UNIT 0 - MEASUREMENT AND GEOMETRY - CONCEPTS AND RELATIONSHIPS

UNIT 0 - MEASUREMENT AND GEOMETRY – CONCEPTS AND RELATIONSHIPS	<u>1</u>
INTRODUCTION – MATH IS LIKE A DATING SERVICE	3
A FRAMEWORK FOR UNDERSTANDING MATHEMATICS	3
THE PYTHAGOREAN THEOREM – PROBABLY THE MOST FAMOUS MATHEMATICAL RELATIONSHIP	<u>4</u>
	<u>4</u>
UNDERSTANDING THE CONCEPTS OF PERIMETER, AREA AND VOLUME	<u>5</u>
Perimeter	5
Area	5
VOLUME	5
QUESTIONS	<u>5</u>
MEASUREMENT RELATIONSHIPS	6
Perimeter and Area Equations	6
Pythagorean Theorem	6
THE MEANING OF π	6
VOLUME AND SURFACE AREA EQUATIONS	7
VOLUMES OF SOLIDS WITH A UNIFORM CROSS-SECTION	8
Problem	8
Solution	8
ANGLE RELATIONSHIPS IN POLYGONS	9
Concepts	9
Classify Polygons	<u>9</u>
Interior and Exterior Angles	<u>9</u>
Polygon Definition	<u>9</u>
Regular Polygon Definition	<u>9</u>
Irregular Polygon Definition	<u>9</u>
Convex Polygon Definition	<u>10</u>
Concave Polygon Definition	<u>10</u>
RELATIONSHIPS	<u>10</u>
Angle Properties – Intersecting Lines, Transversal Passing through a Pair of Parallel Lines, Triangles	<u>10</u>
Angles in Isosceles and Equilateral Triangles	<u>11</u>
Exterior Angles of a Triangle	<u>11</u>
Sum of Interior and Exterior Angles of Polygons	11

2012 1 Londay, May 28d ImL= Icm2 Mr.NolEi 200000L -- NO. Hello : " short shorts SWAGG Anhunar Me too 's — Ghastly Ghost (Impersonating g PEI Potato) 7 (201 81 00 arshanie Budhwa Zor Tieu B Jenna Bys

INTRODUCTION – MATH IS LIKE A DATING SERVICE...

Love 4U Dating Service We Have the Equation for Finding your Perfect Match

A FRAMEWORK FOR UNDERSTANDING MATHEMATICS

As shown below, mathematics can be reduced to *three basic concepts*:

- 1. Mathematical Objects (e.g. *numbers* are mathematical objects)
- **2.** Mathematical Operations (e.g. +, -, \times , \div , $\sqrt{}$, etc)
- **3.** Mathematical Relationships (e.g. $c^2 = a^2 + b^2$)

The Pythagorean Theorem – Probably the Most Famous Mathematical Relationship

Exercise

Identify the mathematical objects, operations and relationships for the surface area of a cylinder. **Hint:** $A = 2\pi r^2 + 2\pi rh$

UNDERSTANDING THE CONCEPTS OF PERIMETER, AREA AND VOLUME

Perimeter

- The *distance* around a two-dimensional shape.
- **Example:** the perimeter of this rectangle is 3+7+3+7 = 20
- The perimeter of a circle is called the *circumference*.
- Perimeter is measured in *linear units* such as mm, cm, m, km.

Area

- The "size" or "amount of space" inside the boundary of a two-dimensional surface, including curved surfaces.
- In the case of the surface of a three-dimensional object, the area is usually called *surface area*.
- **Example:** If each small square at the right has an area of 1 cm^2 , the larger shapes all have an area of 9 cm^2 .
- Area is measured in *square units* such as mm^2 , cm^2 , m^2 , km^2 .

Volume

- The "amount of space" contained within the interior of a three-dimensional object. (The *capacity* of a three-dimensional object.)
- **Example:** The volume of the "box" at the right is $4 \times 5 \times 10 = 200 \text{ m}^3$. This means, for instance, that 200 m³ of water could be poured into the box.
- Volume is measured in *cubic units* such as mm³, cm³, m³, km³, mL, L.
 Note: 1 mL = 1 cm³

Questions

1. You have been hired to renovate an old house. For each of the following jobs, state whether you would measure perimeter, area or volume and explain why.

Job	Perimeter, Area or Volume?	Why?
Replace the baseboards in a room.		
Paint the walls.		
Pour a concrete foundation.		

2. Convert 200 m³ to litres. (Hint: Draw a picture of 1 m³.)

MEASUREMENT RELATIONSHIPS

Perimeter and Area Equations		Pythagorean Theorem	
Geometric Figure	Perimeter $P = l + l + w + w$ or $P = 2(l + w)$	Area A = lw	a b The hypotenuse is the longest side of a right triangle. It is always found opposite the
Parallelogram	P = b + b + c + c or P = 2(b + c)	A = bh	right angle. In <i>any</i> right triangle, the square of the hypotenuse is equal to the sum
Triangle	P = a + b + c	$A = \frac{bh}{2}$ or $A = \frac{1}{2}bh$	of the squares of the other two sides. That is, $c^2 = a^2 + b^2$
Trapezoid c h d b	P = a + b + c + d	$A = \frac{(a+b)h}{2}$ or $A = \frac{1}{2} (a+b)h$	By using your knowledge of rearranging equations, you can rewrite this equation as follows:
Circle	$C = \pi d$ or $C = 2\pi r$	$A = \pi r^2$	$b^2 = c^2 - a^2$ and $a^2 = c^2 - b^2$

