=log, x .
logarithm expressed in a given base to |
a more convenient base such as 10.) Hence, log, x = 09, x
log, b
Example
Evaluate 10,12 correct to one decimal place.
log, 6.75
Solution
log12
log;12  \ log3 ) (logl2|( log3 ) logl2 .
log,6.75 (1log6.75) | log3 )\ log6.75 ) log6.75
log3
Homework
pp. 467-468 9, 11,12, 15, 16, 18, 19, 20, 23
pp. 475-476  4,5,6,7,9, 10, 11, 12, 13, 16, 17, 18
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GRAPHS AND TRANSFORMATIONS OF LOGARITHMIC FUNCTIONS

General Form of a Logarithmic Function

Algebraic Form

Transformations expressed in Words

Transf. in Mapping Notation

f(x)=log, x
g(x)=4f (b(x—h))+k
= Alog, (b(x—h))+k

Note

Since a is being used to denote the base
of the logarithmic function, 4 is used to
denote the vertical stretch factor.

Horizontal

1. Stretch/compress by a factor of
1/b=b" depending on whether
O<b<1lor b>1. If bis negative,
there is also a reflection in the y-axis.

2. Shift & units right if 2>0 or 4 units
leftif 7<0.

Vertical

1. Stretch/compress by a factor of 4
depending on whether 4>1 or
0< A<1. If 4is negative, there is also
a reflection in the x-axis.

2. Shift & units up/down depending on
whether & is positive or negative.

(x,y) —)(%x+h,Ay+kj

Example

f(x) =log, x
g(x) =3/ ((x-1)+3

= —%Iogz(%(x—l)) +3

To obtain the graph of g from the graph
of £, do the following:

Horizontal
1. Stretch horizontally by a factor of
y(3)-4.
4

2. Translate 1 unit to the right.

Vertical

1. Compress vertically by a factor of
1/2, reflect in the x-axis.

2. Translate 3 units up.

(x,y)—>(4x+1,—%y+3j

Pre-image Image
(1,0) (5.3)
(2.0) (92)

) b
(%,-2) (2.4)

Vertical Asymptote

2.3 45 6 7 8 93101112

L
1
)
)
)
L
1
)
)
)
L]
L 4
%

Exercise

Given f(x)=log, x, sketch the graph of g(x)=3f(-2(x+1))-4.

Equation of g

Transformations in Mapping Notation

Copyright ©, Nick E. Nolfi

10+
B L
) ) Pre-image Image 61
Transformations of f expressed in Words 4t
2 L
05 6 7 65 45 217
-2
_4 L
_8_
_8 L
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Using Transformations to gain a better Understanding of the Laws of Logarithms

Law of Logarithms

Each of these equations is an identity

Common Errors
Each of these equations is not an identity.

Explanation using
Counterexample

Graphical Explanation

Letx=y=1a=2.
L.S.=log, (1+1)

e.g. y=log,(x+2)
The graph of y =log, x is
shifted two units to the left.

=log, 2
= e.g. y=Ilog, x+log, 2
log, (xy)=log, x+log, y | log, (x+ +log, y ! Iy %%
R.S.=log,1+log,1 =log, x+1
=040 The graph of y =log, x is
=0 shifted one up.
~LS.#RS. ~.log, (x+2)#log, x +log, 2
Letx=16,y=8,a=2. y:|092(x_2)
L.S.=log, (16 -8) The graph of y =log, x is
—1log, 8 shifted two units to the right.
2
log (ij— log x—log, y log (x— x—log, y =3 y =10g; x~log, 2
“\y ‘ ‘ . : R.S.=log,16 —log, 8 =log, x-1
=4-3 The graph of y=log, x is
=1 shifted one down.
~LS.#RS. ~.log, (x—2)#log, x—log, 2
P o st
y=log, x+log, 2
ar 4+
2r 3 =rog, x=tog; 2 y =log, (x+2)

12 114 |16

Vertical Asymptote
x=2

Vertical Asymptote
x=0

\%

Vertical Asymptote
x=0

G 8 10 12 14 16

- 24
-1

Vertical Asymptote
x=-2

As can be seen from the graphs, log, (x—2) and log, x—log, 2 are not equivalent expressions. In addition,

Iogz(x+ 2) and log, x+log, 2 are not equivalent expressions.

Homework

pp. 457-458 3, 4, 5ef, 6

,7,9,10,11
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SOLVING EXPONENTIAL AND LOGARITHMIC EQUATIONS

Introduction — Advantages of using Logarithms

1.

Logarithms simplify calculations. The laws of logarithms show us how logarithms turn products into sums, quotients
into differences and powers into products.

Since logarithmic and exponential functions are inverses of each other, exponential equations can be solved by
applying logarithmic functions and logarithmic equations can be solved by applying exponential functions.

General Principles of Solving Equations

1. Algebraically speaking, all equations can be solved (in principle at least) by applying inverse operations. That is, an
equation of the form
f(x) =c,
where f'is some function and c is some real number, can be solved by applying 7 to both sides:
f(x)=c
=S ()=17(e)
sx=f1 (c)
2. Geometrically (graphically) speaking, all equations are solved by finding point(s) of intersection. That is, an

equation of the form

f(x)=g(x)
where f'and g are any two functions, can be solved by finding the point(s) of intersection of the graphs of
y:f(x) and yzg(x).

Example of Algebraic Solution

Example of Graphical Solution

[l o S LS | o=
B

2x-5=3 4:
~2x-5+5=3+5 x2 w2
2x=8
ﬁzg -5 +5
2 2
Sx=4

C 2x -5 > ( 2x-5 >

Applying these Principles to Exponential and Logarithmic Equations
To solve an exponential equation, take the logarithm of
both sides. This works because logarithms and

exponentials are inverses of each other.

Example Note that taking the logarithm of Example An alternative approach that highlights the
2% _ 934 both sides to the base 2 gives a more x importance of inverses is to raise 3 to each
direct solution. However, this is log,—=7 side of the equation:
. log (2") =log234 | impractical because most calculators 4 log, ¥ =7
113 1] H X 3 Z -
- xlog2 =log 234 do not have a “log, ” function. Z _q7 o
2¥ _ 234 — O 1 Since 3" and log, x
BB ) consa | ey || x=a(@) | e 5| aeinemsorean
log2 1082 =09 base formula _ 8748 T4 other, 3% =y for
S x=787 < x=log, 234 is required. o - x=8748 ally>0.
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To solve a logarithmic equation, express the equation in
exponential form. This works because logarithms and
exponentials are inverses of each other.
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A Cornucopia of Examples

1. Solve each of the following equations.

(a) 3%2-32=720 (h)
532 (34 —1) =720
+.3%(80)=720
37%=9
32 =3
x=2=2
x=4

(d) log,0125=-3  (e)
. x*=0.125
ia =0.125

X
s__ 1
0.125
X3 =
1 1
() =&
x=2

43xfl _ 63)(*2

~.log(4**)=log(6°?)

2. (3x-1)log4=(3x—2)log6
~.(3log4)x—log4 =(3log6)x—2log6
~.(3log4)x—(3log6)x=log4—2log6
. x(3log4-3log6)=1log4—2log6

_ log4-2log6
3log4-3log6
Sx=1.8

SoX

log. 30x—log.10=4

30x
s log.——=4
Os 10
~.log 3x =4
~3x=5"
54
E}
625
x=—
3

(©)

(f)

10 —15(102") =

—-56

~.(10%) ~15(10% ) +56 =0

Let y=10"".
5 y? =15y +56=0

.'.(y—?)(y—S):O
sy=T7o0ry=8

-.10% =7 or 10> =8

~.log(10°") =log7 or log(10*) =log8
~.2x=log7 or 2x=log8

— log7 — log8

2

2

. x=0.4226 or x =0.4515

log, (x+1)+log, (x—5)=1
- log, [ (x+1)(x-5)]=1

-’-(x+1)(x_5) =7 The root x = -2 is called
L2 4 5—7 inadmissable because it does not
SXTAX—O= satisfy the original equation. This
L2 _ extraneous root occurs because
SxT—4x-12=0 the functions
.'.()C—G)(X+2)=O g(x):|0g7 |:(x+l)(x75):l and
5. x=6 or><2 f(x):log7 (x+1)+log7 (x—s)
have different domains.

