M	PM1D0 Unit 2: Homework Quiz 4	Victim: Mr. Solutions	
1.	Give <i>one example</i> of each of the following: $(5/5)$	Welldore Boss!!	33
	(a) Expression 3χ		$\overline{33}$
	(b) Equation that is Solved for the Unknown	3n = 12	
	(c) Equation that Expresses a Mathematical Relations	ship $A = h(a+b)$	
	(d) Identity $\chi + \chi = 2\chi$		
	(e) A Value that Satisfies the Equation $x^2 = 169$	x=13 or x=-13	

For the given equation, solve for *l* both by completing the flowchart and by performing operations to *both sides*. (7/7)

Equation	Solve for l using the Flowchart	Solve the Equation for l by Performing Operations to B.S.
P = 2l + 2w This equation relates the perimeter of a rectangle to its length and width.	$ \begin{array}{c} 1 \\ \hline \\ x2 \\ \hline \\ +2vv \\ \hline \\ \hline \\ -2vv \\ \hline \\ \hline \\ -2vv \\ \hline \\ \hline$	Performing Operations to B.S. $P = 2l + 2w$ $P - 2w = 2l + 2w - 2w$ $P - 2w = 2l$ $P - 2w = 2l$ $\frac{P - 2w}{2} = 2l$ $\frac{P - 2w}{2} = 2l$
		$\frac{1}{1} = \frac{p-2w}{2}$

3. Solve the given equation for h by performing operations to both sides. ($\frac{4}{4}$)

 $A = 2\pi r^2 + 2\pi rh$ Subtract 2111² From B.S. to isolate the term containing h. $\therefore A - 2\pi r^2 = 2\pi r^2 + 2\pi r h$ $\therefore A - 2\pi r^2 = 2\pi r h$ Since h is multiplied by 2mr, it is isolated by dividing B.S. by 2mr $\frac{A - 2\pi r^2}{2\pi r} = \frac{2\pi r h}{2\pi r}$ A-211V h 211 =RTT XOILA Jur +2nr

- 4. To rent the grand ballroom, a hotel charges \$250 per day plus \$15 per person. (9/9)
 - (a) Let *C* represent the cost in dollars of renting the ballroom and *n* represent the number of people.
- (b) Use your formula from part (a) to calculate how much the hotel would charge for 100 people to rent the ballroom.

5. Students in a math class were asked to rearrange the formula $E = \frac{1}{2}mv^2$ to solve for *v*. A student named Jabroni wrote the response shown in the left column of the table. Unfortunately, Jabroni's response contains many errors. First circle the errors in Jabroni's response. Then provide a correct response. (2/8)

Jabroni's Response – <u>Circle</u> all the Errors	Your Corrected Solution
$E = \frac{1}{2}mv^2$	$E = \frac{1}{2}mv^2 \qquad (\sqrt{\frac{2E}{m}})$
$\therefore 2E = \left(\frac{2}{1}\right)\frac{1}{2}mv^2$	$\therefore 2E = \frac{2}{7} (\pm mv^2) \sqrt{squard} \sqrt{V}$
$\therefore 2E = \frac{1}{4}mv^2 \times \frac{2}{1}(\frac{1}{2}) = 1$	$\therefore 2E = mv^2$
$\therefore 2E \left(\frac{1}{4}m\right) = \frac{1}{4}mv^2 \left(-\frac{1}{4}m\right)$	$\therefore 2E = mv^2 (xm) (m)$
$\therefore 2E - \frac{1}{4}m = v^2$	$\begin{array}{cccc} m & m \\ \cdot & 2E & 2 \\ \cdot & 2E & 2 \\ \end{array}$
$2E\left(\frac{1}{4}m\right)_{v^2}$ Opposite of	$m = V$ $(x_{a}) = 1$
2 2 squaring is a	$\frac{1}{\sqrt{RE}} = \sqrt{2}$
2E v NOI $-c$	E E
2π	$V = \sqrt{\frac{kE}{m}}$
$\frac{1}{2}$	