
MPM1D0 Unit 0 – Review of Elementary School Mathematics Summary Notes

Working with Fractions

Adding/Subtracting Fractions

- Express each fraction with a common denominator.
- Add/subtract the numerators.
- Keep the denominator!
- If possible, reduce to lowest terms.

$$\frac{3}{10} + \frac{8}{15} = \frac{9}{30} + \frac{16}{30} = \frac{25}{30} = \frac{5}{6}$$

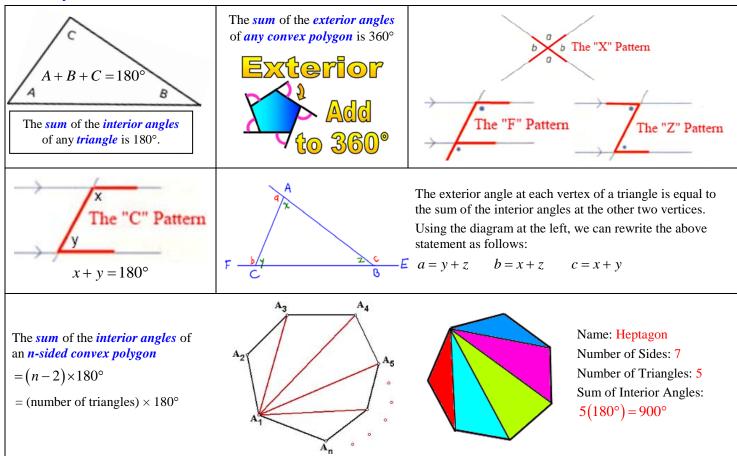
Multiplying Fractions

- Multiply the numerators, multiply the denominators. If possible, reduce to lowest terms. **OR...**
- Reduce first (vertically and diagonally). Multiply the numerators, multiply the denominators.

$$\frac{3}{10} \left(\frac{8}{15}\right) = \frac{24}{150} = \frac{4}{25} \quad \text{OR} \quad \frac{\frac{1}{8}}{\frac{10}{5}} \left(\frac{\frac{3}{8}}{\frac{15}{5}}\right) = \frac{4}{25}$$

Dividing Fractions

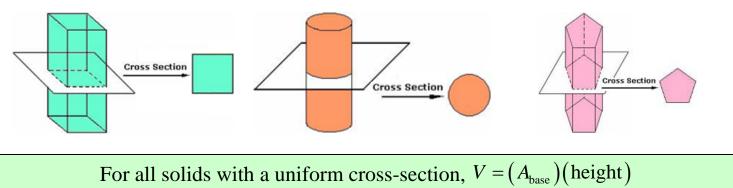
- *Do not* change the 1st fraction.
- Change \div to \times .
- Find the reciprocal of the 2nd fraction (i.e. "*flip*").
- **Summary:** Multiply by the reciprocal (i.e. "flip 'n multiply")


$$\frac{3}{10} \div \frac{8}{15} = \frac{3}{10} \times \frac{15}{8} = \frac{45}{80} = \frac{9}{16}$$

Measurement

<u>The Meaning of π </u>: The ratio of the circumference of a circle to its diameter. (i.e. The circumference of a circle is π times, or approximately 3.14 times, greater than its diameter.)

Perimeter	Area	Volume
 The <i>distance</i> around a two- dimensional shape. The "perimeter" of a circle is 	• The "size" or "amount of space" inside the boundary of a two-dimensional surface, including curved surfaces.	• The "amount of space" contained within the interior of a three-dimensional object. (The <i>capacity</i> of a 3-dimensional object.)
 called its <i>circumference</i>. Perimeter is measured in <i>linear units</i> such as mm, cm, m, km. 	 In the case of the surface of a three-dimensional object, the area is usually called <i>surface area</i>. Area is measured in <i>square units</i> such as mm², cm², m², km². 	• Volume is measured in <i>cubic units</i> such as mm ³ , cm ³ , m ³ , km ³ , mL, L. Note: 1 mL = 1 cm ³


Geometry

Perimeter and Area Equations			Pythagorean Theorem
Geometric Figure	Perimeter	Area	The hypotenuse
Rectangle	P = l + l + w + w or P = 2(l + w)	A = lw	a b b is the longest side of a right triangle. It is always found
Parallelogram	P = b + b + c + cor	A = bh	the right angle.
$ \begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & $	P = 2(b + c)		In <i>any</i> right triangle, the square of the hypotenuse
Triangle	P = a + b + c	$A = \frac{bh}{2}$ or	is equal to the sum of the squares of the other two sides.
<i>b</i>		$A = \frac{1}{2}bh$	That is,
Trapezoid	P = a + b + c + d	$A = \frac{(a+b)h}{2}$	$c^2 = a^2 + b^2$
$c \land h \land d$		or $A = \frac{1}{2}(a + b)h$	By using your knowledge of rearranging equations, you can rewrite this equation as follows:
Circle	$C = \pi d$ or	$A = \pi r^2$	$b^2 = c^2 - a^2$
	$C = 2\pi r$		and $a^2 = c^2 - b^2$

Volumes of Solids with a Uniform Cross-Section

A solid has a *uniform cross-section* if any cross-section *parallel to the base* is *congruent* to the base (i.e. has exactly the same shape and size as the base). Prisms and cylinders have a uniform cross-section. Pyramids and cones do not.

Volume and Surface Area Equations

If you need additional help, Google "area volume solids."

Geometric Figure	Surface Area	Volume
Cylinder • r h	$A_{\text{base}} = \pi r^2$ $A_{\text{lateral surface}} = 2\pi r h$ $A_{\text{total}} = 2A_{\text{base}} + A_{\text{lateral surface}}$ $= 2\pi r^2 + 2\pi r h$	$V = (A_{\text{base}})(\text{height})$ $V = \pi r^2 h$ This is true for all prisms and cylinders.
Sphere	$A = 4\pi r^2$	$V = \frac{4}{3} \pi r^{3} \text{or} V = \frac{4\pi r^{3}}{3}$ This is true for all <i>pyramids</i> and <i>cones</i> .
Cone	$A_{\text{lateral surface}} = \pi rs$ $A_{\text{base}} = \pi r^{2}$ $A_{\text{total}} = A_{\text{lateral surface}} + A_{\text{base}}$ $= \pi rs + \pi r^{2}$	$V = \frac{(A_{\text{base}})(\text{height})}{3}$ $V = \frac{1}{3} \pi r^2 h \text{or} V = \frac{\pi r^2 h}{3}$
Square- based pyramid h b	$A_{\text{triangle}} = \frac{1}{2}bs$ $A_{\text{base}} = b^2$ $A_{\text{total}} = 4A_{\text{triangle}} + A_{\text{base}}$ $= 2bs + b^2$	$V = \frac{(A_{\text{base}})(\text{height})}{3}$ $V = \frac{1}{3}b^2h \text{or} V = \frac{b^2h}{3}$
Rectangular prism	A = 2(wh + lw + lh)	V = (area of base)(height) This is true for all prisms and cylinders.
Triangular prism $a \int c \\ h \\ b h$	$A_{\text{base}} = \frac{1}{2} bl$ $A_{\text{rectangles}} = ah + bh + ch$ $A_{\text{total}} = A_{\text{rectangles}} + 2A_{\text{base}}$ $= ah + bh + ch + bl$	$V = (A_{\text{base}})(\text{height})$ $V = \frac{1}{2} blh$ or $V = \frac{blh}{2}$