2. Give geometric (graphical) interpretations of each of the equations in question 1. Use the graphs to verify that the

algebraic solutions are correct.

(@) (b)
i 55D | i 975F
= | E 900f |
500 : 825¢
22 | ; 750 |
: 675F
2 | : B |
560 ! E 525F |
4801 | 450t |
400¢ | i 375F |
320F ; 300F
240F | | 295F |
160F | | 150F |
. 80 | | 75t |
5 4 3 2 1 1T 2 3 4 5 2 1 1 2
(d) (e)
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3. Explain why the extraneous root x =—2 was obtained in the solution of the equation in 1(f). (A root is called
extraneous if it satisfies at least one of the equations produced by the method used to solve a given equation but it
does not satisfy the original equation.)

Explanation
Recall that logarithmic functions cannot be applied to

negative numbers. Therefore, the function 2; 2;
f(x)=log, (x+1)+log, (x—5) is defined only for 4sl 15l

values for which x+1>0 and x—5>0. Therefore, : 1

y =1 y=1 '

x>-1and x>5, which implies that x >5. 057 i
On the other hand, the function -1IUI-|8|-IGI-|:1|:%_|5_I2|Ialll(élél1|0|1|2|1|4 -1IUI-|8|-IEI-:1|:%_|5_I2|Ialll(éIél1|0|1|2|1|4
g(x)=log, [ (x+1)(x-5)] is defined for all values At At

. SR 151
for which (x+1)(x—5)>0. Now (x+1)(x—5)>0 ol 2l
as long as both x+1 and x—5 have the same sign f(x)=log, (x+1)+log, (x~5) g(x)=log,[(x+1)(x~5)]
(i.e. both positive or both negative). This implies that Dz{xeR;x>5} Dz{xeR;x>5 orx<—1}

either x>5 or x<-1.

4. How long would it take for an investment of $5000.00 to double if it is invested at a rate of 2.4% per annum (per year)
compounded monthly?

Solution
The monthly interest rate is 2.4%/12 = 0.024/12 = 0.002. Each month, the investment grows by a factor of 1.002.

Using a Table to help us

Understand the Problem Writing an Equation Solving the Problem
Time Value of Investment ($) As we can see from the table, Double the original investment is
(Months) in any given month, the value $10000. Therefore, ¥ () =10000.
5000 of the investment is 1.002
= 5000(1.002)0 times greater than the value of -.5000 (1,002)f =10000
the investment in the previous ,
5000(1.002) month. After ¢ months, the .(1.002) =2
_ 1 original investment is p
5000(1.002) multiplied by 1.002 times. A | | --109(1.002) =log2
5000(1.002)(1.002) shorter way to write this is ~.¢10g1.002 = log 2
2 —~5000(1.002)° 5000(1.002)'. Therefore, the ~ log2
5000(L.002)° (1.002) v?tlue V(z)zf the inves;ment log1.002
3 after  months is given by - t=346.9
=5000(1.002)’ - '
o r()-son(aone] | | e e s monts
t 5000(1.002) %’0 ouble.

5. Radioactive elements have unstable nuclei, which causes them to give off radiation as the nuclei tend toward a state of
greater stability. For example, carbon-14 (also called radiocarbon) is a radioactive isotope of carbon that occurs in
trace amounts on Earth. It decays into nitrogen-14, a stable and extremely abundant isotope of nitrogen. Carbon-14
(**C) is very useful in determining the age of carbonaceous materials (materials rich in carbon) up to about 60000
years old. (See http://en.wikipedia.org/wiki/Carbon_14 for a more detailed description.)

A Brief Description of How Radiocarbon Dating Works

Organisms acquire carbon during their lifetime. Plants acquire it through photosynthesis and animals acquire it from
consumption of plants and other animals. When an organism dies, it ceases to take in new carbon. Since carbon-12
(*2C) is not radioactive, the amount of *2C in the remains of the organism will stay constant over time. However,
since *C is radioactive, the amount of **C in the remains of the organism will decrease over time. The proportion of
YC left when the remains of the organism are examined provides an indication of the time elapsed since its death.
(See http://en.wikipedia.org/wiki/Radiometric_dating for a more detailed description of radiometric dating.)
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Limitations of Carbon Dating

o Carbon-14 has a half-life of about 5730 years. This means that after 5730 years, half of the *C in the original
sample would have decayed into **N. Eventually, there would be so little **C left in the sample that it would be
impossible to measure the **C to *C ratio. Thus, radiocarbon dating is limited to organic material with a
maximum age of about 58,000 to 62,000 years.

« ! dating only works for organisms that acquire most of their carbon, either directly or indirectly, from the
atmosphere. It does not work on aguatic organisms because they acquire much of their carbon from minerals
dissolved in water.

« !C does dating not work on organic material of very recent origin. The widespread emission of CO, into the
atmosphere due to the burning of fossil fuels has caused the ratio of **C to **C to decrease since the beginnings of
the Industrial Age. To complicate matters even further, the above-ground nuclear tests that occurred in several
countries between 1955 and 1963 dramatically increased the amount of carbon-14 in the atmosphere and
subsequently in the biosphere; after the tests ended, the atmospheric concentration of the isotope once again began
to decrease.

Disclaimer

In the so-called real world, the process of radiometric dating is somewhat more complicated than might be suggested
by high school math problems. Please be aware that the math problems are presented in an intentionally simplified
manner to highlight important mathematical principles. To obtain highly reliable and accurate results, scientists must
also take into account factors that could have a significant effect on their calculations. For instance, it is known that
the atmospheric concentration of carbon-14 varies over time. Failing to take this into consideration could severely
affect the accuracy of calculated ages.

Problem

An ancient wooden carving was discovered by a group of archaeologists in an excavation of an early Mayan
settlement dating back to about 1800 BC. After some time, a debate arose among archaeologists concerning the age
of the carving. Some archaeologists claimed that the artifact was made, out of freshly cut wood, by the people who
inhabited the settlement while others asserted that it was much older. Since wood is rich in carbon, radiocarbon
dating was done to settle the argument.

Through detailed studies, scientists have determined that in living carbonaceous material, the ratio of **C atoms to **C
atoms is 1:10". That is, there is only 1 atom of *C for every trillion atoms of **C. (For the purposes of this problem,
we shall ignore the fact that this ratio varies slightly over time.) After performing mass spectrometry on several small
samples of the Mayan carving, the average ratio of **C to *°C in the samples was found to be 1:1.79x10". Estimate
the age of the wood used to make the carving. (Recall that the half-life of *C is 5730 years.)

Solution

which equals 10,

The ratio 1:10** can be written as % :
10

Time (Years) 0 5730 11460 17190 t

o |l )] e

Ratio of 1*C to *°C (1 0 . ) ; 102 (_jsno
=10 _ 10712 (lj _ 10—12 (lj _ 10_12 (lj 2
2 2 B 2

2
As we can see from the table, the ratio of **C to '“C is cut in half every 5730 years. An equivalent way of stating this is
that that the ratio is multiplied by 1/2 every 5730 years. Thus, if we let R(7) represent the ratio of YC to 2C tyears

after the death of the organism, then

t

1 5730
R(t)=10%| =
(0 [2]
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To determine the approximate age of the wood used to make the Mayan carving, all that we need to do is solve the

equation R(r)=

1.79x10%
~10% [1 o1
2 1.79x10%
(1} 10"
2 " 1.79x102
) 1 57130_ 1
2 179

s 1=4813

(i.e. the ratio of **C to **C at time ¢ is equal to

1.79x10% )

Note that 1e—12 means 1x10™, 5.58659e—-13 means 5.58659x107*.
Programming languages use this format for scientific notation.

Many calculators use this format for scientific notation.

This format is also used in Tl-Interactive and other math programs.

Ratio of **C to *2C

According to radiocarbon dating, the wood used to make the
carving is approximately 4800 years old. Since the Mayan
settlement was dated to 1800 BC, which is only about 3800 years
ago, it is not possible that the carving was made by the inhabitants of the settlement out of freshly cut wood. If the
carving was indeed made by the inhabitants of the settlement, they would have to have used 1000-year-old wood.
Since it is unlikely that such old wood would have been readily available, it’s more likely that the carving was made

at an earlier time.

