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ESSENTIAL CONCEPTS OF TRIGONOMETRY
Introduction

To a great extent, this unit is just an extension of the trigonometry that you studied in grades 10 and 11. Given below is a
list of the additional topics and concepts that are covered in this course.

e For the most part, angles will be measured in radians instead of degrees.

e Angles of rotation will be extended beyond the range 0° <& < 360°

e The reciprocal trigonometric functions csc, sec and cot will be studied in much greater depth.
e Trigonometric identities will be studied in much greater depth.

What is Trigonometry?

Trigonometry (Greek trigonon “triangle” + metron “measure”) is a branch of mathematics that deals with the
relationships among the interior angles and side lengths of triangles, as well as with the study of trigonometric
functions. Although the word “trigonometry” emerged in the mathematical literature only about 500 years ago, the
origins of the subject can be traced back more than 4000 years to the ancient civilizations of Egypt, Mesopotamia and the
Indus Valley. Trigonometry has evolved into its present form through important contributions made by, among others,
the Greek, Chinese, Indian, Sinhalese, Persian and European civilizations.

Why Triangles?

Triangles are the basic building blocks from which any shape (with straight boundaries) can be constructed. A square,
pentagon or any other polygon can be divided into triangles, for instance, using straight lines that radiate from one vertex
to all the others.

Examples of Problems that can be solved using Trigonometry

© How tall is Mount Everest? How tall is the CN Tower?

© What is the distance from the Earth to the sun? How far is the Alpha Centauri star system from the Earth?
© What is the diameter of Mars? What is the diameter of the sun?

© At what times of the day will the tide come in?

General Applications of Trigonometric Functions

Trigonometry is one of the most widely applied branches of mathematics. A small sample of its myriad uses is given
below. The power of trigonometry is that it relates angles to distances. Since it is much easier in general to measure
angles than it is to measure distances, trigonometric relationships give us a method to calculate distances that are
otherwise inaccessible.

Application Examples
Modelling of cyclic (periodic) processes | Orbits, Hours of Daylight, Tides
Measurement Navigation, Engineering, Construction, Surveying

Circuit Analysis (Modelling of VVoltage Versus Time

Electronics in AC Circuits, Fourier Analysis, etc)

Extremely Important Note on the Notation of Trigonometry

Input (Argument)

Name of Function Parentheses can be used but are usually omitted.

Output (Function Value)

x |::> sin sinx  x |::> cos COSX  x |::> tan tan x
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RADIAN MEASURE

Summary of Various Units for Measuring Angles

Degree Measure

Radian Measure

Grad (also known as Gon,
Grade, Gradian) Measure

e 360 degrees in one full revolution

e Very well suited and widely used for
practical applications because one degree isa |
fairly small unit

e For greater precision, one degree can be
subdivided further into minutes (') and o
seconds (")

e There are 60 minutes Or arcminutes in a
degree, 60 seconds or arcseconds in a minute
e.g. Central Peel’s location

43°,41',49" N (or 43.6969°)
79°,44', 59" W (or —79.7496°)

revolution

e 2z radians in one full

Not well suited to practical
applications because one
radian is a rather large unit

Very well suited to
mathematical theory because
the radian turns out to be
dimensionless. As a result,
trigonometric equations are
greatly simplified, especially
those for derivatives and
integrals in calculus.

400 grads in one full
revolution

Very well suited for practical
applications because one grad
is a fairly small unit

The creation of the grad was
an attempt to bring angle
measure in line with the metric
system (i.e. based on ten)

This idea never gained much
momentum but most scientific
calculators support the grad

Calculator Use

Scientific Calculator

Windows Calculator

This key is used to switch among degrees, radians and grads mode. Whenever you | © Deerees Radians Grads

are working with angles, make sure that your calculator is in the correct mode.

Why 360 Degrees in one Full Revolution?

The number 360 as the number of “degrees” in a circle, and hence I G TS G IPTIE4 SR FTR 4 SN P-4 S " -4

the unit of a degree as a sub-arc of Y0 Of the circle, was probably Y | 2 T | 2 TV |2 <&T¥ |22 W | = &Y
adopted because it approximates the number of days in a year. Its PV | s TV | oo (T | 55 T | Y == TV
use is thought to originate from the methods of the ancient $FN | o | T | KT 5
Babylonians, who used a sexagesimal number system (a number SO | s (| o (| o | PR
system with sixty as the base). Ancient astronomers noticed thatthe | « FF | 1« <FF | - «FF | = < TFF |« SFF > T
stars in the sky, which circle the celestial pole every day, seem to B | | o T kT | | =
advance in that circle by approximately one-360th of a circle, that FF | o aTF | o | T | T <K

is, one degree, each day. Primitive calendars, such as the Persian T | <F | T T || 4?
Calendar used 360 days for a year. Its application to measuring Dl |k | o & |0 & - 5T

angles in geometry can possibly be traced to Thales of Miletus, who
popularized geometry among the Greeks and lived in Anatolia
(modern western Turkey) among people who had dealings with
Egypt and Babylon.

The 59 symbols used by the Babylonians. These symbols are built from the
two basic symbols ¥ ana "( representing one and ten respectively.

Another motivation for choosing the number 360 is that it is readily divisible: 360 has 24 divisors (including 1 and 360),
including every number from 1 to 10 except 7. For the number of degrees in a circle to be divisible by every number from
1 to 10, there would need to be 2520 in a circle, which is a much less convenient number.

Divisors of 360: 1, 2, 3,4, 5, 6, 8,9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360
The division of the circle into 360 parts also occurred in ancient India, as evidenced in the Rig Veda:

Twelve spokes, one wheel, navels three.
Who can comprehend this?

On it are placed together

three hundred and sixty like pegs.

They shake not in the least.
(Dirghatama, Rig Veda 1.164.48)
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Definition of the Radian

radian

the size of an angle that is

subtended at the centre of a

circle by an arc with a length

equal to the radius of the circle; f
both the arc length and the
radius are measured in units of

r1 radian is defined as the angle
subtended by an arc lenath, |,
equal to the radius, r. It appears as
though 1 radian should be a little
less than 60°, since the sector

length (such as centimetres) formed resembles an equilateral
and, as a result, the angle is a triangle, with one side that is
real number without any units | curved slightly.
o M
Verb: subtend subtend
It is important to note that the size of an 1. Be opposite to; of angles and sides, in geometry
angle in radians is not affected by the size of
!Q o, th:}circ;e.hThe diagramleshows thjtafla'l? a |mp0 rtant Note -
subtend the same angle 6, 5060 = 7, = - Whenever the units of angle measure are not
specified, the units are assumed to be radians.

Investigation — The Relationship among 6, r and |

When @is measured in radians, there is a very simple equation that relates r (the radius of the circle), & (the angle at the
centre of the circle) and / (the length of the arc that subtends the angle 6). The purpose of this investigation is to discover
this relationship. Complete the table below and then answer the question at the bottom of the page.

Diagram r (7] | p

Now that you have completed the table, write
an equation that relates », / and 6.

9000000
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A more Analytical Approach to finding the Relationship among 6, r and |

How many Radians are there in One Full Revolution? fx

First, we need to establish the number of radians in one full revolution. We !
can accomplish this by considering a unit circle (a circle of radius 1). Itis ! .

easy to see that for such a circle, I =6. For example, if 8=1, then by the Z

definition of a radian, /=1. Similarly, if #=2,then /=2 . For an arc
whose length is equal to the circumference of the circle,
I=C=2zr=2z(1)=2x. Since [ =0, for one complete revolution, 6 =27 .

Therefore, one full revolution = 27 radians.

How is @related to the “Amount of Rotation?”

It should be fairly obvious that the angle &determines the fraction of one full revolution. For instance, consider the
examples in the table given below.

4 (rad) FraRZt\llg?u?:Ogne How Fraction is Calculated ”

z 1 0 :m (zﬂ):(zJ(i}l

4 8 27 \ 4 4 )\2x) 8

z 1 iz(”j /(zﬁ)z(z)[i)zl

2 4 2r \ 2 2N\ 2x) 4 J|’ ,
1 0 / ) 1
p— = 2 =| — | = —

¢ .  ~(mfem) (£

5 s 23 flen- () L)-S

2 4 2r 2 2 \2x) 4
7 0 angle of rotation

o o 27 angle for one full rotation :

How is | related to the Circumference of a Circle?
It should also be obvious that / determines the fraction of the circumference of a circle. Consider the following table for a
circle with » = 3 units and C = 277 = 27(3) =67 units.

O (rad) I Fraction of the Circumference ”
1 1
P 5 [l
4 8 4 C 4 4 \67r) 8
z bz _37 _4 12[3”) (67)= 3_”) 131
2 4 2 C 2 2 \6r) 4 }
o | Eesew | L) fen-(2 -3 .
2 C 6zr) 2
N FEICTIY O Y S Y ENTE
2 2 2 C 2 2 \6r) 4
% 360 L.3%_09
C 6r 2rx )

An important observation to make at this point is that é:i . That is, the ratio of the length of the arc to the
T

circumference of the circle is equal to the ratio of the angle subtended by the arc to the number of radians in one full
revolution. Now, by recalling that C = 277, we can write the above proportion as

L_0

2nr 21
By multiplying both sides by 27zr, we obtain / =r6.
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Summary: Calculating the Length of an Arc

Let » represent the radius of a circle and & represent the measure of an angle at the centre of the circle. If #is subtended

by an arc whose length is /, then

[=r0

C =2zr is a Special Case of | =ré@

Note that the equation / =76 is a generalized form of C =2zr. Inthe case of C=2zr,l=Cand 6= 2x.

Converting between Radians and Degrees

We know that one full revolution is equal to 2z radians and that one full revolution is equal to 360°.

c.2m rad = 360°

c.mrad = 180°

By remembering that z rad = 180°, you will be able to convert easily between radians and degrees

Radians to Degrees Degrees to Radians
7 rad =180° 180° = 7 rad
180°
slrad = ~10 =2 rad
Vs 180
x(180°) X7
= ~x° =—-rad
x rad - X 180
Examples
1. Convert 6 radians to degrees. 2. Convert 972° to radians.
Solution Solution
7 rad =180° 180° = 7 rad
~lrad= 180 ~1° = rad
T 180
6(180°
-6 rag = 2189 o720 = 2127 g
Vs 180
1080° _21r
= =——rad
V4 5
=343.8° =16.96 rad

We can be confident that this answer is correct because
6 radians is just short of one full revolution as is 343.8°. //

Special Angles

does 16.96 rad. (3 full revs =18.85rad) //

As shown in the following table, it is very easy to convert between degrees and radians for certain special angles.

We can be confident that this answer is correct because
972° falls short of 3 full revolutions by about 100°, as

Angle in o o o .
Degrees 30 45 60 )
Angle in 180° 7 180° 7 180° 7 180° 7
Radians 6 6 4 4 3 3 2 2

In addition, it is also very easy to convert between radians and degrees for multiples of the special angles. Examples are

shown below.

150° =5(30°) :%”
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Radians are Dimensionless

Since [ =0r, it follows that @ = l . Because both / and  are measured in units of distance, the units “divide out.”
r

/ Both are measured in units of distance. Therefore, the units
o= ;:7 “divide out” and @turns out to be dimensionless.
This means that when &is measured in radians, it is a dimensionless number, that is, a pure real number. Because of this,

the radian is very well suited to theoretical purposes since functions operate on real numbers and not on angles measured
in degrees or any other unit.

Angular Frequency (Angular Speed)
Angular frequency or angular speed is the rate at which an object rotates. The Greek letter @ (lowercase omega) is
often used to denote angular frequency.
Example 1

The RPM gauge on a car measures the speed at which the crankshaft (see pictures below) rotates in
revolutions per minute. While Victor was driving through a school zone, his RPM gauge read 9500
RPM. Convert this value to radians/second.

Solution — T piston
@ =9500 RPM
— M Connecting Rod
60 s/min
475 Crankshaft
=—— rot/s
3
= (% rot/s](Z;r rad/rot) Valve Train
_ 9507 d/
B raais Pistons, Connecting
= 994.8 rad/s Rods and Crankshaft

The angular frequency of Victor’s crankshaft is about 994.8 rad/s. //

Example 2

While Victor was driving his turbo-charged Volvo on the 410, the wheels of his car were spinning with an angular
frequency of 200 rad/s. If the radius of each wheel is 40 cm, how far will Victor’s Volvo travel in 15 minutes?
Solution

The crux of this problem is to make the connection /
between the circumference of the wheel and the
distance travelled.

As shown in the diagram at the right, the distance
travelled after one rotation of the wheel is equal to
the circumference of the wheel.

C=2nr= 271'(0.4 m) =0.87m

C
In one second, the wheel moves through 200 rad. Therefore, the distance travelled in one second can be calculated easily
using the relation /=r6:

I=r6=(0.4m)(200 rad)=80 m
Therefore, the car’s speed is 80 m/s.
Consequently, in 15 minutes, Victor’s car travels (80 m/s)(15 min)(60 s/min) = 72000 m = 72 km. //
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Example 3

The London Eye Ferris wheel has a diameter of 135 m and completes one
revolution in 30 min.

a) Determine the angular velocity, @, in radians per second.

b) How far has a rider travelled at 10 min into the ride?

Solution
-
_ 1 60 s Since the question asks for angular
a) 30 min = 30 i X <« velocity in radians per second,
1 convert the time to seconds.

= 1800 s

Each revolution of the Ferris wheel
. 27 . represents an angular motion
Angular velocity, & = 180 radians/s | through an angle of 27 radians.
Therefore, the Ferris wheel moves
T ) i i
_ radians/s kthrcuugh 27 radians every 30 min.

900 -

= 0.003 49 radians/s

p
_ ~ 135 The rider moves in a circular
b) Radius, r = 2 M= motion on the edge of a circle that
has a radius of 67.5 m.
= 67.5m .
~
1 The wheel turns through one
10 mm - :
Number of revolutions, n = - : revolution every 30 m|r"|,150 the
30 ”*l’ﬁ rider has gone through 3 of a
1 revolution at 10 min.

= g revolution

1 “he 1
Distance travelled, d = —(27 % 67.5 m) +| T.he rider trave'? 3 of the
3 . circumference in 10 min.

= 457 m
= 1414 m J/
Homework
pp. 320 — 322
1—-10, 12, 14, 15, 16
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RADIAN MEASURE AND ANGLES ON THE CARTESIAN PLANE

Trigonometry of Right Triangles — Trigonometric Ratios of Acute Angles
Right triangles can be used to define the trigonometric ratios of acute angles (angles that measure less than 90°).

