UNDERSTANDING THE CONCEPTS OF PERIMETER, AREA AND VOLUME

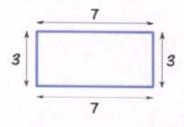
Perimeter

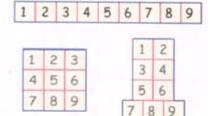
- The distance around a two-dimensional shape.
- Example: the perimeter of this rectangle is 3+7+3+7 = 20
- The perimeter of a circle is called the circumference.
- · Perimeter is measured in linear units such as mm, cm, m, km.

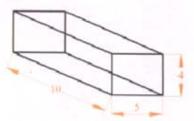
Area

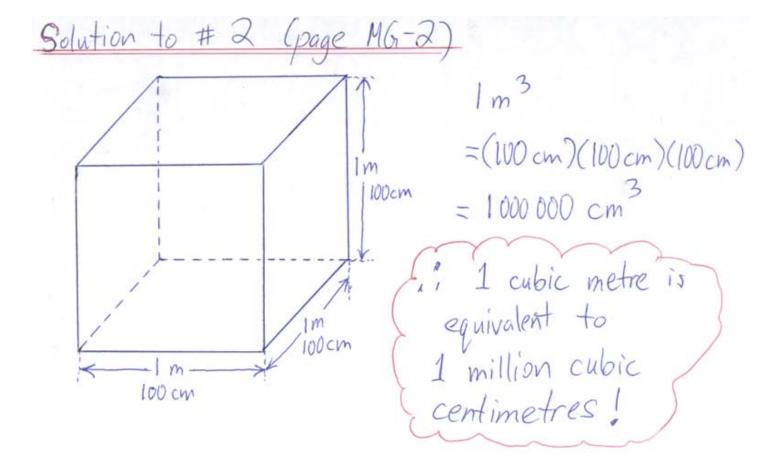
- The "size" or "amount of space" inside the boundary of a two-dimensional surface, including curved surfaces. In the case of a curved surface, the area is usually called *surface area*.
- Example: If each small square at the left has an area of 1 cm², the larger shapes all have an area of 9 cm².
- Area is measured in square units such as mm², cm², m², km².

Volume

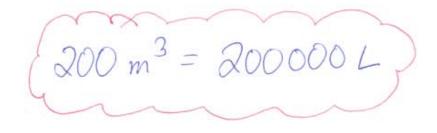

- The "amount of space" contained within the interior of a three-dimensional object. (The *capacity* of a three-dimensional object.)
- Example: The volume of the "box" at the right is $4 \times 5 \times 10 = 200 \text{ m}^3$. This means, for instance, that 200 m³ of water could be poured into the box.
- Volume is measured in *cubic units* such as mm³, cm³, m³, km³, mL, L.
 Note: 1 mL = 1 cm³

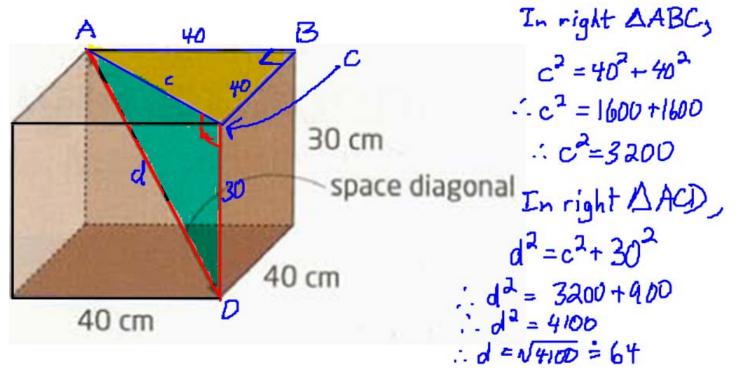

Questions


1. You have been hired to renovate an old house. For each of the following jobs, state whether you would measure perimeter, area or volume and explain why.