T179x107

! £559x107%

(4812.97. 5.5865%e-13)

BZURAS

r=10" (EJSRO
2

1 1 1 1 1 1 1 1 1 1 1 t

1500 3000 4500 6000 7500 9000
Time (years)

Homework
pp. 485-486 4,6,7,8,1
pp. 491-492 4,5,6,7, 9,

1,15, 16
10, 13, 17, 20
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APPLICATIONS OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS
Introduction — Advantage of Using Logarithmic Scales

Recall that y =a" and y =log, x are inverses of each other.

Since an inverse is formed simply by interchanging the x and y co-ordinates of each ordered pair of a function f,
fand £ contain exactly the same information. Therefore, y=a* and y=log, x are interchangeable in this sense.
e Inthecaseof y=a" and y=Ilog, x, it is often inconvenient to use y =a" because exponential functions
increase/decrease so rapidly. In such cases, it is often much easier to use y =log, x .

e Presentation of data on a logarithmic scale can be helpful when the data cover a large range of values — the logarithm
reduces this to a more manageable range.

Example 1 — How Acidic or Basic is a Solution?

The acidity of a solution is determined by the concentration of positive hydrogen ions. As can be seen from the table
below, the actual hydrogen ion concentrations are cumbersome numbers that vary dramatically. Working with such
numbers would be nightmarishly awkward. Therefore, a logarithmic scale known as the “pH” scale was devised to
simplify matters.

Actual Positive Hydrogen ~Concentration of Examples of Points of Chemical Interest
lon Concentration [H'] hydrogen ions compared solutions at i ds for ial of
(mol/L) to distilled water this pH * “pH” stands for “potential o
; Hydrogen”
1=10 10000000 pH=0 battery acid, strong hydrofluoric acid e The mole is the amount of
o substance of a system which
0.1=10 1000 000 pH=1 hydrochloric acid secreted by stomach lining contains as many elementary
0.01=107" 100000 pH=2 lemon juice, gastric acid, vinegar gné!flzeil?z;?;f g][i::g(l;nns ]I-g
0.001=10"° 10000 pH=3 grapefruit, orange juice, soda e In this definition, it is
understood that the carbon 12
0.0001=10"* 1000 pH=4 tomato juice, acid rain atoms are unbound, at rest
and in their ground state.
0.00001=10"° 100 pH=5 soft drinking water, black coffee « When the mole is used. the
0.000001210° 10 pH=6 urine, saliva elementary entities must be

specified and may be atoms,

0.0000001=10"" 1 “pure” water molecules, ions, electrons,
other particles or specified

0.00000001=10" % | pH=8 [ groups of such particles.

0.000000001=10"° ﬁ BZEER baking soda o Examples

one mole of iron contains the

0.0000000001=107"° ﬁ m Great Salt Lake, milk of magnesia SarTI‘e n?mt:?jr of atoms as one
mole of go
_ —11 1 . . .
0.00000000001=10 10000 BRI ammonia solution one mole of benzene contains
0.000000000001=10-"2 1 the same number of molecules
' - 100000 TR soxpy water as one mole of water
— —13 .
0.0000000000001=10 m m bleaches, oven cleaner the numl_)er o_f atoms in one
mole of iron is equal to the
0.00000000000001=10- m m liquid drain cleaner number of molecules in one

mole of water

In chemistry, the symbol [H"] is used to denote the concentration of positive hydrogen ions in a solution. The reader can
use the table to verify that pH is related to [H*] according to the following logarithmic equation:

pH = —log[H']
Note
e pH<7 Solution is called acidic.
e pH=7 Solution is called neutral.
e pH>7 Solution is called alkaline or basic.
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Example
(a) Calculate the pH of a

solution with a hydrogen
ion concentration of
2.74x107° mol/L. Isthe
solution acidic or basic?

(b) Calculate the hydrogen ion

concentration of a solution
with a pH of 3.7.

(c) How much “stronger” is an acid with a pH of 4.2
than an acid with a pH of 6.1?

Solution Solution Solution

pH =—log[ H" | pH =—log[ H" ] pH =—log[ H" | pH =—log[ H" |
=—log(2.74x10") ~.37=-log[H" ] -.42=—log[H"] ~.6.1=—log[H" ]
=—(-7.56) ~log[H"]|=-37 ~log[H"]=-4.2 ~log[H"]=-6.1
=756 ~[H"]=10% ~[H]=10* [H]=10%

The pH of such a solution e 4

is approximately 7.56. - [H ] =2.0x10 10742

-4.2—(-6.1 9 .
Therefore, the solution is =107 %Y _ 10! = 79

i i 1 6.1
basic. The hydrogen ion 0

concent;ation Is about An acid with a pH of 4.2 is about 79 times
2.0x107 mol/L “stronger” than an acid with a pH of 6.1.

Example 2 — The Richter Scale
The Richter magnitude scale, or more correctly local magnitude M, scale,

assigns a single number to quantify the amount of seismic energy released by True Intensity | Richter Scale Magnitude

an earthquake. It is a base-10 logarithmic scale obtained by calculating the

. ; - . ) L logp10" = 1
logarithm of the combined horizontal amplitude of the largest displacement 10 910
from zero on a Wood-Anderson torsion seismometer output. So, for example, 10 log,,10% = 4

an earthquake that measures 5.0 on the Richter scale has a shaking amplitude 1058 log,;10%8 = 5.8

10 times larger than one that measures 4.0. The effective limit of
measurement for local magnitude is about M; = 6.8.

Though still widely reported, the Richter scale has been superseded by moment magnitude scale which gives generally
similar values.

Example
How much more intense is an earthquake that measures 8.5 on the Richter scale than one that measures 3.7?

Solution

108.5

10%7
An earthquake that measures 8.5 on the Richter scale is about 63000 times more intense than an earthquake
that measures 3.7.

=10 =10"* = 63000

More Examples
Read examples 3 and 4 on pages 496 — 498 of the textbook.

Homework

pp. 499-501 4,5, 6d, 8, 10, 12, 13, 14, 15, 17, 18
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A DETAILED INVESTIGATION OF RATES OF CHANGE

The Concept of Rate of Change
e The rate of change of a quantity measures how fast the quantity changes.
e We are already familiar with many quantities that change with respect to time (i.e. over time, as time changes).
e.g. How fast does position change with respect to time? (This rate of change is what we normally call velocity.)
How fast does the mass of a radioactive substance change with respect to time?
How fast does population change with respect to time?
How fast does the cost of petroleum change with respect to time?

In general, a rate of change measures how fast the dependent variable changes with respect to the independent variable.

Examples of Rates of Change not Involving Time

e How fast does the volume of a cube change with respect to the length of one of its sides?

e How fast does the volume of a box change with respect to its surface area?

e How does the temperature of a gas change with respect to its volume?

A more General and Abstract Look at Rates of Change — Average and Instantaneous Rates of Change

(a) Average Rate of Change
The average rate of change of a dependent variable with respect to an independent variable measures the rate of
change over an interval of the independent variable.

e.g. How fast does the distance change from t =0 sto = 30 s? That is, what is the average rate of change of distance
with respect to time froms=0stos=30s?

Average rate of change of y = f'(x) with respect to x (xz,f(xz))
when x changes from x, to x, fp)t—————————— §
_ changeiny I
change in x :
Y 1 ()= (=)
I
I

it (5.7(5)

un J .
=slope of secant line through (x,, /'(x,)) and (x,, /(x,)) flaq==——————— ="

=average steepness of the curve from x, to x,

)i " %

Xy =X

(b) Instantaneous Rate of Change
The instantaneous rate of change of a dependent variable with
respect to an independent variable measures the rate of change at
a single point.
e.g. How fast does the distance change at ¢ = 15 s? That is, what
is the instantaneous rate of change of distance with respect to
time at 7 = 15 s?