SOH CAH TOA

& sing opposite sl — hypotenuse _ 1
% ”?@% hypotenuse opposite  siné Shout Out Hey” “Canadians Are Hot”
s, 1% H 7
& N cosg_ diacent _ hypotenuse 1 Tight Oiled Abs
0 hypotenuse adjacent  cosd Have fun by creating your own
Adjacent ; ; mnemonic!
tang — opposite cotd adjacent 1

adjacent opposite  tand CHO SHA COTAO

The Special Triangles — Trigonometric Ratios of Special Angles

For certain special angles, it is possible to calculate the exact value of the trigonometric ratios. As | have mentioned on
many occasions, it is not advisable to memorize blindly! Instead, you can deduce the values that you need to calculate the

trig ratios by understanding the following triangles!

N _e Isosceles Right Triangle

! o/ Let the length of the equal sinﬁzi cos :i tan = :1:1
sides be 1 unit. 4 2 4 2 4 1
1 By the Pythagorean Theorem, z 2 2 z 2 NA cot” = 1 -1
the length of the hypotenuse 11 Secz R 2 4 1
] N must be /2.
I

e Begin with an equilateral triangle having
sides of length 2 units. Then cut it in half

T T T . .
toforma —, —, E right triangle.

2
e Use the Pythagorean Theorem to
calculate the height of the triangle. (\@ )
3
1
Trig Ratios of %

zzﬁ Cos—=— tan— =~/3

3 2 2
2 1
CSCEZEZZ seczz— Cotﬁzﬁzﬁ Cscﬁzﬁ seCEZEZZ Cot—=—
6 1 6 3 6 1 372 3 1 V3
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Trigonometric Ratios of Angles of Rotation — Trigonometric Ratios of Angles of any Size

We can extend the idea of trigonometric ratios to angles of any size by introducing the concept of angles of rotation (also
called angles of revolution).

10t 10
A <——Terminal Arm 5 « Anegative angle of
A revolution (rotation) in
I e A positive angle of revolution 6 standard form.
ar (rotation) in standard form. 4 e “Standard form” means
2t A e “Standard form” means that the 2 that the initial arm of
.......... A4 .. .., initial arm of the angle lies on EEEEEEEEE the angle lies on the
0 -8 6 4 -2 L 2 4 BA8 10 the positive x-axis and the vertex 10/ 8 6 4 -2 positive x-axis and the
2T of the angle is at the origin. 2 vertex of the angle is at
4T Initial Arm e A positive angle results from a 4 the origin.
5} counter-clockwise revolution. I e A negative angle results
sl (The British say “anti- Terminal Arm 3 from a clockwise
clockwise.™) I revolution.
fpl -10
Why Angles of Rotation?
10} To describe motion that involves moving from one
8 place to another, it makes sense to use units of
o distance. For instance, it is easy to find your
‘2‘1 destination if you are told that you need to move 2 km

north and 1 km west of your current position.

Consider a spinning figure skater. It does not make
sense to describe his/her motion using units of
distance because he/she is fixed in one spot and
rotating. However, it is very easy to describe the
motion through angles of rotation.

The four quadrants

sing = opposite _ y « Since r represents the length of the terminal
I 1 hypotenuse r arm, »>0.
- - w050 adjacent x o ITnhquadrant I, x>0 gnd y'> 0. N
hypotenuse 7 erefore ALL the trig ratios are positive.
) e Inquadrantll, x<0 and y>0.
tan g = 2PPOSIt _ ¥ Therefore only SINE and cosecant are
x |y | r x|y | r adjacent x positive. The others are negative.
- AL e Inquadrant lll, x<0 and y<0.
(x.) S A hypotenuse  r Therefore only TANGENT and cotangent
| . I csco = “opposite y are positive. The others are negative.
_ { e Inquadrant IV, x>0 and y<O0.
- sec g — Jypotenuse _ Therefore only COSINE and secant are
1 v adjacent  x positive. The others are negative.
T C adjacent  x e Hence the mnemonic,
cotd=———=— “ALL STUDENTS TALK on
B R o opposite y CELLPHONES”

Coterminal Angles

Angles of revolution are called coterminal if, when in standard position, they share the same terminal arm. For example,

—%, 37” and 77” are coterminal angles. An angle coterminal to a given angle can be found by adding or subtracting any

multiple of 2 .
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Principal Angle

Any angle @satisfying 0<6 <27 is called a principal angle. Every angle of rotation has a principal angle. To find the
principal angle of an angle «, simply find the angle &that is coterminal with « and that also satisfies 0<6 <2z . An

example is given below.

13z

Angle of Rotation a = T

Principal Angle of «, 0 :3:

8+
6 6
4l af
. Bz
2ol 4
-10 -8 6 4 532 46 8 10 0 -8 6 42 | 2 4 6 8 10
3z 2F 2r
4l ul
s 1
r:1s B
=10+ gl
T
Quadrant I1 PR =g Quadrant 1 O<x<Z
§ 'Y Pixy)
[ x 3 [ E o
o sin =2 w sin @=2 =y i
Yi o r i r i Ly
| . = . . [ Kul
X x COS Bzi = — cos 8= x =+ o] o
r + r -
+ ) i
an 9:-‘1 - = tan 6’:l - =+
x - " +
3z = =
i Quadrant Il 7 <x<=> Quadrant IV :
o sin =2 —= sin =2
e 7 - #
":/ cos =X — = — cos ==
:P r + r
tan O=2 =i tan =2 — =
x - X +

Example — Evaluating Trig Ratios by using the Related First Quadrant Angle

Find the trigonometric ratios of % .

Solution

From the diagram at the right, we can see that the principal

angle of % is 5?” Furthermore, the terminal arm is in the

Every angle of rotation has a related (acute) first quadrant
angle. The related first quadrant angle is found by taking
the acute angle between the terminal arm and the x-axis.

1 3
For Tlﬂ the related (acute) first quadrant angle is %

fourth quadrant and we obtain a 30°-60°-90° right triangle in quadrant IV. By observing the acute angle between the

terminal arm and the x-axis, we find the related first quadrant angle, % .

Therefore,
sin&zsin‘r’—ﬂzlz__\/§ _ﬁ
3 3 r 2 2
11z 52z x 1
C0S— =cos—=2==
3 3 r 2
tan&—tanS—ﬂzlzﬁz_\@
3 3 x 1

Copyright ©, Nick E. Nolfi

Compare these answers to

sinzzﬁ
2

Ccos

tanZ =
3

1
2

w(y @

V3

b5)
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Question

How are the trigonometric ratios of the principal angle ?ﬂ related to the trigonometric ratios of %?

determine the correct sign, use the ASTC rule. In case you forget how to apply the
ASTC rule, just think about the signs of x and y in each quadrant. Don’t forget that 7 is (13)
always positive because it represents the length of the terminal arm. Thus, the above
ratios could have been calculated as follows:

Answer

Notice that the right triangle formed for 5?” is congruent to the right triangle for % : »(1.43)
Therefore, the magnitudes of the trig ratios of 5?7[ are equal to the magnitudes of ) \/g
those of the related first quadrant angle % However, due to the fact that the 3C ; 1 |_
y-co-ordinate of any point in quadrant IV is negative, the ratios may differ in sign. To J?

Angle of Rotation: 5?” (quadrant 1V) Related First Quadrant Angle: %
. y - X + y -
In quadrant 1V, sing == <0 because —=—, cosd==>0 because —=+ and tand == <0 because —=—.
r + r + X +
Hence, sin5—”=—sin£=—£, coss—ﬁzcoszzl and tan5—”=—tan£=—\/§.
3 3 2 3 3 2 3 3

Additional Tools for Determining Trig Ratios of Special Angles

The Unit Circle The Rule of Quarters (Beware
A unit circle is any circle having a radius of one unit. If a unit circle is centred at the of Blind Memorization!)
origin, it is described by the equation x* + y* =1, meaning that for any point (x, y) The rule of quarters makes it

easy to remember the sine of

lying on the circle, the value of x* + »* must equal 1. Furthermore, for any point (x, y) special angles. Be aware

lying on the unit circle and for any angle 6, » =1. Therefore, cosd=> =2 =x and however, that this rule invites
r 1 blind memorization!
sing=2 =%= y. Inother words, for any point (x,y) lying on the unit circle, the 0
r sin(0°) = \/j =0
x-co-ordinate is equal to the cosine of #and the y-co-ordinate is equal to the sine of 8. 11 .
sin(30°) =4/~ ==
1 43 (0.1) . 4 2
( E,7) (%, 3) (cosé,sin6)  (45%) — 2 Vv2_ 1
) ) \ sin(45%) = 1 -9 \/E
\\\ . oy 3 _ \/3
1 ,\\\ sin(60°) = i-9
ki 5in(90°) = % =1
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Note that — = . This

J2
follows by multiplying both
the numerator and the

L
2

2

(x,y) = (cosf,sin6)

0°=07=27

)

denominator of —— by /2.

-
T

By expressing 1 in the

V2

V2
form - it is very easy to

remember the unit circle.

Homework
pp. 330 — 332
5,6, 10, 11, 14, 16, 21

Copyright ©, Nick E. Nolfi
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Overview

INTRODUCTION TO TRIGONOMETRIC FUNCTIONS

Now that we have developed a thorough understanding of trigonometric ratios, we can proceed to our investigation of
trigonometric functions. The old adage “a picture says a thousand words” is very fitting in the case of the graphs of trig
functions. The curves summarize everything that we have learned about trig ratios. Answer the questions below to

discover the details.
Graphs

¥ y=sinx
0 0
z 1/2=05
z 132 = 0.70711
% | ~3/2=0.86603
z 1
z /3/2 = 0.86603
= 142 = 0.70711
Sz 1/2=05
7 0
1z ~1/2=-05
Sz | _1/y2 =-0.70711
4 | _3/2=-0.86603
£ -1
2 | —J3/2=-0.86603
x| _1/y2 =-070711
U ~1/2=-05
2 0
X » =C0Sx
0 1
z J3/2 = 0.86603
z 1\2 =0.70711
z 1/2=05
z 0
2 ~1/2=-05
3| _1¥2 =-0.70711
52| _3/2=-0.86603
V4 -1
| _[3/2=-0.86603
sz | _1J2=-0.70711
4z ~1/2=-05
= 0
sz 1/2=0.5
I 142 £ 0.70711
i /3/2 = 0.86603
2 1

Copyright ©, Nick E. Nolfi

1
0.8
0.6
0.4
0.2

f(x)=sinx

024
V4= 1> <>
06k
sk

4f

Questions about sin x

1. State the domain and range of the sine
function.

2. s the sine function one-to-one or
many-to-one?

1
0.8
0.6
04
0.2

02t
0.4
06
038

1

Questions about cos x

1. State the domain and range of the
cosine function.

2. s the cosine function one-to-one or
many-to-one?

(o]

(o]

. State a suitable subset of the domain

of

f(x)=sinx over which f~*(x) is defined.

. How can the graph of the sine function help you

to remember the sign (i.e. + or —) of a sine ratio

for any angle?

to remember the sine ratios of the special

angles?

. Sketch the graph of f(x)=sinx for

. How can the graph of the sine function help you

—2r<x<2r.
=
o.s
o.s
[=Re =
o =F
27 13z =z | Z g o Z| £ 3z g 5z 37 11 2
Lol 42 4 41 2 4
—os |
o=
A E

. State a suitable subset of the domain

of

f(x)=cosx over which f~*(x) is defined.

you to remember the sign (i.e. + or —) of a

cosine ratio for any angle?

. How can the graph of the cosine function help

. How can the graph of the cosine function help

you to remember the cosine ratios of the special

angles?

. Sketch the graph of f(x)=cosx for

2w <x<2r.
.
o= |
o & |
o« |
o=
27 3z =xr  Zg=fp x|z 3z g 578z 1 x
2 2 aalb 422 4 (214
—oos =
lo.s -
Nl =
TF-16
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X y = tan X
- undefined
-5 | —J3=-173205
_% -1
% | -YJ3=-057735

0 0

3 143 = 0.57735

= 1

5 V3 2173205

=z undefined

& V3 =-1.73205

3z

e -1
% | -1YJ3=-057735

T 0
2 | 132057735

5
5z 1
z J321.73205
37” undefined

X y = CSCx

0 undefined

5 2

T J2 2141421

z 2//3 £1.15470

z 1
2 2/\/3 £1.15470
* J2 =1.41421

5
= 2

T undefined

r
5 -2
= V2 =-1.41421
2 | -2/V3=-1.15470

3z

> -1
2| —2/\3=-1.15470
T 2 =-1.41421
11z
5 -2
27 undefined

Copyright ©, Nick E. Nolfi

Questions about

Asymptotes

tan x

HF—=<HH—>

1. State the domain and range of the
tangent function.

2. Is the tangent function one-to-one or
many-to-one?

Asymptotes

Questions about

CSC X

1. State the domain and range of the
cosecant function.

2. |Is the cosecant function one-to-one or

many-to-one?

. State a suitable subset of the domain of

f(x)=tanx over which f*(x) is defined.

. How can the graph of the tangent function help

you to remember the sign (i.e. + or —) of a
tangent ratio for any angle?

. How can the graph of the tangent function help

you to remember the tangent ratios of the

special angles?

. Sketch the graph of f(x)=tanx for

3 57
—<x<—
2 2
10T
sl
E:
al
2NN
8z |y Lzl Pz % 8z 7|5z 3z iz Dx 9 5x
2 -2+ 4 2 4 4 212 42
_4:
§aan
b
L4 L

. State a suitable subset of the domain of

f(x)=cscx over which f~*(x) is defined.

. How can the graph of the cosecant function

help you to remember the sign (i.e. + or —) of a
cosecant ratio for any angle?

. How can the graph of the cosecant function

help you to remember the cosecant ratios of the

special angles?

