Grade 9 Academic Math Diagnostic Test Question 1: NO CALCULATORS ALLOWED

You will receive questions 2 to 14 once you hand in this sheet.

Victim: $\qquad$
$G \rightarrow$ gain, $L \rightarrow$ loss

1. Evaluate each expression without using a calculator. You do not need to show your work. ( $15 / 15$ )


Use this space for rough work

| Integers | Rational <br> Numbers | Algebra |  <br> Measurement | Problem <br> Solving |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 9 / \mathbf { 2 9 }}$ | $18 / \mathbf{1 8}$ | $\mathbf{8 / 8}$ | $28 / \mathbf{2 8}$ | $\mathbf{8 / 8}$ |

$$
\begin{aligned}
& \text { (a) }-5-2(3-13) \\
& =-5-2(-10) \\
& =-5-(-20) \\
& =-5+20 \\
& =15
\end{aligned}
$$

(b) $-8(4)-2[1+27 \div(-3)]^{2}$

$$
=-32-2[1+(-9)]^{2}
$$

$$
=-32-2(-8)^{2}
$$

$$
=-32-2(64)
$$

$$
=-32-128 \mathrm{~L}
$$

$$
=-160
$$

- 

Part One - Integers $\square$ $29 / 29$

1. This question is given on a separate sheet. ( $15 / 15$ )
2. Evaluate each expression. You must show your work. ( $14 / 14$ )
$\qquad$ Solutions
(d) $\frac{21}{15} \div \frac{14}{5}$


$$
\begin{aligned}
& =\frac{3}{6} \\
& =\frac{1}{2}
\end{aligned}
$$

(e) $\frac{1 \times 2}{6 \times 2}+\frac{3}{4} \times 3$

$$
\begin{aligned}
& =\frac{2}{12}+\frac{9}{12} \\
& =\frac{2+9}{12} \\
& =\frac{11}{12}
\end{aligned}
$$

4. This question deals with number sense. ( $7 / 7$ )
(a) Place each of the given numbers on the number line.

(b) Arrange the given numbers from largest to smallest. $* \frac{1}{2}$ mark each

| $\frac{4}{4}$ | $\frac{1}{3}^{\frac{1}{4}}$ | 0.31 | 0.31 | $\frac{1}{4}$ | -0.98 | -1.08 | -1.9 | 0.04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.1 | 0.04 | -0.98 | -1.08 | $\frac{1}{3}$ |  |  |  |

Part Three - Algebra $\square$
5. Substitute and evaluate. ( $3 / 3$ )

$$
\begin{aligned}
& -8 s^{2}+20 \quad(s=4) \\
= & -8(4)^{2}+20 \\
= & -8(16)+20 \\
= & -128+20 \\
= & -108
\end{aligned}
$$

7. Write an algebraic expression that means "the quotient of a number and 10." (2/2)

$$
\underset{\square}{\downarrow} \quad \frac{x}{10}
$$

6. Solve the following equation. ( / /1)

$$
\begin{aligned}
& \quad w+7=-51 \\
& \therefore w+7-7=-51-7 \\
& \therefore w=-58
\end{aligned}
$$

8. Translate the algebraic expression $15-y$ into words. (2/2) 15 decreased by a number

Part Four - Geometry and Measurement $\square$ $28 / 28$
9. Determine the value of $c$ that would make the given triangle a right triangle. (4/4)
By the Pythagorean Theorem,

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
& =7^{2}+15^{2} \\
& =49+225 \\
& =274
\end{aligned} \quad \therefore c^{2}=274
$$


10. Calculate the perimeter and area of the given shape. (5/5)

$$
\begin{aligned}
P & =10+6+7+6+7+4+6 \\
& =46 \mathrm{~m} \\
A & =A_{1}+A_{2} \\
& =10(6)+7(6) \\
& =60+42 \\
& =102 \mathrm{~m}^{2}
\end{aligned}
$$


11. Calculate the surface area and volume of the given hemisphere
$A=\frac{A_{\text {sphere }}}{2}+A_{2}$ (i.e. "half sphere"). $(7 / 7)$


$$
V=\frac{\frac{4}{3} \pi r^{3}}{2}
$$

$$
=\frac{4 \pi r^{2}}{2}+\pi r^{2}
$$

$$
=\frac{\frac{4}{3}(3.14)(10)^{3}}{2}
$$

$$
\doteq \frac{4(3.14)(10)^{2}}{2}+3.14(10)^{2}
$$

$$
\pm 2093.3 \mathrm{~m}^{3}
$$


12. Find the measures of each angle labelled with a letter. In each case, state your reasoning. (12/12)

$\square$
13. Gulam was so proud of his report card that he decided to frame it and hang it on his bedroom wall. Once he framed it, Gulam realized that his report card would be too hard to read from a distance. After giving some thought to his problem, he decided to get the report card enlarged to four times its original area. If the original report card measured 21.6 cm by 28 cm , what are the dimensions of the enlarged report card?
(4/4)


$$
A=\text { Area of }
$$

original report card My report card is bigger than yours Dayavir!
$=28(21.6)$
$=604.8$
Four times original area

$$
=4 \mathrm{~A}
$$

$$
=4(604.8)
$$

$$
=2419.2 \mathrm{~cm}^{2}
$$

As can be seen from, the diagram, the area can be made four times larger by doubling the length and width. Therefore the dimensions of the enlarged report card should be $56 \mathrm{~cm} \times 43.2$
check: $56(43.2)=2419.2$
14. In kite $A B C D$, angle $B$ is at the top of the kite and measures $80^{\circ}$ degrees. Angles $A$ and $C$ are on the sides and angle $D$ is at the bottom of the kite. What is the largest possible measure of angle $A$ or $C$ ? (4/4)
Since $\triangle A B C$ is isosceles and $\triangle A D C$ is isosceles,

$$
\angle B A D=\angle B C A \text { and } \angle D A C=\angle D C A
$$

Also, $\angle B A D=\angle B C A=50^{\circ}$ since the sum of the interior angles of a triangle must be $180^{\circ}$

Now, $x+x+y=180^{\circ} \mathrm{V}$ since $y>0$, $\begin{array}{ll}\therefore & 2 x+y=180^{\circ} \\ \therefore & y=180^{\circ}-2 x\end{array}$
Another Approach
Imagine "pulling" the point $D$ down the page. This would make line segments $A D$ and $C D$ longer, $\angle C A D$ and $\angle A C D$ larger, while $\angle A D C$ would get smaller. There is no limit to how far point $D$ can be pulled down BUT there is a limit to how large $\angle C A D$ and $\angle A C D$ can be Clearly, the measures of these angles can be as close to 90 as we like but can neither equal nor exceed 90.

$\angle A$ and $\angle C$ can have any measure ${ }^{2}$ greater than $50^{\circ}$ but less than $140^{\circ} \mathrm{B}$