Instantaneous rate of change of y = f(x) with respect to x
when x is equal to a
=slope of tangent line at the point (a, f(a))

= steepness of the curve at the point a,f(a))
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Summary
Slope = Steepness of Curve = Rate of Change

Slope of Secant Line = Average Steepness of Curve between Two Points = Average Rate of Change between Two Points

Slope of Tangent Line = Steepness of Curve at a Point = Instantaneous Rate of Change at a Point

Instantaneous — occurring, done, or completed in an instant Instant
—> existing at or pertaining to a particular instant an infinitesimal or very short space of time; a moment:
— present or occurring at a specific instant They arrived not an instant too soon.

Important Note on Calculating Instantaneous Rates of Change
e An average rate of change can be calculated very easily because two points are known. The slope of a secant line is

calculated very easily by evaluating % using the two known points.

e An instantaneous rate of change is much more difficult to calculate because only one point is known. It is not
. A . L
possible to use Ey to calculate the slope of a line when only one point is known.

e The branch of mathematics known as calculus was developed precisely for the purpose of calculating instantaneous
rates of change. Calculus provides us with tools that can be used to calculate the exact slope of a tangent line. The

b o 0

slope of the tangent to the function y = f(x) atx = ais written f’(a), y
X

X=a

X=a

e Without calculus, we can estimate the slope of a tangent line (i.e. the instantaneous rate of change) by
0 Using software such as TI-Interactive.
0 Using a graphing calculator.
0 Calculating the slope of a secant line over a very small interval of the independent variable.

Example
A sample of **C has an initial mass of 100 mg. (Recall that the half-life of **C is about 5730 years.)

(a) How fast does the mass of the *“C sample change over the first 10000 years?
(b) How fast does the mass of the **C sample change at the instant that 10000 years have passed?

Solution

t

Let M(t) represent the mass of **C remaining, in mg, after ¢ years. Then clearly, M(t) =100(%)5m. (If necessary, use

a table to verify that this equation is correct.)

(a) rate of change of mass over first 10000 years (b) rate of change of mass exactly at 10000 years
= average rate of change of mass with respect to time = instantaneous rate of change of mass with respect to
from ¢ = 0 years to £ = 10000 years time exactly at # = 10000 years
_AM =M ’(10000)
At M (10000.1) M (9999_9) tﬁp;tjroximta:g thg slope of
= e tangent line using a
— M (10000) -M (0) 10000.1-9999.9 secar?t line overya tin)?
10000-0 100001 9999.9 interval near ¢ = 10000.
1Y) 5730 1Y)570
o S a2 (o) o)
= \2 2 0.2
10000

=-0.0036 mg/year
=-0.007 mg/year
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100 100
90 gg L
80 50k
7O 7Ok
’g B0 i g 60 i
= 501 — 50f
< 40f S sof
< a0p N S 40t
30} M(f)=100(5 30}
20+ 20k
10+ 101 Y=- 00361+ 65.9131
. IEIEIUIEII IEIUIUIEII IF"IEIUIEII I1E][I][‘:Iti |1.|?éEIIEi 1|5[|][T[] 2600 5000 7500 10000 12500 15[][TEI
Time (years) Time (years)
The average rate of change of mass with respect to time The instantaneous rate of change of mass with respect to

over the first 10000 years is equal to the slope of the secant  time exactly at # = 10000 years is equal to the slope of the
line passing through the points (0,100) and (10000,30). tangent line at the point (10000,30).

Rates of Change Activity

The following table lists the population of the United States, to the nearest million, from 1900 to 2000 in ten year
intervals. (Source: U.S. Census Bureau)

Year 1900 = 1910 | 1920 | 1930 | 1940 | 1950 @ 1960 | 1970 & 1980 & 1990 | 2000
Population (millions) 76 92 106 123 132 151 179 203 227 249 281

Use Tl-Interactive to do the following:

1. Enter the given data. (Think carefully about the independent and dependent variables. To simplify matters, set ¢ = 0 at
the year 1900. Then ¢ represents the number of years since 1900.)

2. Create a scatter plot. DO NOT CONNECT THE DOTS!

3. Use regression to find a curve of best fit. Superimpose the graph of your function on the scatter plot to see how closely
it fits the data given in the table.

4. Find the average rate of change of the population between 1910 and 1960.
Given a function y = f(x) , we measure the average rate of change from x; to x, by finding the quotient of the
f(5)-1(x) &y
X, =X, Ax
5. Estimate the instantaneous rate of change at the start of 1950 (¢ = 50) by using a very small centred interval. That is,

select a time slightly less than ¢ = 50 and another time slightly more than ¢ = 50. Then calculate the average rate of
change of population between the two times that you selected.

6. Estimate the instantaneous rate of change at the start of 1950 (¢ = 50) by using a very small interval that begins at
¢t =50 and ends just slightly above # = 50.

7. Estimate the instantaneous rate of change at the start of 1950 (¢ = 50) by using Tl-Interactive to create a tangent line
exactly at ¢ = 50.

8. Compare your estimates from questions 5, 6 and 7. Which is the best estimate? Explain.

change in y and the change in x. That is, the average rate of change from x; to x, is given by

Homework
pp. 507-508 4,5,6,8,9, 10, 11
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END BEHAVIOURS OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

What do we mean by End Behaviour?

The end behaviour of a function refers to the manner in which it behaves at the extreme ends of its domain.

e.g. f(x) =27, D=R: End behaviour refers to how f'behaves as x gets larger and larger in the

positive direction and how it behaves as x gets smaller and smaller (or larger and
larger, depending on your perspective) in the negative direction.

e.g. f(x)=log,x, D={xeR:x>0}: End behaviour refers to how fbehaves as x gets larger and larger in the

positive direction and how it behaves as x gets smaller and smaller in the
negative direction (i.e. as x gets closer and closer to zero).

Example — Using Graphs to Understand End Behaviours
Using TI-Interactive or a Similar Graphing Program

Graph of f(x)=2"

AS x >, 2° >

As x >, f(x)>®

Alternatively, we can also write this as shown below.

As x >, y—>w

g(x) - -5/ (-1.5(x+1))+6 2. If x decreases in the negative direction without bound, then
:_5(2_1_5(x+1)) 46 2* gets closer and closer to zero. We write this as follows.

As x> -, 2" >0
Other Graphs
f(x) _ _5(271.5()#1) ) 6

D=R
As x >0, f(x)—>6

AS x > -0, f(x)—)—oo

f(x)zlogzx
D={xeR:x>O}
As x>, f(x)—>»

As x>0, f(x)—)—oo

Using Geometer’s Sketchpad

Geometer’s Sketchpad has some interesting features that can help you to determine the end behaviours of functions.
Since the features are somewhat complicated, this will be demonstrated in class.

g(x):—%logz(%(x—l))+3
D={xeR:x>1}
As x >, g(x)—>—o

As x—)l,g(x)—)oo
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1. As x increases (gets larger and larger without bound), we observe that 2*

also increases without bound. We say that as x approaches infinity, 2" also
approaches infinity. Symbolically we write this as follows.
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Example — Using Tables of Values to Understand End Behaviours

y=2'

y=log,x=

log x
log2

Notice that as x gets larger,

y=2" very rapidly
increases. There is no
limit to how large y =2°

can grow as x increases.
Therefore, as x — oo,

Notice that as x becomes
more and more negative
(read the table from
bottom to top), y=2*
gets closer and closer to
zero. Therefore, as
x—-o, y—>0.

Notice that as x gets larger,
v =log, x very slowly

increases. There is no limit to

how large y =log, x can
grow as x increases.

Therefore, as x > o, y > .