. Sketch the graph of f(x)=cscx for

2r<x<2r.
1O
s
E:
al
=2
2 e R R A e B B o
_4:
i n
af
Lqg Ll
TF-17
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3. State a suitable subset of the domain of

Asymptotes ) 1 ] .
x y=Ssecx f(x)=secx over which /() is defined.
—z undefined /E\ ot : /E\
® 2 51 f:f(x) S SeEx ' 4. How can the graph of the secant function help
—% V2 2141421 ! Al i : you to remember the sign (i.e. + or —) of a
-Z | 2/V3=115470 al secant ratio for any angle?
0 1 i al E E
i 2 ‘\/§ i 1.15470 II 1 11| | I I! | N T I T N N I O I A | il .
2 / —x_z. | z & % 5. How can the graph of the secant function help
& V2 141421 $ 42 i bt . you to remember the secant ratios of the special
z 2 : ini : angles?
] <o —> |
z undefined ! adi ' !
z -2 i
, . r i ! 6. Sketch the graph of f(x)=secx for
3z N Vi “10t \V4 !
4 2 =-141421 —27Z'Sx£27l'.
% | -2/y3=-1.15470 Questions about sec x AT
T -1 1. State the domain and range of the i -
| /3= -115470 secant function. 4l
2 -
5z . -
4 V2= -141421 o B L T a 8r Ly b 87 e 07
Az ) . 2242 T4 472 4
3 2. Is the secant function one-to-one or 4t
= undefined many-to-one? nidn
-3
(4ol
3. State a suitable subset of the domain of
Asymptotes ) 1 ] .
x y=cotx f(x) =cotx over which /() is defined.
0 undefined
. Uimanapnynas )
© V32173205 gt/ (V) = oot { 4. How can the graph of the cotangent function
T 1 sl : | help you to remember the sign (i.e. + or —) of a
z Y3 =057735 Al ' i cotangent ratio for any angle?
z 0 2L E E
2z . B | {
2Z | _1/J3=-057735 .
33 Y3 EREARE AR ANE) 3 27 5. How can the graph of the cotangent function
o -1 ] EEEEEEEE NSEEEEEEEEEOE help you to remember the cotangent ratios of
T | VBz-173208  AR= =S <P <V the special angles?
T undefined Gl i {
2| e of | |
o V3 =1.73205 ;s : | 6. Sketch the graph of f(x)=cotx for
47 ! v 27 <x<L2r.
% | Y¥3=057735  Questions about cot x 107
= 0 1. State the domain and range of the °F
52| _1/y3= 057735 cotangent function. 4t
iz -1 2 TRRRRARARARRRRARERERREY)
e . 2 e D T o e e e o
6 —v3=-173205 7 s the cotangent function one-to-one or af
2 undefined many-to-one? B
-3
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TRANSFORMATIONS OF TRIGONOMETRIC FUNCTIONS

What on Earth is a Sinusoidal Function?
A sinusoidal function is simply any function that can be obtained by stretching (compressing) and/or translating the
function f(x)=sinx. Thatis, a sinusoidal function is any function of the form g(x) = Asin (a)(x - p)) +d . Since we

have already investigated transformations of logarithmic and exponential and logarithmic functions, we can immediately
state the following:

Transformation of f(x) =sinx expressed in Function Notation Transformation of f(x) =sinx expressed in Mapping Notation
g(x)zAsin((u(x—p))+d (x,y)—)(a)’lir p,Ay+d)
Vertical Transformations Horizontal Transformations

(Apply Operations following Order of Operations) (Apply Inverse Operations opposite the Order of Operations)

1. Stretch or compress vertically by a factor of A. If 1. Stretch or compress horizontally by a factor of @ =1/ .
A <0, then this includes a reflection in the x-axis. If @ <0, then this includes a reflection in the y-axis.
2. Translate vertically by d units. 2. Translate horizontally by p units.
(x,y) > (x, Ay +d) (x,y)—)(a)"lx+p,y)

Since sinusoidal functions look just like waves and are perfectly suited to modelling wave or wave-like phenomena,
special names are given to the quantities 4, d, p and .

o |A| is called the amplitude (absolute value is needed because amplitude is a distance, which must be positive)
e dis called the vertical displacement These quantities are described

« pis called the phase shift 211 on the nextigERy

e o (also written as k) is called the angular frequency

Periodic Functions

There are many naturally occurring and artificially produced phenomena that undergo repetitive cycles. We call such
phenomena periodic. Examples of such processes include the following:

hours of daylight on a given day

light waves, radio waves, etc

alternating current (e.g. household alternating current has a frequency of
60 Hz, which means that it changes direction 60 times per second)

« orbits of planets, moons, asteroids, comets, etc a1

e rotation of planets, moons, asteroids, comets, etc T—{Onm Cycle

e phases of the moon : /\ \/\/

o the tides \/\O\ \/ /\ /\
« changing of the seasons ? N P . Ans

[ ]

[ ]

[ ]

An example of a periodic function.

Intuitively, a function is said to be periodic if the graph consists of a “basic pattern” that is repeated over and over at
regular intervals. One complete pattern is called a cycle.

Formally, if there is a number 7'such that f(x+7)= f(x) for all values of x, then we say that /is periodic. The smallest

possible positive value of T is called the period of the function. The period of a periodic function is equal to the length of
one cycle.

Exercise
Suppose that the periodic function shown above is called /. Evaluate each of the following.

@ f(2)  ® (4  © @O @ s0) @ s@6) @O s@8) (© s(83) () f(-16)
0 s(=81) O f(-28) ) s(=27) O f(-12) ) s(-6) ) £(-9) (© f(-5) () f(-100)
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Characteristics of Sinusoidal Functions
1. Sinusoidal functions have the general form f'(x) = Asin(a)(x—p)) +d ,where 4, d, p and w are as described above.

(Those of you who prefer to use & may write this is f'(x) = 4sin (/((x - p)) +d.

2. Sinusoidal functions are periodic. This makes sinusoidal functions ideal for modelling periodic processes such as
those described on page 19. The letter T is used to denote the period (also called primitive period or wavelength) of a
sinusoidal function.

3. Sinusoidal functions oscillate (vary continuously, back and forth) between a maximum and a minimum value. This
makes sinusoidal functions ideal for modelling oscillatory or vibratory motions. (e.g. a pendulum swinging back and
forth, a playground swing, a vibrating string, a tuning fork, alternating current, quartz crystal vibrating in a watch, light
waves, radio waves, etc)

4. There is a horizontal line called the horizontal axis that exactly “cuts” a sinusoidal function “in half.” The vertical
distance (maximum displacement) from this horizontal line to the peak of the curve is called the amplitude.

Example
The graph at the right shows a few cycles of the function f(x) =1.55in(2(x—§)) +1. One of the cycles is shown as a
thick green curve to make it stand out among the others. Notice the following:

e The maximum value of f'is 2.5.

The minimum value of fis —0.5.
e The function foscillates between —0.5 and 2.5.

o The horizontal line with equation y =1 exactly “cuts” the function “in half.”
This line is called the horizontal axis.

e The amplitude of this function is |A| =1.5. This can be seen in a number of
ways. Clearly, the vertical distance from the line y =1 to the peak of the
curve is 1.5. Also, the amplitude can be calculated by finding half the distance

between the maximum and minimum values: 25-(209) =%=1.5 4l :
e The period, that is the length of one cycle, is 7=z . This can be seen from -1.5 —é

p

the graph (577[—% =7 ) or it can be determined by applying your knowledge

of transformations. The period of y =sinx is 2z. Since f'has undergone a horizontal compression by a factor of 1/2,
its period should be half of 2z, which is z. In general,

T = (period of base function)(absolute value of the horizontal compression factor) or T =2«

1
. The reason that
7))

absolute value is needed here is that the period is a distance and hence, must be positive. (Those of you who prefer to

. . 1
use & to represent the angular frequency may write thisas T = 27 » )

e The absolute value of the angular frequency determines the number of cycles in 2z radians. In this example, |aJ| =2,

. . . . . 1 . . 1 .
which means that there are 2 cycles in 2z radians = 1 cycle in z radians = — cycles in 1 radian = — cycles/radian.
T T

e The function g(x) =1.5$in(2(x—%)) would be “cut in half” by the x-axis (i.e. the horizontal axis y =0). The function

fhas exactly the same shape as g except that it is shifted up by 1 unit. This is the significance of the vertical
displacement. In this example, the vertical displacement d =1.

e The function g(x)=1.5sin (Z(x—%)) has exactly the same shape as /(x) =1.5sin2x but is shifted % to the right.
This horizontal shift is called the phase shift.
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Important Exercises

Complete the following table. The first one is done for you.

Function | A d P |a=k| T Description of Transformation
ar Zh(x) =3sinx
f 1 0 0 1 2 None 25
2r (x)= 2sinx
15}
o i (x) =sin
The graph of f(x)=sinx is U_;_ A
g 2 0 0 1 | 27 | stretched vertically by a factor of 2. EPIEPIRERRR NGRREPRGEY
The amplitude of g is 2. Uj: T2 a 2 4
The graph of f(x)=sinx is 1-;:
h 3 0 0 1 | 27 | stretched vertically by a factor of 3. | 5|
The amplitude of g is 3. KL
F 22: o) Elsinlv i 2
2
1'5: F(x)=sinx
051
£ vl Z A 3r ﬂ\%\s_ﬁ/@yzﬁ
o5 /
" h(x)=sinx-15
2+ Xx)=SInx —1.
h 25}
3k
f(x)=sinx g(x)=sin2x h(x)=sin3x
S AN N
0.5H
g ||
7T
05+
h
AL
F(x)=sinx g(x):sin(xfgj
f h(x):sin[x+%)
g
h
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Example

Sketch the graph of f(x) =1.55in(2(x—%)) +1
Solution
. Vertical Phase . Angular
RIS Displacement | Shift PO Frequency
V4 ® i
A=15 d=1 p==— |a)|=2,wh|ch
| | 4 =2z (1/2) means 2 cycles
=7 per 2z radians

Method 1 — The Long Way

Stretch by a factor of 1.5.

Translate 1 unit up.

Transformations

Horizontal
Compress by a factor of 2t :%
Translate Z to the right.

4

The following shows how the graph of f(x) =1.5sin(2(x ——)) +1 is obtained by beginning with the base function

f(x)=sinx and applying the transformations one-by-one in the correct order. One cycle of f(x)=sinx is highlighted
in green to make it easy to see the effect of each transformation. In addition, five main points are displayed in red to

make it easy to see the effect of each transformation.
2T 2t

45l f(x)=1.5sinx

fi(x)=sinx

ks

£
2
1.5sin2(x—4) +1

i /(\) 1.5sin2x +1

Method 2 — A Much Faster Approach

i/ (x)=1.5sinx+1

¢ The five main points divide each cycle
into quarters (four equal parts).

o Each quarter corresponds to one of the
four quadrants.

o Dividing one cycle into four equal
parts makes it very easy to sketch the
graphs of sinusoidal functions.

¢ The transformations are very easy to
apply to the five main points.

f(x)=15sin(2(x-%))+1,4=15,d =1, 0=2, p=

(x,y)—>(a) x+p,Ay+d)

. x,y) ( l,1.5y+1)

(0)+%,1.5(0) +1)=(

(—)+4,15(1)+1)=(
+4,1.5(0)+1) = (3£,1)

1)=(#

_O
\_/

||||||

(

- (0,0) > (%

Tl T AT (5120
(
(

£1)
41
zZ
21

—1 —>( (&) +2,1.5(-1) +
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Exercise 1
Using both of the approaches shown in the previous example, sketch a few cycles of the graph of

f(x)=-2cos(-3(x+%))-1.

Solution
. Vertical Phase " Angular .
Amplitude Displacement Shift Period Frequency Transformations
Vertical Horizontal
Method 1 — The Long Way
3 3 3
25 251 25
2+ 21 2+
15 151 1.5+
1+ —> 1+ —> 1+
0.5+ 0&F 0.5+
_I I_Iil 1 1 Iil 1 1 1 Iﬁl 1 1 _I I_Iil 1 1 Illl 1 1 1 Iil 1 1 _I I_Iil 1 1 II£I 1 1 1 Iﬁl 1 1
T 05k : T £ 2 3 > Losk 5 V4 4 2 s > sl : V3 L 2
At At At
15+ “HE 15+
2+ 2t 2+
25+ 251 2.5+
3t 3  ’ -3t
st «— 4}
25+ 25+
2r 21
15- 151
1+ —> 1+
05r 05
3 L 1 _Ii 1 1 1 1 i 1 1 1 1 Iil 1 1 _I 1 _Ii 1 1 1 1 Il 1 1 1 1 I&I 1 1
2 2--0A 2 43 2 27 2 205 2 ¥ 2 2r
1+ At
15 -1&+
2 2
25 251
3t 3t
Method 2 — A Much Faster Approach
3 L — o .4 _ L
f(x)= 2cos( 3(x+% ) 1 3
251 25+
21 A = , d = y w = k = y p = 21
1.5+ 1.5+
1t (x,y)—> 1t
0e- e
_I I_Iil 1 1 Iil 1 1 1 Iﬁl 1 1 _I I_Iil 1 1 Illl 1 1 1 Iﬁl 1 1
v 05k : Vg £ 27 v > st 5 Vi3 5 27
A ERE
15+ -1AF
a2 2l
25+ 251
3L 3L
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Homework Exercises
Sketch at least three cycles of each of the following functions. In addition, state the domain and range of each, as well as

the amplitude, the vertical displacement, the phase shift and the period.

(a) f(x)=-cos3x—2 (b) g(x)=3COS(x—%)
(©) h(x)=4sin(2(x+%))—l (d) p(x)=-2sin(2x+%£)+1
() q(r)=-5cos($r+%)+2 (f) r(0)=-2sin(-2(0-%))-3
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One Cycle of each of the Trigonometric Base/Parent/Mother Functions

N
0.8}
0.6F
0.4}
0.2f

f(x)=sinx

02
0.4k
0k
sk
4k

D=R, R={yeR:-1<y<1} D={xeR:x#nz,neZl}, R={yeR:y<-lory>1}
4=1,d=0,p=0, 0=, T=2n A =1 but the amplitude is undefined, d =0, p=0, w=1, T=2r
(The vertical stretch factor is 1 but there is no feature corresponding to amplitude.)
ik 12 /:}(x) =secx E
08} i
06p X :
04r 4 :
2 |

02}
- ]
11 1 L1 1 1 1 1 [ B 1 L1 1

3z 5z
S 2w Al

02k
0.4}
06k
0sk

< IV>

2n+1
D=R, R={yeR:-1<y<1} Dz{xeR:xiu,neZ}, R={yeR:y<-lory>1}
A=1,d=0,p=0, =1, T=2x A =1 but the amplitude is undefined, d =0, p=0, w=1, T =27
(The vertical stretch factor is 1 but there is no feature corresponding to amplitude.)
A\ 10T A\ 100 N\
: ol Sf(x)=tanx [ 8:f(x)ZCOt)c :
i sf : 6f |
| 4r : af :
i 2 I 2: E
: : L i P S
| 7 of 1\%1'\ f
| - ! 41 H—>
: C | uls :
| o ! 8 |
\% -1t v ot V
(2n+1)7r
D=<xeR.x#——neZ;, R=R D:{xe]R:x;tnﬂ',neZ},RzR
A =1 but the amplitude is undefined, A =1 but the amplitude is undefined,
d=0,p=0,w=1,T=nx d=0,p=0, 0=, T=x
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Suggestions for Graphing Trigonometric Functions
1. Identify the transformations and express using mapping notation.

2. Think carefully about the effect of the transformations on the features of the base graph
(@) Horizontal stretches/compressions affect the period and the locations of the vertical asymptotes.
(b) Horizontal translations affect the locations of the vertical asymptotes and the phase shift.

(c) Vertical stretches/compressions affect the amplitude (if applicable) and the y-co-ordinates of
maximum/minimum points.

(d) Vertical translations simply cause all the points on the graph to move up or down by some constant amount.
3. Apply the transformations to a few special points on the base function.

