MPM 1D0

Grade 9 Academic Math Unit 0 – Measurement and Geometry Review – Practice Test

Victim: Mr. Solutions

Well done Mr. S. !

KU	APP	TIPS	COM
10/10	RO /20	10/10	<i>/0</i> /10

Modified True or False (5 KU)

Indicate whether each statement is *true* or *false*. If false, *change* the <u>underlined part</u> to make the statement true.

1. F Math is like a dating service because it's all about <u>relativity</u>.

Change: <u>relationships</u>

2. Fif the radius of a circle is doubled, its area is doubled.

Change: quadrupled

3. F A triangular pyramid has four *lateral* faces.

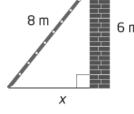
Change: <u>three</u> v

4. F The basic elements of math are objects, operatives and relationships.

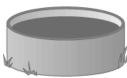
Change: operations

5. (A_{base}) (height) is the <u>surface area</u> of any solid with a uniform cross-section.

Change: Volume


Multiple Choice (5 KU)

For questions 6 to 10, select the best answer. Write the letter of your choice in the provided blank space.


- **6.** b A cone has a volume of 314.16 cm³ and a radius of 5 cm. To one decimal place, what is its height?
 - (a) 10.1 cm
- **(b)** 12.0 cm
- (c) 11.3 cm
- (d) 12.8 cm
- 7. C A window cleaner has placed an 8-m ladder against a wall. The top of the ladder is 6 m above the ground. What is the distance, to the nearest tenth of a metre, of the ladder from the wall?

- **(b)** 5.2 m
- **ⓒ** 5.3 m
- (d) 5.4 m

- 8. A circular swimming pool has a diameter of 8.6 m. It is filled to height of 1.6 m. To the nearest 100 L, how much water is in the pool?
 - (a) 93 800 L
- **(b)** 98 500 L
- (c) 99 900 L
- (d) 92 900 L

- 9. __d Which statement is *not* true?
 - (a) The length of any side of a right triangle can be calculated if the lengths of the other two sides are known.
 - **(b)** The hypotenuse is the longest side in a right triangle.
 - (c) The hypotenuse is always opposite the 90° angle in a right triangle.
 - d The Pythagorean Theorem applies to all triangles.
- 10. <u>b</u> The measure of any exterior angle of a triangle is equal to
 - (a) The measure of the opposite interior angle.
 - (b) The sum of the measures of the two opposite interior angles.
 - (c) 180°
 - (d) 360°

KU	APP	TIPS	COM
- 0	- 0	-	_ 0

Full Solutions/Explanations

11. Vyshna and Uday have a kite-making business that they call VUiTon Fashionable Kites. Their company makes large kites in the shape shown at the right. Each of these kites has fancy gold trim around the *perimeter*. How much gold trim is used for each kite? (4 APP)

Set Prepresent the perimeter of the bite. Then, $P = 100 + 100 + \frac{2\pi r}{2}$ $= 200 + \pi r$ = 200 + 3.14(40) = 325.6

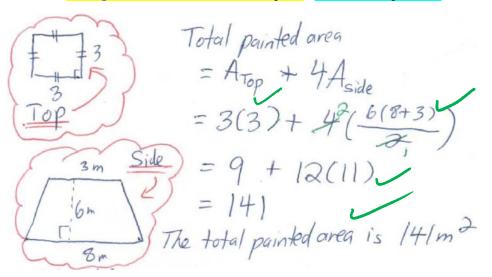
100 cm 100 cm

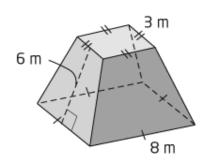
6 cm

80 cm

- About 325.6 cm of gold trim is needed for each kite.
- 12. A picture measures 60 cm by 30 cm. The mat around the picture is 6 cm wide. Find the area of the mat. (4 APP)

 $A_m \rightarrow area of mat$, $A_L \rightarrow area of large$ $A_s = area of small rectangle$ $A_s = area of large rectangle$ $A_s = area of small rectangle$ $A_s = area of large rectangle$ $A_s = area of small rectangle$ $A_s = area of small$

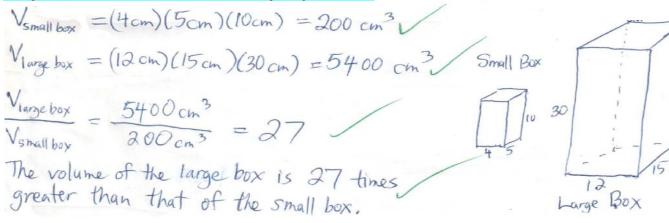

The area of the mat is 1224 cm2.