Notice that as x becomes closer
and closer to zero (read the
table from bottom to top),
y=log, x gets more and more
negative. Since there is no
limit to how “negative” y can
become, as x >0, y > —x.

y—)OO.
1(x 1(x 1(x y1(x)

X yz'Ex) X yzix} X 'Ing[i},g'lgg[ﬂ X |log(x)/10g(2)

100[ 1.27E+30 15| 3E-005 1.00E+300 996.578 0 undef

101 2.54E+30 14| BE-005 2.00E+300 997.578 1.00E-200 ~664. 366

102]  5.07E+30 13| 0.00012 3.00E+300 995. 163 e o

103| 1.01E+31 12| 0.00024 1.00E+300 998.578 2 D0E. 200 TSI

104 2.03E+31 -11] 0.00049 5.00E+300 898.9 5.00E-200 -662.064

105 4.06E+31 10| 0.00098 6.00E+300 999,163 6.00E-200 ~661.801

106| &.11E+31 9| 0.00195 7.00E+300 993,336 7.00E.200 ~661.578

107|  1.62E+32 8| 0.00391 8.00E+300 999 578 8.00E-200 “661.386

108| 3.25F+32 7| 0.00781 9.00E+300 999 748 9.00E-200 661,216

109| 6.49E+32 6| 0.01563 1.00E+301 939.9 1.00E-139 ~661.064

10| 1.30E+33 5 0.03125 1A0E+301 1000.04 e e

11| 2.60E+33 4| 0.0625 1.20E+301 1000.16 30F 198 ~e60 BoE

112| 5.19E+33 3] 0.125 1.30E+301 1000.28 1 40E199 660 578

13| 1.04E+34 2 0.25 1.40E+301 100039 1.50E-199 -B60.479
Exercises

1. Equations of several exponential and logarithmic functions are given below. Use TI-Interactive to

(a) create a graph of each function
(b) create tables of values that help to reveal the end behaviours of each function

Then use your graphs and tables to determine the end behaviours of each function. Do not forget to save your work as

it will prove to be a valuable study aid.

(i) R(r)=10" (Ejsm

1

(i) g(x)=3log, (-2(x+1))-4
(i) h(r)=5000(1.002)" -5

(iv) p(u)= —2log, (—%(u —5))+1

3

2. Explain how transformations can affect the end behaviours of exponential and logarithmic functions.

Copyright ©, Nick E. Nolfi

MHF4UO Unit 1 — Exponential and Logarithmic Functions

ELF-27




REVIEW OF LOGARITHMIC AND EXPONENTIAL FUNCTIONS

Review of the Properties of Logarithms

Symbolic Representation Verbal Representation

1If f(x)=log, x and The functions f'(x)=log, x and g(x)=a" are
g(x) =a" then inverses of each other. This means that f'does
f(x)=g*(x) and the opposite of g and g does the opposite of 1.

_ Formally, if the ordered pair (x,y) belongs to
g(x)=f 1(x). ( y p (xJ’) gstof

then (»,x) belongs to g.
Recall that ¢ > 0 and that a = 1. (%) gstog.)

The exponent to which the base a must be raised

2. lo . .
9. ¥ to obtain the power x (i.e. the result x).

The value y is equal to the exponent to which the

3. y=lo . .
y=109,x base a must be raised to obtain the power x.

The base a is raised to the exponent to which a
4. "% =x must be raised to obtain x. Therefore, the result
must be equal to x.

. The exponent, to which the base a must be
5. log,a"=x . N
¢ raised to obtain «”, must be equal to x.
The logarithm of a product is equal to the sum of
the logarithms. This law is a direct consequence
6. log, xy =log, x +log, y of the exponent law a*a’ =a***. In other words,
the exponents are added when two powers with
the same base are multiplied.

The logarithm of a quotient is equal to the
difference of the logarithms. This law is a direct

X

X
7. log, - log, x—log, y consequence of the exponent law ay =a" . In
a

other words, the exponents are subtracted when
two powers with the same base are divided.

The logarithm of a power is equal to the product
of the exponent and the logarithm of the base.

This law is a direct consequence of the exponent
Y —
8. log, x” = ylog, x law (a*)" =a”. In other words, the exponents
are multiplied when a power is raised to an
exponent.

The logarithm of a value to the base b is equal to
the quotient of the logarithm of the value to the
_ log, x base « and the logarithm of 4 to the base a. (This
log, b is called the change of base formula. It is used
to convert a logarithm expressed in a given base
to a more convenient base such as 10.)

9. log, x
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Proofs, Explanations, Visuals

Let y=log, x. Then, " =x. But

log, x

y=log, x. Therefore, a =x.

Let x=log, y. Then, a* =y.
Therefore, log,a" = x .

Let x=a" and y =a”. Then,
xy=a"a’ =a""*. Therefore,

+z

log, xy=log,a""" =w+z. But
w=log,x and z=log, y.
Therefore, log, xy =log, x+log, y .

Let x=a" and y=a". Then,

w

X a s
—=—=¢g""". Therefore,
y a
X w—z
log,—=log,a" " =w-z. But
Yy

w=log,x and z=1log, y.

Therefore, log,, I log, x—log, y.
y

Let x=a". Then,

x” :(aw)y =a"" . Therefore,
log, x” =log, a™ =wy. But
w=log, x. Therefore,

log, x” = ylog, x.

Let y=log, x. Then, b" =x.
Therefore, log, b* =log, x. Thus,

lo
vlog, b=1log, x and y:M_
log, b
But y =log, x. Hence,
lo
log, x = 9,
log, b
ELF-28



Review Questions
1. Label the following.

2. Complete the following table.

Exponential Form Logarithmic Form

10° =1000000

Iogséz 4
y=6"

v=log, x
a=>b°

m=log, p

3. In the equation y =log, x, what is the meaning of log, ? Does it represent a number? If not, what does it represent?

4. Explain the meaning of the expression log, p .

5. Use the provided grids to sketch the graphs of the functions f(x)=2" and g(x)=Ilog, x. How are the two functions

related to each other? How are their graphs related

130
120
o
oo
50
50
70
=]
50
40
30
20
10

The relationship between fand g
is

= Mo w0
T

The relationship between the
16 30 45 B0 75 90 105 120 graphs of fand g is

e b
T

P
ok
raF
—

—_

[
[
.
14
o
-4
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. After consuming 16 energy drinks and 22 hamburgers, Andrew decided that he had enough energy to tackle his math
homework. The excessive food and drink made Andrew so hyper that he hurried through his work without giving it
much thought. The following are samples of his work. Has Andrew applied valid mathematical reasoning? Explain.

log,, x _ log,, X _ log,,

log,x log, ¥ log, logsx log; ¥

Ioglox:Jgg]ox:EZZ

5

. Suppose that f'(x)=2" and g(x)=1log, x. Use the provided grids to sketch the graphs of

pojz—Lsgta(x—$)+1aquwﬁzéf(%x+g)+5

(a) Write equations of p and ¢ without using the symbols fand g.
p(x)= q(x)=

(b) State the transformations required to obtain ¢ from fand p from g.

g—>p f—q
Horizontal Vertical Horizontal
(c) Now express both transformations in mapping notation.
g-p (x,3)—> f=q (x,y)—>

Vertical

(d) Finally, by applying the transformations to a few key points on the graphs of f'and g, sketch the graphs of ¢ and p.

20
18
16
14
12
1

P = gy oo | D

5 4 2

MHF4UO Unit 1 — Exponential and Logarithmic Functions
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8. Complete the following table. Remember that a counterexample is sufficient to demonstrate that a statement is false.

However, a general proof is required to demonstrate that a statement is true. Also recall that when the base of a

logarithm is omitted, it is usually assumed to mean “log to the base 10.”

True

Statement or Proof, Counterexample or Explanation

False?

log 5b* = 2log 5b

log3x® = log 3x + log x

The graphs of y =log3x® and y =log3x +logx are
identical.

To obtain the graph of y =log, Jx, compress the

graph of y =log, x vertically by a factor of %

log,a"* =n+1

a3log“ (5b) — 125b3

g% - logx logx
10 log10 1

To obtain the graph of y = Iog% , translate the
graph of y =logx down 1 unit.

Copyright ©, Nick E. Nolfi MHF4UO Unit 1 — Exponential and Logarithmic Functions
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9. Why is it not possible to evaluate the logarithm of zero or a negative number? Give examples to illustrate your
answer.

10. Does it make sense to write expressions such as log , (—32) ? Explain.

11. You are given a solution of hydrochloric acid with a pH of 1.7 and are asked to increase its pH by 1.4.
(a) Determine the factor by which you would need to dilute the solution.

(b) If the solution originally had a pH of 2.2 and you were asked to increase its pH by 1.4, would you dilute by the
same factor that you calculated in (a)? Explain.

More Review
pp. 510-511  Answer a representative selection of the questions found on these pages.
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PRACTICE TEST

Multiple Choice
Identify the choice that best compleates the statement or arswers the question

1.