The Meaning of π

In *any* circle, the *ratio* of the *circumference* to the *diameter* is equal to a *constant* value that we call π . That is, $C: d = \pi$. Alternatively, this may be written as $\frac{C}{d} = \pi$ or, by multiplying both sides by *d*, in the more familiar form $C = \pi d$. If we recall that d = 2r, then we finally arrive at the most common form of this *relationship*: $C = 2\pi r$. Snip the circle and stretch it out into a straight line. As you can see, the length of the circumference is slightly more than three diameters. The exact length of *C*, of course, is π diameters or πd .

Volume and Surface Area Equations

If you need additional help, Google "area volume solids."

Geometric Figure	Surface Area	Volume
Cylinder • r h	$egin{aligned} A_{ ext{base}} &= \pi r^2 \ A_{ ext{lateral surface}} &= 2\pi rh \ A_{ ext{total}} &= 2A_{ ext{base}} + A_{ ext{lateral surface}} \ &= 2\pi r^2 + 2\pi rh \end{aligned}$	$V = (A_{\text{base}})(\text{height})$ $V = \pi r^2 h$ This is true for all prisms and cylinders.
Sphere	$A = 4\pi r^2$	$V = \frac{4}{3} \pi r^{3} \text{or} V = \frac{4\pi r^{3}}{3}$ This is true for all <i>pyramids</i> and <i>cones</i> .
Cone h r	$A_{\text{lateral surface}} = \pi rs$ $A_{\text{base}} = \pi r^{2}$ $A_{\text{total}} = A_{\text{lateral surface}} + A_{\text{base}}$ $= \pi rs + \pi r^{2}$	$V = \frac{(A_{\text{base}})(\text{height})}{3}$ $V = \frac{1}{3}\pi r^2 h \text{or} V = \frac{\pi r^2 h}{3}$
Square- based pyramid h b	$A_{\text{triangle}} = \frac{1}{2}bs$ $A_{\text{base}} = b^2$ $A_{\text{total}} = 4A_{\text{triangle}} + A_{\text{base}}$ $= 2bs + b^2$	$V = \frac{(A_{\text{base}})(\text{height})}{3}$ $V = \frac{1}{3}b^2h \text{or} V = \frac{b^2h}{3}$
Rectangular prism	A = 2(wh + lw + lh)	V = (area of base)(height) This is true for all <i>prisms</i> and <i>cylinders</i> .
Triangular prism $a \int c h$ h	$A_{\text{base}} = \frac{1}{2} bl$ $A_{\text{rectangles}} = ah + bh + ch$ $A_{\text{total}} = A_{\text{rectangles}} + 2A_{\text{base}}$ $= ah + bh + ch + bl$	$V = (A_{\text{base}})(\text{height})$ $V = \frac{1}{2}blh$ or $V = \frac{blh}{2}$

Volumes of Solids with a Uniform Cross-Section

A solid has a *uniform cross-section* if any cross-section *parallel to the base* is *congruent* to the base (i.e. has exactly the same shape and size as the base). Prisms and cylinders have a uniform cross-section. Pyramids and cones do not.

For all solids with a uniform cross-section, $V = (A_{\text{base}})(\text{height})$

ANGLE RELATIONSHIPS IN POLYGONS

Concepts Classify Polygons

Interior and Exterior Angles

Polygon Definition

A *polygon* is a closed plane figure bounded by *three or more* line segments.

Regular Polygon Definition

A *regular polygon* is a polygon in which all sides have the same length (*equilateral*) and all angles have the same measure (*equiangular*).

Irregular Polygon Definition

An *irregular polygon* is a polygon in which *not* all sides have the same length and *not* all angles have the same measure.

Convex Polygon Definition

A *convex polygon* is a polygon that contains all line segments connecting any two of its vertices. In a convex polygon, the measure of *each interior angle* must be less than 180°.

Concave Polygon Definition

A *concave polygon* is a polygon that *does not* contain all line segments connecting any two of its vertices. In a concave polygon, the measure of *at least one interior angle* is more than 180°. That is, a concave polygon must contain at least one *reflex angle*.

Relationships

Angle Properties – Intersecting Lines, Transversal Passing through a Pair of Parallel Lines, Triangles

Angles in Isosceles and Equilateral Triangles

The *Isosceles* Using ITT, it can be • **Triangle Theorem** VERTEX ANGLE shown that an *equilateral* (ITT) asserts that a *triangle* is also (LEGS triangle is isosceles equiangular (all three if and only if its *base* angles have the same 60° angles are equal. measure). aIf *x* represents the This can be proved measure of each angle, using *triangle* 60° then 60° congruence BASE $x + x + x = 180^{\circ}$ (ASTT) theorems (not $\therefore 3x = 180^{\circ}$ BASE ANGLES covered in this a $\therefore x = 60^{\circ}$ course).

Exterior Angles of a Triangle

The exterior angle at each vertex of a triangle is equal to the sum of the interior angles at the other two vertices.

Using the diagram at the right, we can rewrite the above statement as follows:

a = y + zb = x + zc = x + y