13. A *cone* with a volume of 120 cm³ just fits inside a *cylindrical* container having the same radius and height. What is the volume of the cylindrical container? (2 APP)

 $V_{\text{cone}} = \frac{1}{3} A_{\text{base}} (\text{height}) = 120 \text{ cm}^3$ But $V_{\text{cylinder}} = A_{\text{Base}} (\text{height}) = 3 V_{\text{cone}}$ if $V_{\text{cylinder}} = 3(120) = 360 \text{ cm}^3$

KU	APP	TIPS	COM
-	-	- 0	- 0

14. The base for a large statue is in the form of a frustum of a pyramid with dimensions as shown. The *top* and *sides* are covered with paint. What area is painted? (4 APP)



15. Find the measures of each angle labelled with a letter. In each case, state your *reasoning*. (6 APP)

Measure of Angle	Reasoning (State Why)
a =	opposite angles are equal
b = <u>45°</u>	180°-135° (supplementary angles)
c =65°	$d+c+e=180^{\circ} \Rightarrow 45^{\circ}+c+70^{\circ}=180^{\circ}$
d = 45°	alternate angles are equal
e =	alternate angles are equal 135°
f =	corresponding angles are equal

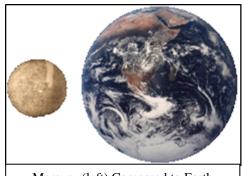
16. Big Bran breakfast cereal is sold in a single serving size. This rectangular prism shaped box has dimensions 4 cm by 5 cm by 10 cm. The manufacturer also sells the cereal in a box that has dimensions three times those of the small box. Compare the volume of the two boxes and explain your answer. (4 TIPS)

KU	APP	TIPS	COM
- 0	- 0	-	- 0

17. The volume of the planet Mercury is about 61,000,000,000 km³ (61 billion cubic kilometres). The Earth's radius is about 2.6 times that of Mercury. What is the Earth's volume? (6 TIPS)

$$V_{M} = 61,000,000,000 = \frac{4\pi r_{M}^{3}}{3}$$

$$V_{E} = \frac{4\pi r_{E}^{3}}{3}$$


$$= \frac{4\pi (2.6 r_{M})^{3}}{3} \left(\frac{\sin e}{r_{E} = 2.6 r_{M}} \right) \left(\frac{But}{a \text{ little}} \right)$$

$$= \frac{(2.6)^{3} (4\pi r_{M}^{3})}{3} \left(\frac{4\pi r_{M}^{3}}{3} \right) \left(\frac{4\pi r_{M}^{3}}{3} \right)$$

$$= 17.576 \left(\frac{4\pi r_{M}^{3}}{3} \right) \left(\frac{17.576 (61,000,000,000)}{17.576 (61,000,000,000)} \right)$$

$$= 17.576 V_{M} = 17.576 (61,000,000,000)$$

$$= 1,072,136,000,000$$
The Earth's volume is about 1 trillion tm^{3} [1]

Mercury (left) Compared to Earth

V_m → Mercury's volume (km³) V_E → Earth's volume (km³) V_m → Mercury's radius (km) V_E → Earth's radius (km)

Alternative Solution

This solution is easier to understand But it's longer.

$$... \frac{4}{3} \pi r_{m}^{3} = 61,000,000,000$$

:.
$$4.189 \, r_{\rm m}^3 \doteq 61,000,000,000$$

$$\therefore r_m^3 = \frac{61,000,000,000}{4.189}$$

$$\cdot \cdot \cdot V_m = \sqrt[3]{\frac{61,000,000,000}{4.089}}$$

$$V_{E} = \frac{4}{3} \pi r_{E}^{3}$$

$$= \frac{4}{3} (3.14)(6349)^{3} = 1,072,000,000 \, \text{km}^{3}$$

cube root of x

It means, "What number

y, when raised to the
exponent 3, is equal to x?"