[

Which of the following statements is true?

a. The domain of a transformed logarithmic function is always {x = R}.

b.  Vertical and horizontal translations must be performed before horizontal and vertical
stretches/compressions.

c. A transformed logarithmic function always has a horizontal asymptote.

d. The vertical asymptote changes when a horizontal translation is applied.

1

. Express 277 =3 in logarithmic form.

a.  log;27=3 c. log,.3=

b. log:3=27 d. log,3=2

. Solve log, 81 =4 for x.

a. 3 c. 2025
b. 9 d. 324

_ Evaluate log, m™".
a n c. mu
b. »’ d. Inm

. The function S(&)= 300logd+ 65 relates S4), the speed of the wind near the centre of a tornado in miles per

hour, to 4 the distance that the tornado travels, in miles. If winds near the centre of tornado reach speeds of
400 mph, estimate the distance it can travel.

a. 130 miles c. 13000 miles

b. 13 miles d. 1.1666 miles
. Ewaluate lng:f .

a. 4 c. 7

b. 5 d. 10

. Which of the following statements will NOT be true regarding the graphs of

fl)=log (33). fix)=log; (92).and flx)=log; H ’

i,

a. Theywill all have the same vertical asymptote
b. Thewill all have the same x-intercept
c. They will all curvein the same direction
d. They will all have the same domain
. Ewvaluate log, «;‘E
a 2 c. §
b. 3 d. 16
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9. Which does not help to explain why vou cannot use the laws of logarithms to expand or simplify
log,(3y—4)7

The expression 3y — 4 cannot be factored.

b. The expression 3y — 4 is notraised to a power.

c. 3yand 4 are neither multiplied together, nor are they divided into each other

d. Each term in the expression does not have the same variable.

R

10, Sqlves =135 for x

a E c. 5
3

.
b. -1 d. 3

11. Solvelog(3x+1)=75.
a. % c. 300

b. 8§ d. 33333

12. Which of the following is NOT a strategy that is often used to solve loganthmic equations?
a. Express the equation in exponential form and solve the resulting exponential equation.
b.  Simplify the expressions in the equation by using the laws of logarithms.
c. Represent the sums or differences of logs as single logarithms.
d. Square all logarithmic expressions and solve the resulting quadratic equation.

13. Solvelog 8= —% .

a. —H4 C.

1
o4
b. -16 d. 4
14. Describe the strategy vou would use to solvelog,x =log,4 +log,8.

a. Usethe product rule to turn the right side of the equation into a single logarithm.
Recognize that the resulting value is equal to x.

b. Express the equation in exponential form, set the exponents equal to each other and
solve.

c. Usethe fact that the logs have the same base to add the expressions on the right side of
the equation together. Express the results in exponential form, set the exponents equal to
each other and solve.

d. Usethe fact that since both sides of the equations have logarithms with the same base to
set the expressions equal to each other and solve.

a
=
the amplitude @1is in an earthquake withR = 6.9, B= 3.2 and T'= 1.95 compared to one with
R=37 B=29and T=16s

a. 1.2 timesaslarge c. 9.4 timesaslarge

b. 1.6 times aslarge d. 158 times as large

15. Given the formula for magnitude of an earthquake, R = log( ] + B, determine the how many times larger

i,

16. Solvelog(x+3)+log(x)=1.
a. -5.2 C.
b, 10 d. 7

]
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17. Which of the following does not describe the use of logarithmic scales?

a. When the range of values vary greatly, using a logarithmic scale with powers of 10
makes comparisons between values more manageable.

b. Scales that measure a wide range of values, such as the pH scale, the Richter scale and
decibel scales are logarithmic scales.

c. Logarithmic scales more effectively describe and compare vast or large quantities than
they do small or microscopic quantities.

d. To compare concentrations modelled with logarithmic scales, determine the quotient of
the values being compared.

18. A radioactive substance has a half-life of 7 h. If a sample of the substance has an initial mass of 2000 g,
estimate the instantaneous rate of change in mass 1.5 days later.
a. —56gh c. —707gh
b. -56gh d. —0845¢h

19. Which of the following statements regarding rates of change of exponential and logarithmic functions is
NOT true?
a. The average rate of change is not constant for exponential and logarithmic fimctions.
b. The methods for finding the instantaneous rate of change at a particular point for
logarithmic functions are different than those used for finding the instantaneous rate of
change at a point for a rational function.
c. The graph of an exponential or logarithmic function can be used to determine when the
average rate of change is the least or greatest.
d. The graph of an exponential or logarithmic function can be used to predict the greatest
and least instantaneous rates of change and when they oceur.

20. Suppose the population of a given town is increasing for a given period of time. What can vou tell about its
instantaneous rate of change of the population during that period?

The instantaneous rate of change continues to get larger during the enfire interval

The instantaneous rate of change will be positive at each point in the interval.

The instantaneous rate of change mayv be zero, but cannot be negative.

The instantaneous rate of change at any point in the interval will be larger than the

average rate of change for the interval.

RO TN

Short Answer

21. State the domain and range of the transformed function flx)=6log,, 2(x—5).

[
]

. The parent finction flx)=log,x is vertically stretched by a factor of 3, reflected m the y-axis. horizontally

transformed 4 units to the left and vertically transformed 2.5 units up. What is the equation of the vertical
asymptote of the transformed function?

23. State which of the values in the transformed function fix)=2log,, {—i (x—1 .5)] +5 must be changed. and

what thev mmust be changed to, so that the resulting fimction has an asymptote at x = § with the curve of the
graph to left of the vertical asymptote.

24 Estimate the value of log; 21 to two decimals places.

Copyright ©, Nick E. Nolfi MHF4UO Unit 1 — Exponential and Logarithmic Functions ELF-35



[}
[

loz, 64
. Simplify 4 7 +10

Lo 1060

26. Ewaluate log.625+log,32.

27 Put the following in order from smallest to largest:

log, 16.1og 100.log; 30. log. 40.log,, 200

28, State the product law of logarithms and the exponent law it is related to.

29 Write 4log2 +log6—log3 as a single logarithm.

30.

3l

33

34

36.

3l

38.

39

40.

Problem

41.

. 1 . .
Rewrite x=1log, {—] in exponential form.

If vou invested money into an account that pays 9%/a compounded weekl v, how many vears would it take fo
your deposit to double?

2. Solve 1077 —10% =9900 for x.

Solve 3% =7""" for x. Round your answer to two decimal places.

. 4:___1_
Solve 27 = W forx.

. What are the restrictions on the variable in the equation log(3x — 5) —log(x — 2) = log(x* — 5)?

Solve 2logx —log4 = 3log4.
Solve log,x+log(x—T7)=3.

The population of atown is increasing at arate of 6.2% per vear. The city council believes they will have to
add another elementary school when the population reaches 100 000. If there are currently 76 000 people
living in the town, how long do they have before the new school will be needed?

If f{x) = a(b+ 1Y models an exponential growth situation, write an equation that models an exponential
decay situation.

If the annual cost of a given good rises 2.3% per vear for the next 20 vears, write an equation to model the
approximate cost of the good during anv vear in the next 20,

Describe two characteristics of the graph of the fimction f{x)=log,, x that are changed and two that remain

the same under the following transformation: a horizontal compression by a factor of 2, areflection in the
y-axis and a vertical translation 3 units up.

2. Without graphing. compare the vertical asymptotes and domains of the functions f{x)= 3log,,(x—5)+2 and

Slx)=3log o [(x+5)] + 2.
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43.

44.

48.

47.

48.

49.

The half-life of radium is 1620 years. If alaboratory has 12 grams of radium, how long will it take before it
has 8 grams of radium left?

Describe the transformati ons that take the graph of f{x)=log,x to the graph crfg(x}=1crg4_r3 —log,8. Justfy
your response algebraically

. Write % lcrga:c—% log, 2}'—% log, 4z as asingle logarithm. Assume that all variables represent positive

numnbers.

Explain the difference in the process of solving exponential equations where both sides are written as powers
of the same bhase and solving exponential equati ons where both sides are not written as powers of the same
base.

(]|

x—-y .4
[flﬂg{ 3" ] _ L (logx +logy), show thatx” +1~ = 11xp.

i,

How many vears will it take for a $400 investment to grow to $1000 with a interest rate of 12%/a
compounded monthlv?

