- Addition *can* be performed in any order without changing the result. This means that brackets don't matter! Therefore, to *add a polynomial* enclosed in brackets, *simply remove the brackets* and proceed.
- Subtraction *cannot* be performed in any order without changing the result. This means that brackets *DO* matter! To subtract a polynomial enclosed in brackets, remove the brackets by adding the opposite of the polynomial. This is based on the following property: x - y = x + (-y)

1.	Fully simplify each of the following expressions. (odd the opposite
	(a) $(-5x+4y)+(6y-3x)$ Brackets can be	(b) $(13xy - 3x^2y) - (5x^2y + 9xy)$
	= $-5x + 4y + 6y - 3x$ removed	$= 13xy - 3x^2y + (-5x^2y - 9xy)$
	= -5x - 3x + 4y + 6y changes because	$= 13xy - 3x^2y + (-5x^2y) - 9xy$
	= -8x+10y "t" not	$= 13xy - 9xy - 5x^2y - 5x^2y$
	(or 10y-8x)	$C = 4xy - 8xy \qquad (or - 8x^2y + 4xy)$
	(c) $+(8x^2y-2xy)-(15x^2y-11xy)$	(d) $-(-15ab^2 - 6a^2b) - (13ab^2 - 4a^2b - 10ab)$
	$= 8x^{2}y - 2xy + (-15x^{2}y + 11xy)$	$= + (15ab^2 + 6a^2b) + (-13ab^2 + 4a^2b + 10ab)$
	$=8x^{2}y-2xy+(-15x^{2}y)+11xy$	$=15ab^{2}+6a^{2}b+(-13ab^{2})+4a^{2}b+10ab$
		= 15ab-13ab +6a b+ 7a b+ 10ab
	$= 8x^{2}y - 15x^{2}y - 2xy + 11xy$	= 2ab + 10ab + 10ab
	$= -7x^{2}y + 9xy $ (or $9xy - 7x^{2}y$)	(terms can be placed in any order as long as the operations are preserved)
	·	·

- 2. A rectangle has length 4x + 1 and width x + 2. (6/6)
 - (a) Label the width and length with the given algebraic expressions.
- for the perimeter of the rectangle.

(b) Write a *simplified expression*

(c) Suppose that the perimeter of the rectangle is 46 cm. Find the value of x.

P = x+2+4x+1+x+2+4x+1 P = 46 = |x+4x+1x+4x+2+1+2+1| = 10x+6=46By trial and error, x = 4

3. Three artists contributed to a coffee-table book. They each chose to be paid a different way. $(\frac{5}{5})$

Artist	Fixed Rate (\$)	Royalty (\$ per n books sold)
Jensen	2000	3 <i>n</i>
Sarah	_	6 <i>n</i>
Udoy	7000	_

(a) Write an expression for the total earnings for each artist.

Jensen: 2000 + 3n

Sarah:

Udoy:

(b) Write a simplified expression for the total amount paid to Jensen, Sarah and Udoy.

2000+3n+6n+7000 V =2000+7000+3n+6n =9000+9n