Understanding Mathematics

Focus on *MEANING* instead of appearance.

e.g. 3+x and 3(+x) look a lot alike but have very different meanings.

Summary of Units 0 to 3

Unit Number and Name	Main Ideas/Principles	
Unit 0- Introduction to Mathematical Thinking	• True mathematical thinkers seek to <i>discover</i> and <i>understand</i> how quantities are <i>related</i> to	
Unit 1- Number Sense and Algebra	 Algebra is nothing more than arithmetic with unknowns. As such, algebra can be <i>understood</i> quite easily if one has a thorough grasp of basic mathematical operations (+, -, ×, ÷, powers, etc.) and the order in which they should be applied ("BEDMAS"). +/- → "gain" / "loss", like terms ("2 apples + 5 apples = 7 apples") ×/÷ → "groups of" / "how many groups of", expanded form, exponent laws +/× → commutative and associative (order doesn't matter, nor do brackets) -/÷ → <i>not</i> commutative or associative (order and brackets <i>do</i> matter) The distributive property 	
Unit 2- Solving Equations	 To maintain equality, whatever operation is performed to one side of an equation <i>must</i> also be performed to the other side. By choosing an appropriate set of operations that is applied to both sides, all linear equations can be reduced to the form <i>ax</i>+<i>b</i> = <i>c</i>, where <i>x</i> is the unknown and <i>a</i>, <i>b</i> and <i>c</i> are constants. Once a linear equation is reduced to the form <i>ax</i>+<i>b</i> = <i>c</i>, the solution can be found by <i>undoing</i> the operations in the order <i>opposite</i> of BEDMAS. 	

Unit Number and Name	Main Ideas/Principles	
Unit 3- Analytic Geometry	 Analytic Geometry bridges the gap between algebra and geometry. Relations can be described using <u>words</u>, <u>tables</u>, <u>equations</u> and <u>graphs</u>. 	
	 Unit 3 focuses on <i>linear relations</i>, the simplest of all mathematical relationships. Linear relations are divided into two classes: 	
	• <i>Direct Variation</i> e.g. Sakshi earns \$15 per hour	
	• <i>Partial Variation</i> e.g. Michelle earns a base salary of \$25000 plus 5% of sales.	
	• Linear relations are completely characterized by the equation $y = mx + b$, where x is the independent variable, y is the dependent variable, m is the slope and b is the y-intercept.	
	• Linear relations have a constant rate of change. That is, the dependent variable changes at a rate that is constant with respect to the independent variable. Another way of putting this is as follows: if Δx is constant, then Δy is also constant (i.e. the <i>first differences</i> are constant).	
	• Relations that are not linear are called <i>nonlinear</i> . Nonlinear relations have a variable slope (rate of change). If the equation of a nonlinear relation is known, then calculus can be used to determine the slope (rate of change) at any point.	
	• $m =$ slope = constant of variation = rate of change of y with respect to x	
	• <i>b</i> = <i>y</i> -intercept = vertical intercept = initial value	

The Rest of the Course

Unit	Important Points	Completion Date
Unit 3- Analytic Geometry	 Most of this unit has already been completed. Pages 26-28 are optional BUT it is a good review of measurement relationships as seen from the point of view of analytic geometry. Do review problems: pp. 29-34 Extra Review: Unit 3 menu on www.misternolfi.com Unit 3 practice test on www.misternolfi.com 	Thursday, May 7, 2015
Unit 4-Linear Relations	 This unit builds upon unit 3 but the focus changes to an indepth study of the properties of linear relations. Carefully study the explanations and examples given in unit 4. Complete all activities and homework Also complete the following found in the unit 4 menu: Interpreting Graphical Information Parallel/Perpendicular Problems Extra Review Practice Test 	Wednesday, May 19, 2015

Check back in a few days for updates.