SOLUTIONS: TIPS PROBLEMS INVOLVING EQUATIONS \swarrow In $\triangle ABC$, the measure of $\angle ABC$ is double the measure of $\angle CAB$. The measure of $\angle BCA$ is 30° greater than the measure of the smaller of the other two angles. Find the measure of each angle.

A The smaller Let x represent the measure of LCAB x of 2CAB and Then, 2x represents the measure of LABC
and x+30 represents the measure of LBCA.
(The sum of the interior angles) is 180°
B^{2x} x_{+30} C $x_{+2x} + x_{+30} = 180$
$4\chi + 30 = 180$ $\chi_{\chi} + 30 = 180$ $\chi_{\chi} + 30 = 37.5^{\circ}$
4x = 150 / $2 + 150$
$\frac{4x}{4} = \frac{150}{4}$ $= 67.5^{\circ} + 30$ $= 67.5^{\circ}$

2. Naquan is saving nickels and dimes in a jar. The jar contains 10 more nickels than dimes. Altogether, the value of the coins is \$16.25. How many nickels and dimes are in the jar?

Coin	Value of One Coin	Number of Coins	Value of Coins
Dime	\$0.10	d	0.10d
Nickel	\$0.05	d + 10	0.05(d+10)
Total	N/A	d+d+10	\$16.25

Value of
dimes+Value of
nickelsis16.25Nickel = 5° = \$0.05
$$0.10d + 0.05(d+10) = 16.25$$
.... $0.10d + 0.05d + 0.5 = 16.25$ $0.15d + 0.5 = 0.5 = 16.25$ $0.15d + 0.5 = 0.5 = 16.25 - 0.5$ $0.15d + 0.5 = 0.5 = 16.25 - 0.5$ $0.15d = 15.75$ $0.15 = 0.15$ $1.5 = 0.15$ $0.15 = 10.5 = 10.5 - 0.5$ $0.15 = 10.5 = 10.5 - 0.5$ $0.15 = 10.5 = 10.5 - 0.5 = 10.5 - 0.5$... $0.15 = 10.5 = 10.5 - 0.5 = 10.5 - 0.5$... $0.15 = 10.5 = 10.5 - 0.5 = 10$

3. Solution A is 50% hydrochloric acid by volume, while solution B is 75% hydrochloric acid by volume. How many litres of each solution should be used to make 100 litres of a solution which is 60% hydrochloric acid by volume?

Solution (of Pro		100 litres altogether 100-0 litres of solution B		
Solution	% of acid	Volume of the Solution (L)	Volume of Acid in the Solution (L)	
Solution A	50% = 0.5	а	0.5a	
Solution B	75% = 0.75	100-0	0.75(100-a)	
Mixture	60% = 0.6	100	0.6(100) = 60	

HCl = Hydrochloric Acid

Volume of HCI in Solution A + $\begin{pmatrix} Volume & of \\ HCI & in \\ Solution & B \end{pmatrix}$ = $\begin{pmatrix} Total & Volume \\ of & HCI \\ in & the & mixture \end{pmatrix}$ 0.5a + 0.75(100-a) = 60
∴ 0.3a + 75 -0.75a = 60 ∴ -0.25g +75 -75 = 60 -75
$\frac{-0.25a}{-0.25} = \frac{-15}{-0.25}$
a = 60
100 - a = 100 - 60 = 40

The mixture should contain 60L of solution A and 40L of solution B.