
REVIEW: EQUATIONS OF LINEAR RELATIONS

- 1. A line has a slope of $-\frac{1}{3}$ and a y-intercept of -2.
 - (a) Sketch a graph of the line.

(b) Write the equation of the line in slope-y-intercept form.

-: the slope-y-intercept : $3y = \frac{3}{4}(-\frac{1}{3}x) - 3(2)$ equation of the line is $y = -\frac{1}{3}x - 2$ 3y + x + 6 = -x - 6 + x + 6 x + 3y + 6 = 0form

(c) Now write the equation in standard form.

$$i.3y = -x - 6$$

2. Given the following equations of linear relations, state the slope and y-intercept.

(a)
$$y = x - 6$$

(b)
$$y = -x + 10$$
 (c) $x = -7$

(c)
$$x = -7$$

(d)
$$y = -7$$

(e)
$$5x-2y-10=0$$

$$m = 1$$

$$m = -1$$

$$m = underine$$

$$m = 0$$

$$m = 1$$

$$b = -6$$

$$m = 10$$

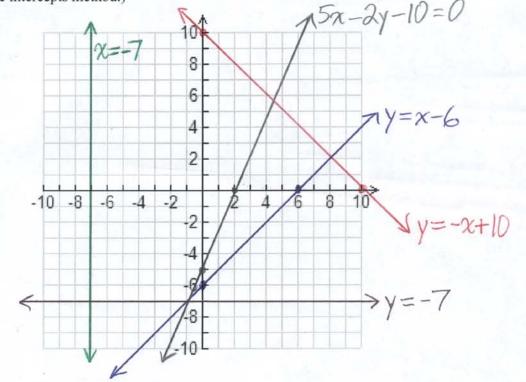
$$m = undefined$$

$$m = 0$$

$$b = -7$$

$$m = \frac{5}{2}$$

$$dd 2y = 0$$


$$b = 5$$

$$5x - 10 = 2y$$

$$\frac{5x}{2} - \frac{10}{2} = 2y$$

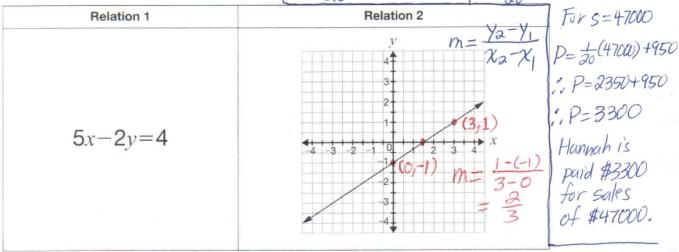
$$\frac{5x}{2} - \frac{10}{2} = \frac{2y}{2}$$

3. Using the grid provided below, graph each of the relations in question 2. (Graph 2(e) using the intercepts method.)

4. Hannah's total pay includes a base salary and a percent of her sales.

> This means that the relation must be linear l

The following table shows her total pay for three different sales levels.


Sales (\$) S	Total pay (\$)	
15 000	1700	
17 500	1825	
28 000	2350	

The relation is linear because the base Salary is the initial or fixed value and a percentage of hersales has a constant rate of change Therefore, the equation must take the form

o o $m = \frac{y_2 - y_1}{x_2 - x_1}$ | must take the point $P = \pm 0.5 + b$

Determine Hannah's total pay when her sales are \$47,000 | $1700 = \frac{1}{20}(15000) + b$ Show your work.

20 : P= \$05+950	1	21	0-	70
20	20	0	0-	1-5+950
	XU	E 0:		20

Determine the slope of the line representing each relation.

Show your work.

Relation 1

$$5x-2y=4$$

 $5x-2y-5x=4-5x$
 $-2y=-5x+4$
 $-2y=\frac{-5x}{-2}+\frac{(4-2)}{-2}$

The slope of relation 2 is
$$\frac{2}{3}$$
.

 $m = \frac{1 - (-1)}{3 - 0}$ (see graph)

Relation 2

", y = \(\frac{5}{2}\times - 2\)
", the slope of relation 1 is \(\frac{5}{2}\)