4. Sometimes it is easier to apply the stretches/compressions first to obtain the final “shape” of the curve. Thenitisa

simple matter to translate the curve into its final position.
5. To find a suitable scale for the x-axis, divide the period by a number that is divisible by 4. The number 12 works

particularly well because it divides evenly into 360°, giving increments of 30° or % radians (see diagram).

=1

[TTTTTTTTTs

| ]
2z Sx g In Az 3x 5z 1z 9

3 6 6 3 .2 3 6

ol
wly P
INTEN

Graphing Exercises
Now sketch graphs of each of the following functions by applying appropriate transformations to one of the base

functions given above. Once you are done, use TI-Interactive or a graphing calculator to check whether your graphs are
correct. Detailed solutions are also available at http://www.misternolfi.com/courses.htm under “Unit 2 - Trigonometric

Functions.”

a) y = 18 cos (E) - 14 €)y = —cos (S—ﬂ-(x— 1)) + 1 h) yZ_ZSeC(E(x+£Jj+5
4 3 T 6

4 2 3T .
b)y= ——sin(=(x+=)) + 10 f)y=155m( )—5 N y—3cot| L[ &
)y 5 sin (7(x 4 )) 15 i) y—3COt[2 £-3 +2

7 9 - 2tan| 3| x+ % ||-3 5 ) 3
c)y = 101 cos (x - —) - — 9 v i :—CSC(l.S +—j+—
7 10 4 Doy 3 TS

d) y = 6sin (mx + 13) + 22
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USING SINUSOIDAL FUNCTIONS TO MODEL PERIODIC PHENOMENA

Summary
A sinusoidal function is any function of the form f(x)= ASin(a)(x— p)) +d . Such functions can be used to model

periodic phenomena that involve some quantity alternately increasing and decreasing, “smoothly” and at regular
intervals, between a maximum and minimum value. In addition to exhibiting this smooth and regular “up and down”
behaviour, a sinusoidal function “spends” exactly the same amount of “time” increasing as it does decreasing. Note also
that the horizontal axis of a sinusoidal function is located exactly at the average of the maximum and minimum values.

A Sinusoidal Periodic Function

[\

Periodic Functions that are NOT Sinusoidal

¥

/

\/

g\V 2 T : ;-.w ,; 6 ¥ : ; ‘:_- T

KA

Vertical Transformations

A = the factor by which the base function y =sinx is stretched vertically (may include reflection)

|A| = the amplitude of the sinusoidal function (must be positive since length/distance cannot be negative)

B max-min
2

d =the amount by which the base function y =sinx is translated vertically
= the vertical displacement

max+min .
=———— =the average of the max and the min

=the average value of the sinusoidal function

v =d — the equation of the horizontal axis of the sinusoidal function
= the image of the x-axis under the transformation

|d| = absolute value of the vertical displacement
= distance from the x-axis to the horizontal axis

Horizontal Transformations

= the factor by which the base function y =sinx is stretched horizontally (may include reflection)

e Qr

=the angular frequency
= how fast an object rotates (positive value—counterclockwise, negative value—clockwise)
|| = the absolute value of the angular frequency
= number of cycles in 2z radians
T =period
= length of one cycle (must be positive since length/distance cannot be negative)
= (period of base function y =sin x )(absolute value of the horizontal stretch/compression factor)

1

(0]

=2

p =the amount by which the base function y =sinx is translated horizontally
= the phase shift

If it is difficult to determine the phase shift graphically, it can be calculated once 4, d and @ are known.

Simply choose a point known to be on the curve, substitute into the equation and solve for p.

Alternatively, p can be determined by using the image of the point (0,0) , iIf y=sinxis used as the base

function, or the image of the point (0,1) , if y=cosxis used as the base function. (See the example on

page 33 for more details.)

Copyright ©, Nick E. Nolfi MHF4UO Unit 2 — Trigonometric Functions

TF-27




“-|-|+
whyleny

NN

L& & 3% 8 8 3 3 8 3§ 3 3% ll\/llllllllllllllll!lllll}_

Activity 1
1. A cosine curve has an amplitude of 3 units and a period of 37 radians.

The equation of the axis is y = 2, and a horizontal shift of g radians

to the left has been applied. Write the equation of this function.
In addition, sketch two cycles of the graph of this function.

2. Determine the value of the function in question 1 if x = %, %T,
and 7T
c
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3. Use your graph to estimate the x-value(s) in the domain 0 < x < 2,
where y = 2.5, to one decimal place.

4. The number of hours of daylight in Vancouver can be modelled by a

sinusoidal function of time, in days. The longest day of the year is
June 21, with 15.7 h of daylight. The shortest day of the year is

December 21, with 8.3 h of daylight.

a) Find an equation for /i( #), the number of hours of daylight on the
{ th day of the year. In addition, sketch one cycle of the graph of this function.

b) Use your equation to predict the number of hours of daylight in
Vancouver on January 30th.

=

rrrrerrerrrrerrerrrrrrrrs
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Activity 2 — Ferris Wheel Simulation

Either from www.misternolfi.com or from the “I:” drive, load the
Geometer’s Sketchpad Ferris wheel simulation. Once you
understand how to start and stop the animation and how to
interpret the given information, answer the questions found below.

Questions

This simulation involves finding out how the height of

“Car 1” above the ground is related to the angle of rotation of the
line segment joining “Car 1” to the axis of rotation of the Ferris
wheel.

1. Complete the table at the right. Stop the animation each time
that a car reaches the x-axis (the car does not need to
be exactly on the x-axis). Each time that you stop the
animation, record the angle of rotation of “Car 1”
and its height above the ground. (Note: Because of
limitations of Geometer’s Sketchpad, it was not
possible to display the angle of rotation using a
single formula. A different formula was used for
guadrants 111 and IV so be careful when recording the
data!)

2. Now use the given grid to plot the data that you
recorded in question 1. Once you have plotted all the
points, join them by sketching a smooth curve that
passes through all the points. Does your curve look
familiar? Try to write an equation that describes the

curve.
h

-1

16

G

14 |

Height of Car 1 above the grouna: h = 8.72 cm

Angle of Retation when Car 1 i in Guadrants 1 & 2= 14.4°
Angle of Rotation when Car 1 is in Guadrants 3 & 4 = 348.6

Car 1: [6.881, 1.758)
eary = B861
Year 1 ® 1768

| EFEEE]

Scale 1:100

Radius

O 100 = 144

Angle of Rotation of Car 1

Ground

Height of Car 1

== 0

2
z

IS
Nfs e
g
N

5z 3z
4 2

Iz 2r
4

3. For this question, you may use either a graphing calculator or Tl-Interactive. First, take the data from the above table
and create two lists (e.g. L1 and L2). Then perform a sinusoidal regression. (Performing a regression means that the
data are “fit” to a mathematical function. A sinusoidal regression finds the sinusoidal function that best fits the data.)
How does the equation produced by the regression compare to the equation that you wrote in question 2?

4. Now use a graphing calculator or TI-Interactive to graph the function produced by the regression. How does it

compare to the graph that you sketched in question 2?

5. Use the equation obtained in question 4 to predict the height of “Car 1” when its angle of rotation is 2 radians.

Copyright ©, Nick E. Nolfi

MHF4UO Unit 2 — Trigonometric Functions

TF-30



Activity 3 — Earth’s Orbit
The table below gives the approximate distance from the Earth to the Sun on certain days of a particular year.
: Perihelion is the point in the Earth’s
Date Day of the Year | Earth’s Distance (d) from Sun (km) orbit at which it is closest to the sun.
Perihelion occurs in early January.

January 3 2 1.47098 x 108
February 2 32 1.47433x10° Aphelion is the point in the Earth’s
March 5 63 o orbit at which it is farthest from the
arc 1.48349x10 sun. Aphelion occurs in early July.
. 8
April 4 93 1.49599 x10 + gerongl
May 5 124 1.50848x10° 120+008|
June 4 154 1.51763x10° pera0T
July 5 185 152098 x10° . il
8 1.6e+D08 Be4007 | Be+007 1.66+008
August 4 215 1.51763x10 Aes007)
September 4 246 1.50848x10° Be+007}
October 4 276 1.49599 x 108 12640081
November 4 307 1.48349x10° 1 Ber00s”
The Earth’s orbit around the Sun is an ellipse that is
8 very close to a perfect circle. The Sun is located at
December 4 337 1.47433x10 one of the two foci (singular focus) of the ellipse.
Questions

1. Use the grid below to plot the data in the above table. Once you have done so, join the points with a smooth curve.
Use your knowledge of trigonometric functions to write an equation of the curve.

Distance from the Earth to the Sun
i (The time “0 days” corresponds to January 1, 12:00 A.M.)
1.52 x108-
1.51x10%4
1.50 x10°-
1.49 x10°-
1.48x10°

1.47 x10°-

Distance (Kilometres)

0O 45 90 135 180 225 270 315 360
Time (Days)
2. Now use Tl-Interactive or a graphing calculator to perform a sinusoidal regression on the data in the above table.
Compare the equation obtained by regression to the one that you wrote in question 1.
3. Are you surprised that perihelion occurs in early January and that aphelion occurs in early July? Explain.

1 :E-_t

4. Use the equation obtained in question 2 to predict the distance from the Earth to the Sun on Valentine’s Day.

5. Suppose that the Earth’s orbit were highly elliptical instead of being nearly a perfect circle. Do you think that life as
we know it would still exist? Explain.
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Activity 4 — Sunrise/Sunset

The table at the right contains

Number of

sunrise and sunset data for Date Olfj‘tr?]/e Sunrise Sunset | Daylight | daylight hours to
Toronto, Ontario for the year Year (hh:mm) | (hh:mm) | (hh:mm) | the nearest 100" of
2007. (Data obtained from an hour
www.sunrisesunset.com .) January 1 0 7:5l1am | 4:51pm 9:00 9
Questions January 15 14 7:48am 4:58pm 9:10 9.17
1. Comp|ete the table. \]anuary 29 7:38am 523pm
2. Use the provided grid to plot a February 12 7f21am 5f42pm
graph of number of daylight February 26 7:00am 6:01pm
hours versus the day of the year. | March 12 7:36am | 7:19pm
First plot the points and then draw | March 26 7:11am 7:36pm
a smooth curve through the points. | Apri| 9 6:46am 7:52pm
3. Write an equation that describes April 23 6:23am 8:09pm
the curve that you obtained in May 7 6:03am 8:25pm
question 2. May 21 5:48am | 8:40pm
4. Use Tl-Interactive or a graphing June 4 5:38am 8:53pm
calculator to perform a sinusoidal | jyne 18 5:36am 9:01pm
regression. Enter the values for . :
“day of the year” in L1 and Ju:y i 5 5:42am gzogpm
“number of daylight hours” in L2, | Y 5olam :56pm
Compare the equation obtained by | July 30 6:04am | 8:44pm
the regression to the one that you | August 13 6:19am 8:26pm
wrote in question 3. August 27 6:35am | 8:04pm
5. Use your equation to predict the September 10 6:50am 7:39pm
number of daylight hours on September 24 7:06am 7:14pm
December 25. October 8 7:22am | 6:48pm
6. Suppose that you lived in a town October 22 7:39am 6:25pm
situated exactly on the equator. November 5 6:57am 5:05pm
How would the graph of number November 19 7:15am 4:50pm
of hours of daylight versus day of : :
the year differ from the one for December 3 7:32am 4:42pm
Toronto? December 17 7:44am 4:42pm
December 31 7:50am 4:50pm
157
1= |
14 |-
£ 1= |-
o —
L 10}
> B[
=z 6
(&) -
_q_ |
2 |
a5 ©0 135 180 225 Zy0 315 360
Time (Days)
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Example

On a particular Ferris wheel, the maximum height of a passenger above the ground is 35 m. The wheel takes 2 minutes to
complete one revolution and the passengers board the Ferris wheel 2 m above the ground at the bottom of its rotation.

(a) Sketch two cycles of the graph of height of passenger (in metres) versus time (in seconds).

(b) Write an equation of the graph that you obtained in part (a).

(c) How high is the passenger after 25 s?

(d) If the ride lasts six minutes, at what times will the passenger be at the maximum height?

Solution

(a) For this question, we shall assume that the passenger is Alternatively, the value of p can be found by
2 m above the ground at time 7 = 0. using either of the following two methods:
35h : 120 : Method 1
mf - h(t)=16.5sin(&(¢- p))+18.5 and 1(0)=2
g 30p | : -.16.5sin(%(0- p))+18.5=2
= EI i | ‘sin(_p”j—2_185
] | | .o =
§ Py ﬁ: ! 16.5
O BEF AT T i _
2 (5] ..sm( J_
| 12F —pr -7
CRENSEE *W—T
[<5) E L
‘_ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Method 2

30 B0 890 120 150 180 210 24[T

Time (Seconds) In mapping notation, the transformation is expressed

as (x,y) > (@™x+p,dy+d). Aswe can see from
the graph, the image of (0,0) is (30,18.5).
w_1(0)+p=30 =p=30

(b) Maximum Height = 35 m, Minimum Height =2 m
=(35-2)+2=165

=(35+2)+2=18.5 (the average of the max and min)

Since it takes 120 seconds to complete one rotation, (©) h(25)=18. Ssm( 5(25- 30))+18'5 =142

T =120. At 25 seconds, the passenger was about 14.2 m above
1 1 the ground. (Make sure that your calculator is in
But 7' = Zﬂ(—j , which implies that 27[(—) =120. radians mode!)
[ @
. (d) The passenger is at the maximum height whenever
e h(t)=35. From the graph we can see that this occurs

at t=60sand r=180s. Since # is periodic,
h(180+120)=h(180) =35 (120 radians is the

period). Therefore, the passenger is at the maximum
< h(r)=16. 55'”( 5(1- 30))+18-5 height at 60 s, 180 s and 300 s.

Note on Angular Frequency

Finally, it’s obvious from the graph that if we use
y=sinx as the base function, p=30.

In the above problem we determined that @ =% . Since the angular frequency @ is equal to the number of cycles in
2 radians, the Ferris wheel completes & cycles in a span of 2z radians. Since the independent variable is time and is

measured in units of seconds, the Ferris Wheel completes Z revolutions in 2z seconds or 5 of a revolution in 1 second.

Now m revolutions/s = 120(27:) radians/s =& radians/s. Therefore, the Ferris wheel turns at a rate of radlans/s

Hence, the angular frequency o =& determines the rate of rotation of the Ferris wheel.

