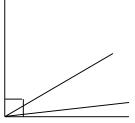
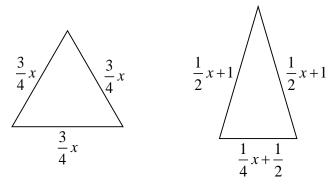
MPM1D9 Unit 2: Review Quiz

Victim:_____

1. Give <i>one example</i> of each of the following: (/5)		
(a) Expression	41	Ĺ
(b) Equation that is Solved for the Unknown		
(c) Equation that Expresses a Mathematical Relationship		
(d) Identity		


- (e) A Value that Satisfies the Equation $x^2 = 64$
- 2. For the given equation, complete the flowchart, solve the equation by performing operations to *both sides* and check your solution. (/10)

Equation	Flowchart	Solve the Equation by Performing Operations to B.S.	Check your Solution	
(a) $\frac{3}{2}x + \frac{1}{2} = \frac{3}{4}$			L.H.S.	R.H.S.


3. Solve the given equation by performing operations to both sides. (/9)

$$\frac{1}{4}(2y-7) + \frac{y-5}{6} = -3 - (5y-8)$$

4. Two or more angles are complementary if their sum is 90°. In the diagram at the right, three angles are complementary. One angle is *one-half* of the largest angle. The smallest angle is *one-sixth* of the largest angle. <u>Use an equation</u> to find the measure of each angle. (/7)

5. The triangles shown below have the *same perimeter*. <u>Use an equation</u> to find the side lengths of each triangle. (/10)