The function 5(d) = 86logd + 112 relates the speed of the wind, S in miles per hour, near the centre of a

tornado to the distance the tornado travels, 4 in miles. Estimate the rate at which the speed of the wind at the
centre of the tornado is changing the moment it has travelled its 50th mile.

Discuss why exponential equations of the form f{x) = ab" always have positive instantaneous rates of change
when @ is positive and b is greater than one, and why they always have negative instantaneous rates of change
when ais positive and bis between 0 and 1.

Practice Test Answers
Multiple Choice

1. d 2. C 3. a 4. d 5 b
6. d 7. b 8. a 9. d 10. ¢
11.d 12. d 13. ¢ 14. a 15. ¢
16. ¢ 17. ¢ 18. a 19.b 20. b
Short Answer
21. D={xeR:x<5} 22. x=-4 23. Change 1.5to0 6. The curve is already 24. 411

R-R to the left of the vertical asymptote.
25. 164 26. 9 27. log,, 200, log100, log, 40, 28. log, (xy)=log, x+log, y

log, 30, log,16 aa’ =at
1

29. log 32 30. 2" =— 31. 7.7 years 32.2

g NG y
33. 0.53 34, —% 35. x2+5 36. 16
37.8 38. 4.6 years 39. f(x)=a(b-1)" 1<b<2 40. C(t)=C,(1.023)
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Problems
41. Solution
The transformed function /(x)=log(—2x)+3 has the same range as the parent function. since the range of

all transformed logarithmic functions have a range of all real numbers. The y-intercept is the vertical
asymptote of both the parent and transformed functions.

The transformed functi on curves to the left, the original finction curve to the right. The two functions will
have different x-intercepts, the intercepts being reflected over the y-axis.

42. Solution
The vertical asymptote helps define the domain of a function. The vertical asymptote changes when a
horizontal translation is applied.
The vertical asymptote of flx)=3log,(x—5)+21sx=5.
The vertical asymptote of flx)=3log [(x+5)]+2isx=—75.
The graph ofthe first function curves to the right of the asymptote. The domain of flx)=3log,(x—5)}+2 is
fxeR|x>5}
Since the expression (x + 5) 1s multiplied by —1, the graph is reflected in the 1-axis and curves to the left of
the asymptote. The domain of fix)=3log,,[(x+5)]+2is {xe R |x<-5}.

43. Solution
The equation for relating the amount of radium, », in grams and the amount of time, 7, in vears is

| (r+ 1620)
—12%l=
r=12= (2] N

Substituting 8 in for r gives § =12 x (%}

{t=1620)
2 |1
=3

. . t -
Using guess and check gives ——=0.59

1620
44, Solution

{t= 1620)

Using the laws of loganithms, log,x” —log,8 can be rewriften as the single logarithm 3log, (%‘c] by first

applving the quotient law and then the product law of logarithms. Comparing the new form of g(x) to fx)
produces a vertical stretch by a factor of 3 and a horizontal stretch by a factor of 2.

45. Solution

1 1 1
3 log x+ 3 log, 2 ~5 log 4z
=log, '\IIT +log, ~/ 2y —log, 4z

L Nx
=log, @

46. Solution
We use the fact that when two exponential expressions with the same base are equal their exponents are
equal to set the exponents equal to one another and solve. If a™ =4", then m=n.
When we have two exponential expressions with different bases set equal to each other, we use the fact that
taking the log of equal expressions maintains their equality to start the solution process. If AMf=N, then
log AM=log V. Given that A and N are powers, we use the power rule to continue the solution process.
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47.

Solution

9 =

X —oy+yt =%y

ey o1y

48. Solution

1000 = 400(1.01)**
2.5 =(1.01)™*

log2.5 =log(1.01)*
log2.5 = 12tlog 1.01
0.3979 = 124(0.00432)
i=17.7 years
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49. Solution
S(d) = 86logd+ 112
S(d) = 86log49.9+ 112 5(d) = 86log 50.1 = 112
=258.0366 =258.1860
Instantaneous Rate of Change
. 2581860 —255.0366
B 50.1-49.9

= 0.747 mph/mi

50. Solution
The graph of f{x) = @b is constantly increasing when a is positive and & is greater than 1. The graph rises

slowly and then more rapidly, but at no point does its direction change. Similarly, the graph of f{x) = a®™is
constantly decreasing when ais positive and 5 is between 0 and 1. The graph first decreases rapidly and then
much more slowly but, again. at no point does its direction change.
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APPENDIX 1 — REVIEW OF INVERSES OF FUNCTIONS

Introduction — The Notion of an Inverse
On an intuitive level, the inverse of a function is simply its opposite. The following table lists some common operations
and their opposites.

Some Operations and their Inverses Example Observations Conclusion
+ — 3+5=8 8-5=3 +:3-58 _-8.33 The inverse of an
operation “gets you
X + 3x5=15 15+5=3 | x:3-515 +:15—>3 back to where you
started.” It undoes
square a number square root 5% =25 J25=5 | 2:5.525 J 12555 the operation.

A Classic Example of a Function and its Inverse

With the exception of the United States and perhaps a very small number of other countries, the Celsius scale is used to
measure temperature for weather forecasts and many other purposes. In the United States, however, the Fahrenheit scale
is still used for most non-scientific purposes. The following shows you how the two scales are related.

C = degrees Celsius, F = degrees Fahrenheit
f=function that “outputs” the Fahrenheit temperature when given the Celsius temperature C as input

A Function f that Converts Celsius Temperatures The Inverse of f, written f, converts Fahrenheit
into Fahrenheit Temperatures Temperatures into Celsius Temperatures
E C
200 <*—__| Boiling Point of 14
Water at Sea Level -
100 501
L A e——— | Freezing Point of LR
C'250 200 150 100 537 | 50 100 150 | Water at Sea Level -400 | -300 | -200 | -100 100 | 200

f(C)=§C+32

Absolute Zero

) /(0) g VS )

To obtain the equation of £, apply the inverse operations in the reverse order:

Forward: C —x(9/5) —>+32 > F Reverse: F — —32 — +(9/5) » C L C=fNF) =§(F—32)
(Note that dividing by 9/5 is the same as multiplying by 5/9.)

Understanding the Inverse of a Function from a Variety of Perspectives

e Itis critical that you understand that the inverse of a function is its opposite. That is, the inverse of a function must
undo whatever the function does.

» The inverse of a function is denoted . It is important to comprehend that the “~1” in this notation is not an
exponent. The symbol £ means “the inverse of the function £, not 7
e The notation x> f(x), called mapping notation, can be used to convey the same idea as a function machine.
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Example 1
Does f(x)=x® have an inverse? If so, what is the inverse function of f(x)=x>?

Solution
By examining the various perspectives of functions that we have considered, we can easily convince ourselves that
f(x)=x° does have an inverse, namely f*(x)=%x.

f={(-3,-27),(-2,-8),(2,8),(3,27)....} x| f(x) x )

3 -3 =27 =27 -3
X f X
. -2 -8 -8 -2
f = {(_271_3)1(_8! _2)1(8! 2)1(2713)’~ ~-} -1 -1 -1 -1
x> x° 0 0 0 0
. 9 1 1 1 1
Note that the ordered pairs of /™~ are 2 8 8 2
s a . “reversed.” That is, the x and 3 27 27 3
X ! y-co-ordinates of the ordered pairs of fare

interchanged to obtain the ordered pairs

NN of £,
3 — 21 21 —> -3 o na
2 —> -8 8 > 2 i i
s 1 EEEEA f(x)= x°
0o —> o0 o —> 0 L)
1 > 1 1 = 1 o4 vs\ "N
2 —> 8 8 —» 2 [
3 —> 27 27 —> 3 I
: ) =Yx=x°
Example 2

Does f(x)=x* have an inverse? If so, what is the inverse function of f(x)=x"?