Homework
pp. 360 — 362: 1,4,6,7,9, 10, 11, 13
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TRIGONOMETRIC [DENTITIES
Important Prerequisite Information — Different Types of Equations

© Equations that are Solved for the Unknown

e.0. Solve x> —5x+9=3 W
e This means that we need to find the value(s) of x that make the left-hand-side equal to ot
the right-hand-side. i
e Geometrically, this equation describes the x-co-ordinates of the points of intersection i
of the graphs of y=x*-5x+9 and y=3.
2|
e As can be seen in the graph at the right, there are only two points of intersection and it
hence, only two solutions x=2 and x=3. S
© Equations that Express Mathematical Relationships (i.e. Functions, Relations)
e.g. f(x)=x*-x-1, x*+y? =16, c? =a’® + b* (Pythagorean Theorem)
e Such equations express a relationship between an independent variable (or a group 10} T,
of independent variables) and a dependent variable. For instance, in the graph of sp @ =
G_
f(x) = x> —x—1 shown at the right, any point lying on the curve must have co- P
ordinates (x,x3 —-X —1) . Once the value of the independent variable x is chosen, the 2r
BT bEa8 oAl 2346678

dependent variable y must have a value of x* —x—1.
e Equations that express relationships cannot be solved in the same sense as equations

such as x® —5x+9 =3 are solved because there are two or more unknowns.

e However, it does make sense to use algebraic manipulations to rewrite them in a
different form.

e Ifxisallowed to vary continuously, such equations usually describe (piecewise) continuous curves.

e If xisrestricted to integral or rational values (i.e. whole numbers or fractions), the graphs of such functions will
be a discrete collection of points in the Cartesian plane.

© ldentities
An identity is an equation that expresses the equivalence of two expressions.
. in
e.g. (a+b) =a®+2ab+b? cos’ @ +sin’ 6 =1, tanez%
cos

e The given equations are identities. For all values of the unknown(s) that make sense, the left-hand-side equals
the right-hand-side. That is, the expression on the left side is equivalent to the expression on the right side.

e For the identity (a+ b)2 =a’ +2ab+ b, there are no restrictions on the values of @ and b.

 For the identity cos?@+sin®@ =1, there are no restrictions on the value of 6,
. . sin .
e For the identity tan@ = —Z , we cannot allow @to take on values that make cos@ =0 because this would lead to
coS

the undefined operation of dividing by zero.
Note
e Identities need not involve trigonometry!

e To discourage the erroneous notion that #is the only symbol that is allowed to be used to represent the independent
variable of a trigonometric function, x will often be used in place of 6. It should be clear that any symbol whatsoever
can be used as long as meaning is not compromised.

e Once an equation is proved to be an identity, it can be used to construct proofs of other identities. Examples are given
below.
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List of Identities that we already Know

Pythagorean Identities

Quotient ldentities

Reciprocal Identities

Forall xeR,
2 =2
CoS“ x+SIN“x=1

The following can be derived very easily from
the above identity. In mathematical terms, we

say that they are corollaries of cos?x+sin?x=1.

sin? x =1-cos? x
cos? x =1-sin’x
1+tan? x =sec’ x
1+cot® x =csc® x

For all x e R such that

cosx =0,
sinx
tanx =
COSx

The following identity can be derived
very easily from the above identity.

For all x e R such that

sinx =0,
COSx
Cotx =—
sinx

The following identities can be derived easily
from the definitions of csc, sec and cot.

For all xeR such that sinx =0,
1
CSCx =——
sinx
For all xeR such that cosx#0,

SeCx =

COSx
Forall xeR suchthat tanx =0,
1
tanx

cotx =

Important Note about Notation

e sin?x isashorthand notation for (sinx)?, which means that first sinx is evaluated, then the result is squared

e.g sinzz—(sinz)z— 1)L
T4 4 J2) 2

2 2
> T V4 1
cos*==|cos— | =| =
3 ( 3) (ZJ

e This notation is used to avoid the excessive use of parentheses

o sinx?#sin’x

Proofs of the Pythagorean and Quotient Identities
Prove the following identities. (Here L.S. means “left side” and R.S. means “right side.”)

1

4

The expression sinx? means that first x is squared and then “sin” is applied

sin@ .
1. sin®@+cos® @ =1 (Assertion) 2. tanezw (Assertion)
Proof (Justification) Proof (Justification)
Wy (xY _ R RN y
L.S.=| = | +| = (definitions of sin, cos) R R B
r r (x.7) s A L.S.=——< (definitions of sin, cos)
y2 x2 ! 1 1 (x)
==tz i L r
r r ! {
_yx - = (X)(Lj
- 7"2 1 v r X
2 T c y
=r—2 (Pyth. Theorem) x|y | - |y | =
r _ _ + + _
=1 o o =tan@ (definition of tan)
=R.S. =R.S.
~.LS.=RS. CRUX of the ~LS. =RS.
-.sin*@+cos’ 6 =1 problem tang = SN0
——| crux: avital, basic, . cosé
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Once you have identified
the crux of a problem and
found a way to proceed,
the rest of the solution is
usually straightforward.
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Examples

Prove that each of the following equations is an identity. Assertions \
COSx 4//4/ sin’
1. cotx = 2. 1+tan® x =sec’® x 3 al

- . =1+cosx
sinx 1-cosx
Proof (Justification) Proof (Justification) Proof (Justification)
L.S.=cotx Assertions - cos” x +sin® x =1 (proved above sin?
1/ - - 2 . 2 ® ) L.S.= =
= (reciprocal identity) JCos"x+sinx 1 1-cosx
an x e 2 - 2
COoS” x COoS” x 1-cos? x ) ]
=T (quotient identity) _cos’x sin'x 1 = cosr (Pyth identity)
(COSX cos’x cos’x cos’x _ (21—cosx)(1+cosx)
1 (cosx Justifications | --1+tan”x=sec’x// - 1—cosx
:i o Note =1+cosx
oS x e The final step is justified by one of the
=— quotient identities and one of the R.S.=1+cosx
Slnx - - -y .
cosx reciprocal |dent|_t|es. o _ LS =RS
R.S.=— e The nature of this proof is a little different sin2 x
SInx from the others because it does not begin o =1+cosx //
LS.=RS with the left side or right side of the given 1-cosx
- cotx= 95X g equation. Instead, it begins with an
sinx identity that has already been proved and
through algebraic manipulations, the
desired equation is derived!
Exercises

1. Prove the rest of the Pythagorean identities (i.e. the ones that have not been proved on pages 35-36).

2. Prove the reciprocal identities by using the definitions of sin, cos, tan, csc, sec and cot (i.e. sind = Z, cosf =2 , etc).
r r

Proofs that make use solely of definitions are known as proofs from first principles because they do not rely upon any
“facts” that are derived.

Logical and Notational Pitfalls — Please Avoid Absurdities!

1. The purpose of a proof is to establish the “truth” of a mathematical statement. Therefore, you
must never assume what you are trying to prove! A common error is shown at the right.
The series of steps shown is wrong and would be assigned a mark of zero! To write a
correct proof, the left and right sides of the equation must be treated separately. Only once
you have demonstrated that the left side is equal to the right side are you allowed to declare
their equality.

2. Keep in mind that words like “sin,” *cos” and “tan” are function names, not numerical
values! Therefore, you must not treat them as numbers. For example, it makes sense to write

sin2x . « , . . .
- but it makes no sense whatsoever to “cancel” the sines. Many students will write
sinx

statements such as =2, which are completely nonsensical. First of all, dividing

the numerator and the denominator by “sin” is invalid because “sin” is not a number. /LOSx _ COSx
. sin2 sin2(z) sinz 1 / sinx sinx
Furthermore, a simple test reveals that — X0 . (2 =2 =2. Clearly,
sinx sinz  sinz 1/4/2

J2 # 2. Therefore, the assertion that was made is entirely false!
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Suggestions for Proving Trig Identities
1. Write the given expressions in terms of sin and cos.
2. Begin with the more complicated side and try to simplify it.

3. Keep a list of important identities in plain view while working.
4. Expect to make mistakes! If one approach seems to lead to a dead end, try another. Don’t give up!

Homework

Do a representative selection of questions 1 to 20.

1. State an equivalent expression for each

a) cos xtan x

c) cos’ x

e) tan xsin x

g) sin x tan x cos x

) 2 2
i) sin” x+ cos x

b) sinE X
d) tan’ x
f) 1- sin’ x
hy1-— cos’ x

2. Prove each identity.
sin x
tan x
b) sin xcos xtan x= 1 — cos’ x
c) Lﬂsg‘v =sin.x
sin x
d) sln2 X+

=Cos X

sin xcos x _ 1
tan x

1 1

tam2 X sln2 X
f) 2sin® x— 1 =sin’ x— cos” x
1
cos x
h) sin x+ tan x= tan x (1 + cos x)

i) %=l+lan2x
1—sin"x

. 2 2 2
j) cos” x—sin® x=2cos” x—1

e 1+

—cos x=sin x tan x

)

2 2 2
k) sin x+ cos x+tan x= 5

cos X
sin x __tanx
siny+cosx l+tanx
2
1+tan"x _ 1

m)

z 2 z
l—tan"x cos y—sin"x

3. Use a graphing calculator to show that

each equation appears to be an identity.

Then, prove that the equation s an identity.

a) cos xtan x =sin x
b) sin x + tan x = tan x (1 + cos x)

¢ 1+ tan’x=

cos'x
d) cos” x = sin” x + 2cos” x — 1
1 4 1 _ 2

I+siny 1—siny cosx
f) tan” x —sin” x =sin® x tan® x

4. Prove each identity.
1 1 1
a) A I 2
sin“x cos"x sin‘ xcos x
1 1

b) tan x+ =
tan ¥  sin xcos x

1 1 _ 2
9 l—cosx+l+cosx sinx

d) (sin x+ cos %=1 + 2sin xcos x

e) (l—cosz,ﬁ(l+ 12 )=1

tan“x
1+ 2sin xcos x
f) ———————— =sinx+cosx
sin x+ cos x
) sin x _1+cosx_0
1—cosx sin x

h) sin® x —sin' x = cos’ x — cos’ x

i) (1+tan’ ¥)(1 = cos’ x) = tan” x
2

) sinx—1 _ —cos'x

sinx+1  (sin x+1)°

5. Conical pendulum A conical pendulum is so named because of the
cone-shaped path traced by the bob and the wire. The length of the
pendulum wire, L, s related to the angle, x, that the wire makes with
g
z
@ cos x
to gravity and @ Is the angular velocity of the bob about the vertical, in

radlans per second. Another way of expressing the relationship is the

the vertical by the formula L =

, where g 1s the acceleration due

formula L = gléan X
@'sin x X i
a) Verify that the two formulas are equivalent when x= % \
tan x \
b) Prove that —z—g =& Is an Identity. . Y
@ cos x wzslnx i -7

6. Kicking a ball When a ball is kicked from the ground, the time of flight
of the ball can be determined by the formula
t* 2ysin x

7
In this formula, # seconds Is the time of flight, v, metres per second Is the
initial velocity of the ball, x is the angle that the path of the ball makes with
the ground when the ball is kicked, and g is the acceleration due to gravity.
a) Write another formula that determines the time of flight of the ball.
b) Equate the trigonometric expressions from the given formula and the
formula you found in part a) to write an equation.
¢) Use a graphing calculator to check if the equation appears to be an identity.
d) If the equation appears to be an identity, prove that it is an identity.
e) The formula for the horizontal distance, & metres, travelled by a ball
Zvozsln X COS X

£
Write another formula for the horizontal distance.
f) Equate the trigonometric expressions from the two formulas in part ) to
write an equation. Use a graphing calculator to check if the equation appears
to be an identity.
g) If the equation appears to be an identity, prove that it is an identity.

kicked from the ground is d=

7. Prove each identity.
4 4 2 2
a) sin x—cos x=sln x—cos x
4 2 2 4
b) sin’ x+ 2sin” x cos” x+cos x=1

2
) 42 —5=4tan"x-1
cos x
3
cos x—sin x— cos 2
d) XS XS X _ gin’ x—tan x
cos X
o sinx— 6 sin x+9 _sinx=3

s!nzx—g sin x+ 3

8. Find a counterexample to show that each equation is not an identity.

[,2
a) sin x=,sin" x

2
b) cos x=,cos x

9. Technology Use radian measure for the following.

a) In the same viewing window, graph y =sin x and y=x for 0.2 < x< 0.2
and —0.2 < y < 0.2. Do the graphs suggest that sin x = x Is an identity?

b) Repeat parta) for—2<x<2and-2<y<2.

¢) Write a conclusion about verifying identities graphically.

10. Application Use the x, y, and rdefinitions of sin x and cos x to prove the

following identity.
cos@ _ 1+sinf
1—sin @ cos 6

11. Inquiry/Problem Solving Determine if each of the following equations is

an identity or not.
cos x{1 +sin x)

12. Communication Explain why you think that the equation

(a+ B*= & + 2ab+ b° can be called an algebralc Identity.

13. Algebra If x = acos @ — bsin @ and y = asin 6+ bcos 6, show that
x2+y2=az+b2.

14. Since 1 — cos’ x=sin’ xIs an identity, is |1 — cos” x =sin xalso an

identity? Explain how you know.

+cos x= b) + cos x=tan x+sin x 3 3 3
tan x sin x tan x 15. a) Show graphically that sin® x + cos” x = (sin x + cos x)” Is not an
o 4 cos x= 2 cos x identity. Explain your reasoning.
tan x sin x b) Explain how the graph shows if there any values of x for which the equation
is true.
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16. Write a list of helpful strategles for proving trigonometric identities, and
describe situations in which you would try each strategy. Compare your list
with your classmates’.

17. Formulating problems a) Create a trigonometric identity that has not
appeared in this section.

b) Have a classmate check graphically that your equation may be an identity. If
s0, have your classmate prove your identity.

18. Technology a) Use a graph to show that the equation
cos x— 1
cos x+ 1
b) Compare the functions defined by each side of the equation by

of values. Find a value of x for which the values of the two functions are
not the same. Have you shown that the equation is not an identity? Explain.

=cos x— | appears to be an identity.

tan xsin x
tan ¥+ sin x

_ tan x—sin x
tan xsin x

20. Prove that

Exercises on Equivalence of Trigonometric Expressions
Complete the following table. The first row is done for you.

Selected Answers aapedou

Janau s} apIs puey-1ja ay jop] “pL Anuap; ue ( puapy
b \

ue jou (q Opuap) ue (@ L SHY = SHT 1 - u—z_s‘m;

'-Z[-— = f—z s03 (4 SHY = SH'1 :-%— = (-3—-}_,1":;-'\
_ﬂ L

(g )me 4

san|d epnuo)

£
I

g s0d g s00
g .us i g .uis e

g us=10g soo=1(Qg us(e ‘Area Aews SIAMSUY/ "L

yoegg(e's (g usug usg sooQ

Identity Graphical Justification

Justification using Right Triangle or
Angle of Rotation

Since sin(%—x)= sin(—l(x —%)) , the graph of
y=sin(Z—-x) can be obtained by reflecting
y=sinx in the y-axis, followed by a shift to the

lo and behold, the graph of y =cosx is obtained!
sin(Z—x) =cosx

right by 7. Once these transformations are applied,

A
%—x
pH —
BC
COSx =——
AC
| BC
Sln(E—X):A—C

. COSX =sin(§—x)

cos(% —x) =sinx

cos(5+6) =-sing
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Identity

Graphical Justification

Justification using Angles of Rotation

sin(z —60) =sin@

cos(z — ) =—cosd

sin(—-0) =—siné

cos(—0) =cosd

List of Important Identities that can be Discovered/Justified using Transformations
1. First complete “Exploring Equivalent Trigonometric Functions” on page 388-390 in the textbook.

2. Read the summary on page 40 (i.e. the next page).

3. Do the following questions for homework:

Homework

pp.392-393: 1,2,3,4,5,6,7
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i summary

Key Ildeas

* Because of their periodic nature, there are many equivalent trigonometric expressions.

* Two expressions may be equivalent if the graphs created by a graphing calculator of their corresponding functions
coincide, producing only one visible graph over the entire domain of both functions. To demonstrate equivalency
requires additional reasoning about the properties of both graphs.

Need to Know

* Horizontal translations that involve multiples of the period of a trigonometric function can be used to obtain two
equivalent functions with the same graph. For example, the sine function has a pericd of 27, so the graphs of
f(#) = sin# and f(#) = sin (# + 247) are the same. Therefore, sin ¢ = sin (# + 24r).

* Horizontal translations of Z that involve both a sine function and a cosine ¥
function can be used to obtain two equivalent functions with the same 21 -
. ) T ) - y=sint y=cost
graph. Translating the cosine function 5 to the right (f(ﬁ) = cos (ﬁ' - §)) /x\ 1
results in the graph of the sine function, f(#) = sin 4.

/X%
0L 6\

_2_

Similarly, translating the sine function 'Zito the left (f(ﬁ) = sin (ﬁ - %)}

results in the graph of the cosine function, f(#) = cos#.
sin @ = cos (H - %)
sin (ﬁ +5) =cos#

* Since f(#) — cos# is an even function, reflecting its graph across the ¥

v-axis results in two equivalent functions with the same graph. 27
¥ =cos {——6]1 y=cost

AN /g
PN

_2_

cosf — cos (—#H)

e f(f) = sinwand f(#) = tan g are y y=tanf y=tan(—6)
odd and have the property of y L dinlg 2+ y = sin (—6)
rotational symmetry about the origin. i
Reflecting these functions across both m |
the x-axis and the y-axis produces the
same effect as rotating the function i
through 180° about the origin. Thus, y =—sinf
the same graph is produced.

sin (—#/) = —sind
( ) y=—tan f

tan (—#) = —tanéd

* The cofunction identities describe trigonometric relationships between the complementary angles # and (% - ﬁ)
in a right triangle.
sin § = cos T _ B)
(3

T
cos f = sin (57 f))

_ T
lanl‘;‘—col(2 u)

* You can identify equivalent trigonometric expressions by comparing principal angles drawn in standard position

in guadrants 11, Ill, and IV with their related acute angle, #, in quadrant 1.
Principal Angle in Quadrant Il | Principal Angle in Quadrant lll | Principal Angle in Quadrant IV
sin (o — #) =sing sin (w +8) = —sing sin (2@ — @) = —sing
cos (w —8) = —cosd cos (m + #) = —cos @ cos (27 — @) = cos 6
tan (w — A) = —tan @ tan (7 + ) = tan A tan (2@ — ) = —tanéd
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Question

COMPOUND ANGLE IDENTITIES

If we know how to evaluate the trig ratios of the angles x and y, can we use these values to evaluate quantities such as

sin(x+y) and sin(x—y)? With

a little hard work, we shall see that he answer to this question is “yes!”

Expressing sin(x+y) in terms of sin x, siny, cos x and cos y
By the Law of Sines,

sin(x+y) :sin(ﬂ/Z—x) and sin(x+y) :Sin(ﬂ/Z—y)
b a b c

Using the cofunction identity sin (7[/2 - 6') = 0S¢, the above equations can be written

sin(x+y)2005x (1) and sin(x+y)2005y )
b a b
By multiplying both sides of equations (1) and (2) by b, we obtain
sin(x +y)=225% (3
a
sin(x+y)=29Y ()
C

COosSs CcOosS
b x+b0y

Adding equations (3) and (4), we obtain 2sin(x+y)=
a C

.'.sin(x+y) = bC20an + bCZCij
ssin(x+y)= bCZCOSx + abzcosy (expressing with a common denominator)
ac ac
, b(ccosx) b(acosy)
ssin(x+y)= ot
AD+DC)DB (AD+ DC)DB
.'.sin(x+y):% (4D+DC) +( +DC) J (since b=AD+ DC and ccosx=acoSy=DB)
ac ac
~sin(x+y) 1 (AD)(DB) . (DC)(DB) .\ (AD)(DB) . (DC)(DB)
2 ac ac ac ac
[ _((4D)(DB DC)(DB
.‘.Sin(x+y)=1 2 ( )( ) +2 ( C)( )
2 ac ac
. AD)(DB DC)(DB
.'.sm(x+y)=( c)u(: )+( C)li )

w2222

~.sin(x+ y)=sinxcos y +cosxsin y

sin(x + y) =sinxcos y + cosxsin y
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Using sin(x+y)=sin x cos y + cos x sin y to Derive many other Compound Angle Identities

sin(x—y) cos(x+y) cos(x—y)
=sin(x+(-y)) =sin(z/2—(x+y)) =cos(x+(-y))
=sinxcos(—y)+cosxsin(—y) =sin((z/2-x)-y) =cosxcos(—y)—sinxsin(—y)
=sinxcos y +cosx(—sin y) —sin(z/2 - x)cos(—y) +cos(z/2 - x)sin (~y) =sinxcos y —sinx(—sin y)
=sinxcos y —Ccosxsin y = c0Sx€0S  +8in x(—sin ) =C0SXxCOS y +sinxsin y

=C0SxCOS y —Sinxsin y

tan (x+y) tan(x—y) Cot(x+y) Cot(x—y)
_Sin(x+y) =tan(x-+(-y)) S - =cot(x+(~))
cos(x+y) _ tanx+tan(-y) tan(x+y) _ cotxcot(—y)-1
_sinxcos y +cosxsin y 1—tan xtan(—y) _ 1 ~ cotx+cot(—y)
COS X COS y —Sin xsin y tanx +(~tan y) (1tarlx+ttany ] cotx(~coty)-1
. . = —Tlan xtan =
SlnxCOSy+COSxSInyJ 1—tanx(—tan y) N y cotx +(—cot y)
COS X COS y _z—tanxiany
= tan x —tan = —cotxcoty—1
COS X COS y —Sin xsin ==t tanx +tan y L e
Y Y 1+tanxtan y cotx —cot y
COS X COS y
—1(cotxcoty+1
sinxcosy  cosxsiny ( COtXCOty) A 241
+ = cotx—coty
| cosxcosy cosxcosy cotxcot v+1
~(cosxcosy sinxsiny [COtx COty] :—1(C(;Ctx—)(}:oty)
COSXCOSY  COSXCOS Yy [COIXCOW 1) cotxcoty +1
: : cot x cot =—
Slnx+S|ny = xRy cot y —cotx
~ lcosx " cosy (cotx+cotyj
[1_(sinx)(sinyn COthOtJ;
cosx )\ cosy _ cotxcoty -1
tanx+tany cotx+coty
l1-tanxtany
Summary
tan(x+y)— tanx +tan y
sin(x+ ) =sinxcos y +cosxsin y 1-tanxtany
tan x —tan y
_ tan(x—y)=——-——
sin(x—y)=sinxcosy —cosxsin y (x=») 1+ tan xtan y
cos(x+ y)=cosxcosy —sinxsin y Cot(Hy):COt:CC—Otyt—l
o cot x +cot y
cos(x — y)=Ccosxcosy +sinxsiny . )_cotxcoty+1
7 coty—cotx
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Using Compound Angle Identities to Derive Double Angle Identities

sin2x coS2x

:Sin(x+x) =Cos(x+x)

=Sin xCcoSx + CoSxSin x

=C0SxC0Sx —Sinxsinx

C0S2x coS2x

=cos’ x—sin’x =cos’ x—sin’x

=(1—sin2x)—sin2x =Coszx—(1—COSZx)

— 1 2 Th2
= 2sin xcosx =C0S" x—Sin“ x —1-2sin%x =2c0s’ x—1
tan 2x cot2x
=tan(x+x) =Cot(x+x)
_ fanx+tanx _ cotxcotx—1
l-tanxtanx cotx +cotx
_ 2tanx cot’ x—1
1-tan®x ~ 2cotx
Summary
Sin2x = 2sin xcosx 2tan x
) e tan2x = >
C0S2x =C0S” x —SIn“ x 1-tan“x
cos2x =1-2sin®x cot? x—1
5 cot2x =
cos2x=2cos"x-1 2cotx

Examples

1. Use compound angle identities to evaluate each of the following. Exact values are required. Do not use calculators!

(a) sin75°
sin75°
=sin(45°+30°)
=sin(z/4+7/6)
=sin(z/4)cos(7/6)+cos(x/4)sin(7/6)

(b) cos255° (c) tanl105°
c0s 255° tan105°
=cos(315°-60°) =tan(45°+60°)
=cos(7z/4-x/3) =tan(z/4+7/3)
=cos(7z/4)cos(z/3)+sin(z/3)sin(77z/4) _ tan(z/4)+tan(7/3)

S 1(\B) 1(1 = cos(7/4)cos(7/3)+sin(7/3)(~sin(z/4))

_ﬁ 2 +$[Ej 1 lj \/é( 1] _ 1+43
341 V2l2) 2 2 1-1(+3)
22 :1—\/§ _1+\/§

22 T1-43

Quick Check

\/§+1>0 as we would expect for sin 75° \/§+1é0.9659 sin75°=0.9659
242 2J2

ﬂ<0 as we would expect for cos 255° %ﬁ—0.2588 €05 255° = —0.2588
242 242

L+3 <0 as we would expect for tan105° L+3 =-3.732 tan105° =-3.732
1-/3 1-3
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2. Use double angle identities to evaluate each of the following. Exact values are required. Do not use calculators!

(@) sinl5°

Setting Hzg in cos260 =1-2sin’ @, we obtain
005x=1—25in2§

Solving for sin%, we obtain

(b) cos22.5°

Setting Hzg in cos26 =2cos? @ —1, we obtain
COSx=2COSZ§—1

Solving for cosg, we obtain

sinfzi 1-cosx cosfzi cosx+1
2 2 2
Therefore, Therefore,
sin15°=i‘/ﬂ c0522.5°=J_r,/M
2 2
. 1-43/2 . N2 +1
B 2 B 2
L 2-/3 Lt 1+/2
2l 2 A2l 2
4 22
2-/3
=+ > Since 22.5° is in quadrant I, c0s22.5° = 1+v2

242

sin15°=“2;\ﬁ L 3

3. Prove that the following equations are identities.
sin2x
1+cos2x

_ 4 <4

=tanx There are 3 different | (P) COS"¢—sin" & =cos20
identities for cos2x. Proof

cos2x=2cos’x—1 was | L.S.=cos*&—sin*8

sin2x i
S=——— chosen because it leads = (cos.2 6 +sin’ 6)(cos2 6 —sin® 0) (Factor diff. of squares)
1+cos2x to the most convenient
Sx

_ 2sinxco simplification of the =1(cos” 0 —sin’ §) (Pythagorean identity)

Proof

"~ 1+2c0s?x-1 denominator. oSO —sin? o
_ 2sinxCosx —c0S20
Sk Lihanud =
.ZCOS * \ Divide top and R.S. = cos 20
_Sinx bottom by 2cosx .
COoSx ~L.S.=R.S.
=1tan
* -.cos* @—sin* @ =cos26 is an identity. //
R.S.=tanx
..L.S.=R.S.
_sin2x =tan x is an identity. //
1+cos2x
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Use counterexamples to prove that the following equations are not identities.

(a) sin(x+y)=sinx+siny

Proof

(b) cos46 —cosé =cos360

Proof

Let &=

NN

L.S.=cos46 —cosd

5]

T
=C0S27 — cosE

T
=C0S27w — cosz

R.S.=sinx+siny -1-0
=sinZ +sinZ =1
4 4 R.S.=cos360
_ .1
2 2 2008[3(%D
2 ;
J2 =cos
w1242 w120
~LS.#R.S. ~LS.#R.S.
~.sin(x+y)=sinx+siny is not an identity. // .€0S46 —cos@ =cos30 is not an identity. //

Use identities that we have learned to derive an identity for sin3¢ that is expressed entirely in terms of sin@.

sin30
=sin(260+0)

=sin26cosé +cos26sin g
=(2sin@cos ) cos @ + (1 2sin® O)sin 0
=2sin@cos’ @ +sinf —2sin® o
=2sing(1-sin” @) +sin6 - 2sin’ 0

=2sin@—2sin®* @ +sind—2sin® o

=3sin@—4sin® 0

:.sin30 =3sin @ —4sin® @ is an identity.
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In Summary

Key Ideas

* A trigonometric identity states the equivalence of two trigonometric expressions. It is written as an eguation that
involves trigonometric ratios, and the solution set is all real numbers for which the expressions on both sides of the
equation are defined. As a result, the equation has an infinite number of soluticns.

» Some trigonometric identities are the result of a definition, while others are derived from relationships that exist
among trigonometric ratios.

Need to Know

» The following trigonometric identities are impartant for you ta remember:

Identities Based Identities Derived from
on Definitions Relationships
Reciprocal Identities Quatient Identities Addition and Subtraction Formulas
cec x — .‘l tan x = oM X sin (x + v) = sinxcosy + cos xsin y
sin x cos X sin (x — y) =sinxcosy — cosxsiny
Cos X . .
sec x = cot x = — Cos (X + y) = cosxcosy — sinxsiny
Cos X sin x . .
€os (x — y) = cosxcosy + sinxsiny
cotx = Pythagorean Identities tan x + tan y
tan x - 5 tan(x +y) =——F——
sin®x + costx =1 1 — tanxtany
+ tan? x = sec? tan x — tan
1+ tan”x = sec” x tan(x—y)=1+t : Y
1+ cot? x = st x anxtany

Double Angle Formulas

sin 2x = 2 sinxcos x
cos 2x = cos? x — sin® x
=2cos?x — 1
=1-2sin*x
2 tan x

tan2x = ————
1 —tan® x

* You can verify the truth of a given trigonometric identity by graphing each side separately and showing that the two
graphs are the same.
* To prove that a given eqguation is an identity, the two sides of the equation must be shown to be equivalent. This can
be accomplished using a variety of strategies, such as
« simplifying the more complicated side until it is identical to the other side, ormanipulating both sides to get
the same expression

» rewriting expressions using any of the identities stated above
« using a common denominator or factaring, where possible

Homework
pp. 400 — 401: 4,5, 6, 7, 8bdf, 9bdf, 11, 12, 16, 18 pp. 407 -408: 1,2,3,5,7,8,11,12,13,16
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TRIG IDENTITIES — SUMMARY AND EXTRA PRACTICE

1. Complete the following statements:

(a) Anequation is an identity if

(b) There are many different ways to confirm whether an equation is an identity. List at least three such ways.