Solution
In the last example we learned that the inverse of a function f'is obtained by interchanging the x and y-co-ordinates of the
ordered pairs of /. Let’s try this on a few of the ordered pairs of the function f(x)=x.

f={y)ixeR yeR,y=x"}={...(-39),(-2.4),(-11),(0,0),01).(2.4),(3,9)....}

The inverse of f'should be the following relation:

()0 e 1= -NE-DE-D 0.0 (.3)...}

It is readily apparent that there is something wrong, however. This relation is not a function. Therefore, f(x)=x* does
not have an inverse function unless we restrict its domain.
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10f . 10 , 101 v
- 1 ,,I : 2 ,I
() =% ? B/ (x) = x| x 2
&l ,, g /-G/ ,,
41 /’, T 4 /’,
2F i 6 2',”
108 6 4 2. T 5 10 10/ -8 6 4 2,7 5 10
i 2k 4 ,,’_2_
’I’ _4_ 3 ’I’ _‘4_
’ B 2 —¢ -
al 6 < 1 Br
p L 1 f(x) =[x, x>0 . ) =0
a 1ok 1 2 3 4 &5 6 7 8 910 o 10k

The relation obtained by
interchanging the x and y

The inverse of fis a function if
the domain of fis restricted to
the set of all real numbers x>0.

Alternatively, the domain of /
can be restricted to the set of all
real numbers x<0. In this case,

co-ordinates fails the vertical

line test. It is not a function.

Clearly, /" (x) =+/x . the inverseis /~ (x) = —x .

Observations
1. f(x)=x° is one-to-one and has inverse function f*(x)==%/x

2. f(x)=x" is many-to-one; the inverse of fis not a function unless its domain is restricted to a “piece” of fthat is
one-to-one (e.g. x>0 or x<0)

3. The graph of f* is the reflection of the graph of fin the line y = x.

Summary
We can extend the results of the above examples to all functions.

1. The inverse function /' of a function fexists if and only fis one-to-one. (Technically, #must be a bijection. For our
purposes, however, it will suffice to require that f'be one-to-one.)

2. The inverse relation of a many-to-one function is not a function. However, if the domain of a many-to-one function is
restricted in such a way that it is one-to-one for a certain set of “x-values,” then the inverse relation defined for this
“piece” is a function.

3. Geometrically, the inverse function £ of a function f'is the reflection of f in the line y = x.
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APPENDIX 2 — ONTARIO MINISTRY OF EDUCATION GUIDELINES
A. EXPONENTIAL AND LOGARITHMIC FUNCTIONS

OVERALL EXPECTATIONS

By the end of this course, students will:

1. demonstrate an understanding of the relationship between exponential expressions and logarithmic
expressions, evaluate logarithms, and apply the laws of logarithms to simplify numeric expressions;

2. identify and describe some key features of the graphs of logarithmic functions, make connections
among the numeric, graphical, and algebraic representations of logarithmic functions, and solve

related problems graphically;

3. solve exponential and simple logarithmic equations in one variable algebraically, including those

in problems arising from real-world applications.

SPECIFIC EXPECTATIONS

1. Evaluating Logarithmic Expressions

By the end of this course, students will:

1.1 recognize the logarithm of a number to a
given base as the exponent to which the base
must be raised to get the number, recognize
the operation of finding the logarithm to be
the inverse operation (i.e., the undoing or
reversing) of exponentiation, and evaluate
simple logarithmic expressions

Sample problem: Why is it not possible to
determine log,(— 3) or log,0? Explain your
reasoning,

1.2 determine, with technology, the approximate
logarithm of a number to any base, including
base 10 (e.g., by reasoning that log,29 is
between 3 and 4 and using systematic trial to
determine that log,29 is approximately 3.07)

1.2 make connections between related logarithmic
and exponential equations (e.g., log:125=13
can also be expressed as 5% = 125), and solve
simple exponential equations by rewriting
them in logarithmic form (e.g., solving 3* = 10
by rewriting the equation as log,10 = x)

1.4 make connections between the laws of expo-
nents and the laws of logarithms [e.g., use
the statement 10°** = 10°10° to deduce that
loggx + logay = logg(xy)], verify the laws of
logarithms with or without technology (e.g.,
use patterning to verify the quotient law for

logarithms by evaluating expressions such as
log, 1000 — logy; 100 and then rewriting the
answer as a logarithmic term to the same
base), and use the laws of logarithms to
simplify and evaluate numerical expressions

. Connecting Graphs and Equations

of Logarithmic Functions

By the end of this course, students will:

2.1 determine, through investigation with tech-

nology (e.g., graphing calculator, spreadsheet)
and without technology, key features (iLe.,
vertical and horizontal asymptotes, domain
and range, intercepts, increasing /decreasing
behaviour) of the graphs of logarithmic func-
tions of the form f(x) = log, x, and make con-
nections between the algebraic and graphical
representations of these logarithmic functions
Sample problem: Compare the key features

of the graphs of f(x) = log, x, g(x) = logyx,

and h(x) = loggx using graphing technology.

2.2 recognize the relationship between an expo-

nential function and the corresponding loga-
rithmic function to be that of a function and
its inverse, deduce that the graph of a loga-
rithmic function is the reflection of the graph
of the corresponding exponential function in
the line y = x, and verify the deduction using
technology
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Sample problem: Give examples to show that
the inverse of a function is not necessarily a
function. Use the key features of the graphs of
logarithmic and exponential functions to give
reasons why the inverse of an exponential
function is a function.

3. Solving Exponential and

Logarithmic Equations

By the end of this course, students will:

3.1 recognize equivalent algebraic expressions

2.3 determine, through investigation using technol- involving logarithms and exponents, and

Copyright ©, Nick E. Nolfi

ogy, the roles of the parameters d and ¢ in
functions of the form y = logg(x —d) + cand
the roles of the parameters a and k in func-
tions of the form y = alog,(kx), and describe
these roles in terms of transformations on the
araph of f(x) = log,qx (i.e., vertical and
horizontal translations; reflections in the axes;
vertical and horizontal stretches and
compressions to and from the x- and y-axes)

Sample problem: Investigate the graphs of
flx) = logyg(x) + ¢, flx) = logyglx — d),

flx) = alogpx, and f(x) = logy(kx) for

various values of ¢, d, a, and k, using technol-
ogy, describe the effects of changing these
parameters in terms of transformations, and
make connections to the transformations of
other functions such as polynomial functions,
exponential functions, and trigonometric
functions.

24 pose problems based on real-world applica-

tions of exponential and logarithmic functions
(e.g., exponential growth and decay, the
Richter scale, the pH scale, the decibel scale),
and solve these and other such problems by
using a given graph or a graph generated
with technology from a table of values or
from its equation

Sample problem: The pH or acidity of a solu-
tion is given by the equation pH = —logC,
where C is the concentration of [H*] ions in
multiples of M = 1 mel/L. Use graphing
software to graph this function. What is the
change in pH if the solution is diluted from a
concentration of 0.1M to a concentration of
0.01M? From 0.001M to 0.0001M? Describe

the change in pH when the concentration of
any acidic selution is reduced to % of its

original concentration. Rearrange the given
equation to determine concentration as a
function of pH.

MHF4UO Unit 1 — Exponential and Logarithmic Functions

simplify expressions of these types

Sample problem: Sketch the graphs of
flx) = logy(100x) and g(x) = 2 + logyax,
compare the graphs, and explain your

findings algebraically.

3.2 solve exponential equations in one variable

by determining a common base (e.g., solve
4% = 8**? by expressing each side as a power
of 2) and by using logarithms (e.g., solve

47 = g+? by taking the logarithm base 2

of both sides), recognizing that logarithms
base 10 are commonly used (e.g., solving

3" = 7 by taking the logarithm base 10 of
both sides)

Sample problem: Solve 300(1.05)"= 600 and
2**% - 2" = 12 either by finding a commeon
base or by taking logarithms, and explain
your choice of method in each case.

3.3 solve simple logarithmic equations in one

variable algebraically [e.g., log,(5x + 6) = 2,
logyg(x + 1) = 1]

3.4 solve problems involving exponential and

logarithmic equations algebraically, includ-
ing problems arising from real-world
applications

Sample problem: The pH or acidity of a solu-
tion is given by the equation pH = -logC,
where C is the concentration of [H'] ions in
multiples of M = 1 mol/L. You are given a
solution of hydrochloric acid with a pH of 1.7
and asked to increase the pH of the solution
by 1.4. Determine how much you must dilute
the solution. Does your answer differ if you
start with a pH of 2.27
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