(c) There is a very simple way to confirm that an equation is not an identity. In fact, this method can be used to show

the falsity of any invalid mathematical statement. Describe the method and use it to demonstrate that the equation

Jr+y =+x+.[yis not an identity.

2. Mr. Nolfi asked Andrew to prove that the equation

receive for the following response? Explain.

sin2x
1+cos2x
_2sinxcosx
1+2c0s’x-1
_ 2sinxcosx
" 2c0s? x

(ZJ(Sinxj(COSx)

Sl = =tanx
2 J\ cosx J\ cosx
~.1(tanx)(1)=tanx

Stanx =tanx

=tanx

=tfanx

=tanx

sin2x
1+cos2x

=tanx is an identity. What mark would Andrew

3. List several strategies that can help you to prove that an equation is an identity.
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4. Justify each of the following identities by using transformations and by using angles of rotation.

(a) sin(-x)=-sinx (b) sin(z/2-x)=cosx (c) sin(x+7z)=-sinx
(d) cos(—x)=cosx (e) cos(z/2—x)=sinx () cos(x+7z)=—cosx
() tan(—x)=-tanx (h) tan(z/2-x)=cotx (i) tan(x+7)=tanx

5. Prove that each of the following equations is an identity:
cos? § — sin® 6
cos” @ + sin 6 cos A
b) tan®x — sin?

a) =1—rtnf

x = sin? x tan? x
1
cos x
1 1 2
+ =—
1+ cos@ 1 —cosfl sin“f

2
— 1 — cos” x

2 2.
¢ tan“x — cos x =

d)

6. Prove that each of the following equations is an identity:
a) cosx tan® x = sin x tan® x
b) sin’f + cos*# = cos” 6 + sin*f

) tan’x + 1 1 1
¢ (sinx + cos x) +

tan x COSX  sinx

1
cos® 3

7. Copy and complete the following Frayer diagram:

Definition Methods of Proof

Qﬁtiu

8. Express 8cos® x in the form acos4x +bcos2x +c. State the values of the constants @, b and c.

d) tan’B + cos’ B + sin’ B =

Examples MNon-Examples

9. Give a counterexample to demonstrate that each of the following equations is not an identity.

a) cosx — o sin (x + y) = cosxcosy + sin xsiny

cos x
b) 1 —tan’x =sec’x d) cos2x =1+ 2sin*x

10. Demonstrate graphically that each of the equations in 9 is not an identity.
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SOLVING TRIGONOMETRIC EQUATIONS

Introduction — A Graphical Look at Equations that are not Identities
Let “L.S.” represent the expression on the left side of an equation and let “R.S.” represent the expression on the right side.

An Equation that is an Identity: sin®x+cos® x =1 An Equation that is not an Identity: 2sinx=1

e If an equation is an identity, the expression on the L.S. is o If an equation is not an identity, the expression on
equivalent to the expression on the R.S. of the equation. the L.S. is not equivalent to the expression on the
That is, the equation is satisfied for all real numbers for R.S. The expressions may agree for some real
which the expressions are defined. values but they do not agree for all values.

e If an equation is an identity, then the graph of “y = L.S.” is ¢ If an equation is not an identity, then the graph of
identical to the graph of “y = R.S.” The graphs intersect at “y = L.S.” is not identical to the graph of “y = R.S.”
all real values for which the expressions are defined. In The expressions agree only at the point(s) of
other words, every such value is a solution to the equation. intersection of the two graphs. The number of

points of intersection is equal to the number of
solutions of the equation.

2r 2+ 3T

25
15F 15+ 2t
ain? 2 L 15
4 y=sIn°x+cos"x ) vel /\ /\ ) /\ /\ y=1
RE:

050 05t /\ L \/\
-0.5F
06 6 4 2 | 246 810 08 6 4 2 | 24 6 810 Ir
05 05} 1:2_
25
3

y=2sinx

Examples
1. Use an algebraic method to solve the trigonometric equation 2sinx—1=0. State all solutions in the interval
-4z < x<4x . Verify the solutions graphically. (Note: An alternative notation for writing the interval -4z <x <4r

is [—47;,477] . The square brackets indicate that the endpoints are included in the interval.)

2sinx—-1=0 If your calculator is in “degrees mode,” this will produce an answer of 30°.
In “radians mode,” an answer of about 0.5326 is obtained. Naturally, since

) 1 % is a trig ratio of a special angle, you should be able to state the exact
ssinx==
2 / answer x = % . To state the other solutions in the interval [-47,47], use

s2sinx =1

X = sin‘l(%j the concept of related angles, the ASTC rule and a graph.
. T
X = E YA
. . . 11z
As shown in the diagram at the right, . 5
o % and ST are the principal angle solutions to the equation (since the » ° .
6 B | -
sine function is positive in quadrants | and I1) \/ - ~
o All the other solutions in the interval [—47;,477] are found by taking all
angles in this range that are coterminal with % and 5?”
Therefore, the solutions in the interval [—47,47] are _237[, _197[, _11”, _7”, z 5—7[, 13—”and 17—7[.
6 6 6 6 6 6 6 6
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The following is a graphical verification of the solutions given above.

I\I\\;,Lla

y = 2s8inx

2. Solve for x given that x €[0,27].

(a) 2sec’x—3+tanx=0 (b) 3sinx+3cos2x=2

~.2(tan? x+1) -3+ tanx =0 (Pyth. identity) -.3sinx +3(1-2sin’ x) =2 (double angle identity)

s 2tan?x+tanx—1=0 -.6sin’x—3sinx—-1=0
~.(2tanx-1)(tanx+1)=0

s2tanx—-1=0 or tanx+1=0

A quick check of the discriminant of this quadratic equation
in sinx demonstrates that it does not factor:

b? —4ac =(-3)" - 4(6)(~1) = 33, which is not a perfect
square. Therefore, the quadratic formula must be used.
~(-3)£(-3) -4(6)(-1) _3+3

2(6) 12

S 34433 . 3-433
These solutions are in quadrants 1 and I1. Ssiy=—m o orsiny=—r

Because of the ASTC rule, there are also
.'.xzsinl(shz/ﬁJ or sinx = 3-33

.'.tanxzé or tanx=-1

sx=tan™ (lj or x=tan"(-1)
2 sinx =

. x=0.46 or x:%z (calculator gives —%)

solutions in quadrants 111 and 1V:
) 1 12

S N A
x=sin™ 3+V33 or x=sin’ 3-433
046 X 12 12
048 . . x=0.82 or x=-0.23 (solutions given by calculator)
Y

T I C

7 0.82 082
cx=046+7=36 or x=27-2 =%

4 4
.'.x£0.46,x£3.6,x=3—7[ orx:7_7[ T c
4 4

Therefore, the solutions in the interval [0,27] are

Tl-Interactive was used
to sketch the graphs of
y=2sec’ x—3+tanx and
y=0. The points of
intersection agree with
the solutions obtained
above.

T S I - =N =

R EE ARG
A 45 3 3 5

R

x=082, x=7-082=232, x=7+0.23=3.37 and
x=27-0.23=6.05

A

7 Tl-Interactive was used
to sketch the graphs of
y =3sinx+3cos2x and
y=2. The points of
intersection agree with
the solutions obtained
above.

oW

LN I S O

Homework
pp. 427 — 428 6, 8bd, 9cf, 13, 14

pp. 436 — 437 6, 7, 8def, 9bd, 11, 12, 14, 15
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RATES OF CHANGE IN TRIGONOMETRIC FUNCTIONS

Introductory Investigation

Gareth was walking through a playground minding his own business when all of a sudden, he felt little Niroj tugging at
his pants. “Gareth, Gareth!” little Niroj exclaimed. “Please push me on a swing!” Being in a hurry, Gareth was a little
reluctant to comply with little Niroj’s request at first. Upon reflection, however, Gareth remembered that he had to collect
some data for his math homework. He reached into his knapsack and pulled out his very handy portable motion sensor.
“Get on the swing Niroj!” Gareth bellowed. “I’ll set up the motion sensor in front of you and it will take some
measurements as | push.” Gleefully, little Niroj hopped into the seat of the swing and waited for Gareth to start pushing.

The data collected by Gareth’s motion sensor are shown in the following tables. Time is measured in seconds and the
distance, in metres, is measured from the motion sensor to little Niroj on the swing.

Time (s) 0 0.1 02 (03 |04 |05 |06 |07 |08 |09 |1 1.1
Distance (m)| 3.8 | 3.68 | 3.33 [ 281 [ 22 | 159 | 107 | 072 | 06 | 0.72 | 1.07 | 1.59
Time (s) 1.2 |13 |14 |15 |16 |17 |18 |19 |20 |21 |22 |23 |24
Distance (m)| 2.2 | 2.81 | 333 | 368 | 38 | 368 (333|281 |22 |[159 107|072 |06
Scatter Plot Curve of Best Fit Mathematical Model
| 4| =Amplitude = 1.6
“ ] 4r , 1
36 «ls 16l 46 T =Period = 1.6 =|—|27
[ = [] [] = /]\ w
s 32f - 32t
S _ L. . . . kS - 1.6 @ = Angular Frequency
5% 28 2~ 28]
= 24l § L r \l/ 1 1 5x
E§ L . - - 862'4: _____________________ =_27Z-=_27T:_
2< zp s of T 1.6 4
% % 16 e . . 3 2 16} d = vertical displacement = 2.2
B 12p 1 I S& 12 A p =phase shift =0
o 0.8y .. . a U_B:
i L = 57
04} 04f ~.d (1) :1'6C05[7tJ +2.2
04 08 12 16 2 24 04 08 12 16 2 24 : :
Time (Seconds) Time (Seconds) (Alternatively, ;ve could write
. T
d(t):1.65|n(7(t—1.2)j+2.2)
Questions

1. What quantity is measured by

(a) the slope of the secant line through the points (1,,d(1,)) and (z,.d(z,))?

(b) the slope of the tangent line at (z,d (¢))?

2. Complete the following table.

Intervals of Time over
which Niroj approaches
the Motion Sensor

Intervals of Time over
which Niroj recedes from
the Motion Sensor

Intervals of Time over
which Niroj’s Speed
Increases

Intervals of Time over
which Niroj’s Speed
Decreases
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3. Explain the difference between speed and velocity.

4. Describe the “shape” of the curve over the intervals of time during which
(a) Niroj’s velocity is increasing

(b) Niroj’s velocity is decreasing

5. Use the function given above to calculate the average rate of change of distance from the motion sensor with respect
to time between 0.2 s and 1.0 s. Is your answer negative or positive? Interpret your result geometrically (i.e. as a
slope) and physically (i.e. as a velocity).

6. Use the function given above to estimate the instantaneous rate of change of distance from the motion sensor with
respect to time at 0.6 s. Is your answer negative or positive? Interpret your result geometrically (i.e. as a slope) and
physically (i.e. as a velocity).
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Rectilinear (Linear) Motion
e Rectilinear or linear motion is motion that occurs along a straight line.

e Rectilinear motion can be described fully using a one-dimensional co-ordinate system.

e Strictly speaking, Niroj’s swinging motion is not rectilinear because he moves along a curve (see diagram).

e However, since only the horizontal distance to the motion sensor is measured, we can imagine that Niroj is moving
along the horizontal line that passes through the motion sensor (see diagram). A more precise interpretation is that the
equation given above models the position of Niroj’s x-co-ordinate with respect to time.

The Origin of the One-
Dimensional Distance from Motion
Co-ordinate System Sensor Measured
Horizontally

Motion Sensor /
Negative < I O I T T | > Positive
Direction LY L I I B B Direction

09 84 7 46 5 4 5 6 7 8 9 10

The table below lists the meanings of various quantities that are used to describe one-dimensional motion.

Quantity Meaning and Description Properties
The position of an object measures where | At any time ¢, if the object is located
the object is located at any given time. _In (a) at the origin, then S(t) -0
linear motion, the position of an object is _ L
Position simply a number that indicates where it is | (b) to the right of the origin, then s(z) >0

with respect to a number line like the one
shown above. Usually, the position

function of an object is written as s(z) .

(c) to the left of the origin, then s(7) <0

Also, |s(¢)| is the distance from the object to the origin.

Displacement

The displacement of an object between
the times # and ¢, is equal to its change

in position between ¢, and ¢,. That is,
displacement =As =s(z,)—s(1,).

If As >0, the object is to the right of its initial position.
If As <0, the object is to the left of its initial position.
If As=0, the object is at its initial position.

Distance measures how far an object has
travelled. Since an object undergoing
linear motion can change direction, the

The position of an object undergoing linear motion is
tracked between times #, and ¢,. In addition, the object

changes direction at times ¢, ,,..., ¢, ; (and at no other

Distance distance travelled is found by summing times), where 7, < 1, <...< t,, < t,. If As; represents the
(adding up) the absolute values of all the | displacement from time z,_, to time ¢, , then the total
displacements for which there is a change | distance travelled is equal to
in direction. d=|AS1|+|AS2|+"‘+|AS,,_1|+|AS,,

Velocity is the instantaneous rate of At any time ¢, if the object is
change of position with respect to time. | ) moving in the positive direction, then v(t)>0
Velocity measures how fast an object T o

Velocity moves as well as its direction of travel. (b) moving in the negative direction, then v(7) <0
In one-dimensional rectilinear motion, (c) at rest, then v(t)zo
velocity can be negative or positive, ) )
depending on the direction of travel. Also, [v(1)] is the speed of the object
Speed is simply a measure of how fast an

Speed object moves without regard to its speed =|v(t)|

direction of travel.
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Table continued from previous page...

Quantity Meaning and Description Properties
Acceleration is the instantaneous Atany time ¢, if the object is
rate of change of velocity with (a) moving in the positive direction and speeding up or moving
respect to time. In one-dimensional in the negative direction and slowing down, then a(¢)>0

Acceleration | rectilinear motion, acceleration can
be negative or positive, depending
on the direction of the force causing

(b) moving in the positive direction and slowing down or moving
in the negative direction and speeding up, then a(7) <0

the acceleration. (c) moving with a constant velocity, then a(t) =0
Example
Determine the quantities listed in the following table. (All times are specified in seconds.)
(a) Niroj’s position at t =2 (b) Niroj’s displacement over the (c) Niroj’s average velocity over the
interval [0,2.6] interval [0,2.6]
(d) Niroj’s average speed overthe  (e) The total distance travelled by Niroj  (f) An estimate of Niroj’s
interval [0,2.6] over the interval [0, 2.6] instantaneous velocity at ¢ =2
Solution

(@) s(2) :1.6cos(57”(2)) +22 :1.6cos(57ﬂj +2.2=1.6(0)+22=2.2

Niroj’s position at =2 is 2.2 m to the right of the origin.

s(r)=d(1) :1.6cos(57”tj +2.2

(b) As=5(2.6)-s(0) Position at time 0 <
=1.6cos(—(2.6)j +2.2- 1.6(:03(—(0)} +22| _3g 32}
4 4 =9. — L
g £20r
:1.6COSBT”—1.GCOSO = g2
Position at time 2.6 | £ % °f
1 —4(26 B S 16r
:1.6(—$j—1.6(1) =5(2.6) B 1,f
1 0.8}
=16| —— |+2.2 :
- —1.6(i+1j ( ﬁ) 0.4}
'\/E - / 1 1 1 1 1 1 1 1 1 1 1 1 1
=1.07 04 /08 12 16 2 24
__16 1442 Time (s)
Tl 2 Over the interval [0,2.6], Niroj’s displacement is —2.73 m. Thig’means that at 2.6 s, his
=273 position was 2.73 m to the left of his initial position (i.e. his pdsition at 0 s).
As
©) Vag =7 . :
At Average velocity over the interval [0,2.6]
_5(2.6)-5(0) = slope of secant line between (0,5(0)) and (2.6,5(2.6))
26-0 =-1.05 m/s
—1.6(13\5EJ
DY Over the interval [0,2.6], Niroj’s average velocity is —1.05 m/s. This means that Niroj’s
= 105 ' position decreases at an average rate of 1.05 m/s over the interval [0, 2.6] . That is, Niroj

moves to the left with an average speed of 1.05 m/s.
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(d) average speed =

Vavg

=‘£‘=|—1.05|=1.05 ms.
At
Over the interval [0,2.6], Niroj’s average speed was 1.05 m/s.

(e) Examine the graph at the right, showing Niroj’s position over time. Notice

that over the interval [0,2.6] , Niroj changes direction at 0.8 s, 1.6 s and ; :
2.4 s. Therefore, 3:22
d = |As)| +|As, | +|As;| +|As, | ggz_az
E 3 24

=[5(0.8)—5(0)[+|s(1.6)—5(0.8) +|s (2.4) ~ 5(1.6)| +|5(2.6) — s (2.4) 88 of
2 5 18]

=)0.6-3.8)+[3.8—0.6|+|0.6 — 3.8 +[1.07 — 0.6| 8 § 2]
~32+32+3.2+047 08
-10.07 oA

Over the interval [0,2.6] , Niroj travelled a distance of about 10.07 m.

() v(2)= Instantaneous velocity at 2 seconds
= slope of tangent of position-time graph at 2 seconds (see graph at right)

Since we do not yet have the tools of calculus at our disposal, the best we can do is to approximate the slope of the
required tangent line by using a secant line that passes through two points that are very close to ¢ = 2. If we use the

centered interval [1.99,2.01], then

n | | o (1.7,4)\I
v(2):§ (provided that Az is very small) . .
 5(2.01)-5(1.99) 32 i

T 2.01-1.99 ” :
Approximate [} ,

1.6005[5;[(2.01)j+2.2—(1.6cos(5;[(1.99)j+2.2) Corigrdinates or :

1.6F !

- 0.02 12f i

0.8F '

1.6cos 10.057 —1.6cos 9.957 - i

4 4 0_4_ !

0.02 }Nz = 72_'4 '
=-6.28 (2.35,0)

At ¢ = 2 seconds, Niroj’s instantaneous velocity is approximately —6.28 m/s, which means that he is moving to the left
(toward the motion sensor) with a speed of about 6.28 m/s. Notice that the answer —6.28 m/s agrees with the graph
shown above. The tangent line at # = 2 leans to the left, which means that its slope should be negative. In addition, a
quick, rough calculation of nse yields % =-6.15, which is in close agreement with the answer obtained

run T-2.
above.
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Now use the following graphs to confirm the answers given above for the instantaneous quantities.

v(t)=—2ﬂ8in(57”tj

s(t)=d(t)=1.ecos(57”tj+z.z

Wt
[ % T = > T =N
B = TS I S s I |

M
F -

Velocity
(m/s)

Distance from
Motion Sensor (m)

= R e R ]
E- == T S TR T S

L dn bl L

04 08 12 16 2 24 Time (s)
Time ()

=2r

v(2)] =‘—27zsin[57ﬁtj

. (57[ j
Sin| —t¢
4

= R = O o=
= S B B B B B B B

Speed
(mfs)

L dn b oo A

Time ()

Homework
pp. 369 - 373: 2,3,6,8,9,10,11, 12, 13, 14
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END BEHAVIOURS AND OTHER TENDENCIES OF TRIGONOMETRIC FUNCTIONS

Review of Notation
Examples are given in the following table of notation that is used to describe the behaviour of some function fas x

undergoes some change such as tending toward a particular value or getting larger and larger without bound.

¢ Note that x — o can also be written x — 4+ .
o “Arbitrarily far from” means “as far as desired from.”
e “Arbitrarily close to” means “as close as desired to.”

:\rllottk? itslogotljsriz ﬁg:;ﬁ:;i Meaning What it Looks Like
Read:  Asx approaches (positive) infinity, f'(x)
ASx - 0 approaches (positive) infinity.
f(x)> !ﬂ.lf(x)“o Meaning: We can make f(x) arbitrarily far from the origin
in the positive direction by making x far enough
from the origin in the positive direction. -
Read:  Asx approaches (positive) infinity, f(x)
AS x —5 o0 approaches negative infinity.
f(x) — —0 lmf(x) - Meaning: We can make f(x) arbitrarily far from the origin
in the negative direction by making x far enough
from the origin in the positive direction.
Read:  As.x approaches negative infinity, /(x)
AS x —5 —o0 approaches (positive) infinity.
f(X) —>© .X'L’I‘wf(x) =% Meaning: We can make f(x) arbitrarily far from the origin
in the positive direction by making x far enough
from the origin in the negative direction.
™
Read:  As.x approaches negative infinity, /(x) -
AS x —> —o0 approaches negative infinity.
f(x)—>—oo x"ﬂl) (x):_oo Meaning: We can make f(x) arbitrarily far from the origin
in the negative direction by making x far enough
from the origin in the negative direction.
Read:  Asxapproachesa, f(x) approaches (positive) e
infinity. i
A . - |
Sx—d Iimf(x) = | Meaning: We can make f(x) arbitrarily far from the origin !
S (x) = “ in the positive direction by making x close enough !
but not equal to a (from both the left and right
sides). <

* This is just a preview of calculus. You are not required to use calculus notation in this course.
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il\rlmottr?itslogotsrig ﬁgtl;g:;i Meaning What it Looks Like
Read:  Asx approaches a from the right, f(x)
N approaches negative infinity.
As x—>a", Iimf(x):—oo Meaning: L -
f(x)>—0 | = eaning: We can make f(x) arbitrarily far from the origin
in the negative direction by making x close enough
to a from the right side but not equal to a.
Read: As x approaches a from the left, f (x) approaches
- (positive) infinity.
As x —>a f I|mf(x)=00 _ - ) ) o
£(x) > o>a Meaning: We can make f(x) arbitrarily far from the origin
in the positive direction by making x close enough
to a from the left side but not equal to a.
As Read:  Asx approaches a, f(x) approaches L.
X—>a
f(x) S "Lnf(x) =L Meaning: We can make f(x) arbitrarily close to L by

making x close enough but not equal to a.

. . . 5 1 . .
In the example given in the previous row, as x — %  f(x)—> > This means that we can make f(x)=sinx as close as

. 1 . Y4 L. . . 1
we desire to > by making x close enough but not equal to e In the language of calculus, this is written |Irp f(x) =3
T
X—>—
6
* This is just a preview of calculus. You are not required to use calculus notation in this course.
Copyright ©, Nick E. Nolfi MHF4UO Unit 2 — Trigonometric Functions TF-58




Exercises
Determine the tendency of f(x).

As x —> 0", f(x)—)

As x>0, f(x)—)

- =)
T T T 1T

0sf

0755 As x—)O, f(x)—)

B

=
T

As x—0" f(x)—) As x>0, f(x)—)_
As x>0, f(x)—)_ 10} As x>, f(x)—)_
8_
6F T
As x>0, f(x)> af Asx—>, f(x)>____
21
- RRFy AREARREY SHE :
AS x —> — , f(x)—) 21 4 AS x > — , RN
2 4k <> g fx)>—
+ i
As x—>% () | As x—>3?ﬁ WACHE

ASX_’%’ fx)>____ ASx—>3—ﬂ+,f(x)—>

As x—0, f(x)—)

MO ;o o
T T T T T T T T T

T
L f(x)=tanx (| As x_)z’ f(X)—)_

As x—)%, f(x)—)

4{5___,\,,,__________>
>
w
=
\’
[N
~
=
‘i

T
;T?R
- N
ANNBRLZBNNRANANA:~ES
>
w
~
\!
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|
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w
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APPENDIX — ONTARIO MINISTRY OF EDUCATION GUIDELINES

B. TRIGONOMETRIC FUNCTIONS

OVERALL EXPECTATIONS

By the end of this course, students will:

1. demonstrate an understanding of the meaning and application of radian measure;

2. make connections between trigonometric ratios and the graphical and algebraic representations of
the corresponding trigonometric functions and between trigonometric functions and their reciprocals,

and use these connections to solve problems;

3. solve problems involving trigonometric equations and prove trigonometric identities.

SPECIFIC EXPECTATIONS

1. Understanding and Applying
Radian Measure

2. Connecting Graphs and Equations

of Trigonometric Functions

By the end of this course, students will:

1.1 recognize the radian as an alternative unit to
the degree for angle measurement, define the
radian measure of an angle as the length of
the arc that subtends this angle at the centre
of a unit circle, and develop and apply the
relationship between radian and degree
measure

1.2 represent radian measure in terms of x (e.g.,

z radians, 2 radians) and as a rational number

3
(e.g., 1.05 radians, 6.28 radians)

1.2 determine, with technology, the primary
trigonometric ratios (i.e., sine, cosine, tangent)
and the reciprocal trigonometric ratios (i.e.,
cosecant, secant, cotangent) of angles
expressed in radian measure

1.4 determine, without technology, the exact
values of the primary trigonometric ratios
and the reciprocal trigonometric ratios for

T X T

the special angles 0, "?, T3 7 and their

multiples less than or equal to 2x
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By the end of this course, students will:
2.1 sketch the graphs of f(x) = sinx and f(x) = cosa

for angle measures expressed in radians, and
determine and describe some key properties
(e.g., period of 27, amplitude of 1) in terms of
radians

2.2 make connections between the tangent ratio

and the tangent function by using technology
to graph the relationship between angles in
radians and their tangent ratios and defining
this relationship as the function fix) = tanx,

and describe key properties of the tangent
function

2.3 graph, with technology and using the primary

trigonometric functions, the reciprocal
trigonometric functions (i.e., cosecant, secant,
cotangent) for angle measures expressed in
radians, determine and describe key proper-
ties of the reciprocal functions (e.g., state the
domain, range, and period, and identify and
explain the occurrence of asymptotes), and
recognize notations used to represent the
reciprocal functions [e.g., the reciprocal of

flx) = sinx can be represented using cscx,

1 1
—, or ——, but not 1151'.ngf'1‘|{x} or si_n'l X,
fl) ' sinx

which represent the inverse function]
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2.4 determine the amplitude, period, and phase Solvina Tri i E .
shift of sinusoidal functions whose equations 3. Solving Trigonometric Equations
are given in the form f(x) = asin (k(x —d)) + ¢

or f(x) = acos(k(x — d)) + ¢, with angles
expressed in radians

By the end of this course, students will:

3.1 recognize equivalent trigonometric expressions

2.5 sketch graphs of y = asin (k(x — d)) + c and [e.g., by using the angles in a right triangle
y =acos(k(x —d)) + c by applying trans- to recognize that sinx and cos (% - AJ are

formations to the graphs of f(x) = sinx and
f(x) = cos x with angles expressed in radians,
and state the period, amplitude, and phase recognize that cos (1 + ﬁ) and —sinx are
shift of the transformed functions

equivalent; by using transformations to

. equivalent], and verify equivalence using
Sample problem: Transform the graph of

raphing technology
fx) = cosx to sketch g(x) = 3 cos (2x) — 1, graphiing technology
and state the period, amplitude, and phase 3.2 explore the algebraic development of the
shift of each function. compound angle formulas (e.g., verify the

formulas in numerical examples, using tech-
nology; follow a demonstration of the alge-
braic development [student reproduction of
the development of the general case is not
Sample problem: A sinusoidal function has required]), and use the formulas to determine
an amplitude of 2 units, a period of &, and a exact values of trigonometric ratios [e.g.,
maximum at (0, 3). Represent the function
with an equation in two different ways.

2.6 represent a sinusoidal function with an
equation, given its graph or its properties,
with angles expressed in radians

determining the exact value of sin (%) by

first rewriting it in terms of special angles
2.7 pose problems based on applications involv- -

ing a trigonometric function with domain as sin [I - ?]]
expressed in radians (e.g., seasonal changes in

temperature, heights of tides, hours of day-
light, displacements for oscillating springs),
and solve these and other such problems by
using a given graph or a graph generated
with or without technology from a table of
values or from its equation

3.3 recognize that trigonometric identities are
equations that are true for every value in the
domain (i.e., a counter-example can be used
to show that an equation is not an identity),
prove trigonometric identities through the
application of reasoning skills, using a variety

sinx

cosx’

Sample problem: The population size, P, of relationships (e.g., tanx =

of owls (predators) in a certain region can
be modelled by the function

sin?x + cosx = 1; the reciprocal identities;

the compound angle formulas), and verify

P(t) = 1000 + 100sin (112’] where f represents identities using technology

the time in months. The population size, p, Sample problem: Use the compound angle

of mice (prey) in the same region is given by formulas to prove the double angle formulas.
pit) = 20000 + 4000 cos (1%:] Sketch the 3.4 solve linear and quadratic trigonometric equa-

tions, with and without graphing technology,
for the domain of real values from 0 to 2,
and solve related problems

graphs of these functions, and pose and

solve problems involving the relationships

between the two populations over time.
Sample problem: Solve the following trigono-
metric equations for 0 = x < 2w, and verify by
graphing with technology: 2sinx + 1= 10;

2sinx + sinx—1 = 0: sinx = cos 2x;
cos2x = %
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