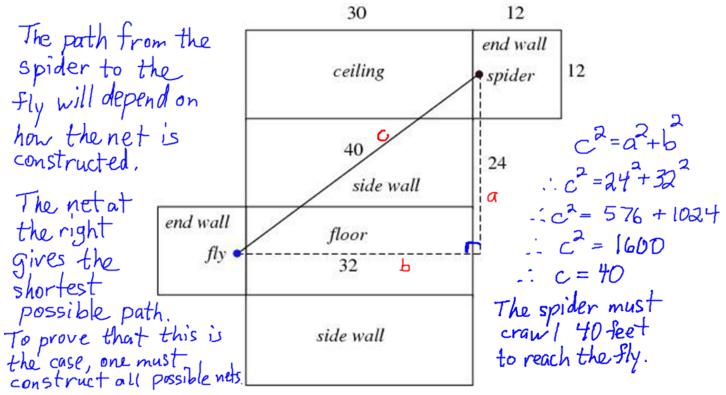

Job	Perimeter, Area or Volume?	Why?		
Replace the baseboards in a room.	Perimeter	A length needs to be measured. An appropriate unit is metres (m).		
Paint the walls.	Area	A wall is a two-dimensional surface. An appropriate unit is square metves (m ²).		
Pour a concrete foundation.	Volume	A foundation is a three- dimensional space. An appropriate unit is cubic metres (m ³),		

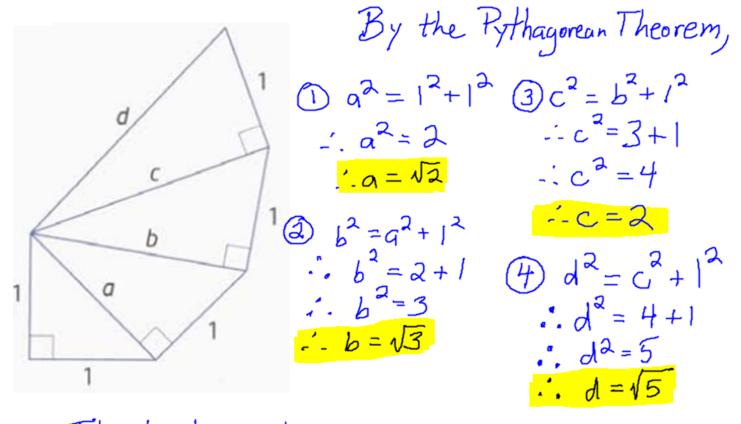
2. Convert 200 m³ to litres. (Hint: Draw a picture of 1 m³.)




Now, $1L = 1000 \, \text{mL} = 1000 \, \text{cm}^3 \, (1 \, \text{mL} = 1 \, \text{cm}^3)$

 $\begin{array}{l} \therefore 200 \text{ m}^{3} = (200 \text{ m}^{3})(1000000 \text{ cm}^{3}/\text{m}^{3}) \\ = 200000000 \text{ cm}^{3} \\ = \frac{20000000 \text{ cm}^{3}}{1000 \text{ cm}^{3}/\text{L}} \end{array}$


= 200000 L


Cardboard Box Space Diagonal Solution

Spider and the Fly Solution

Spiral Solution

(a) The hypotenuse lengths are in the ratio V2: V3: V4: N5 (or V2: V3: 4: V5)
(b) area = 112 + 11V2 + 1(√2) + 1(√4) = 11×12 + 11×12 + 11×12 = 11×12 + 11×12 + 11×12 = 11×12 + 11×12 = 11×12 + 11×12 + 11×12 = 11×12 + 11×12 = 11×12 + 11×12 = 11×12 + 11×12 = 11×12 + 11×12 = 11×12 + 11×12 = 11×12 + 11×12 = 11×12 + 11×12 = 11×12

13. Math Contest

(C

- a) The set of whole numbers (5, 12, 13) is called a *Pythagorean triple*. Explain why this name is appropriate.
- **b)** The smallest Pythagorean triple is (3, 4, 5). Investigate whether multiples of a Pythagorean triple make Pythagorean triples.
- c) Substitute values for m and n to investigate whether triples of the form $(m^2 n^2, 2mn, m^2 + n^2)$ are Pythagorean triples.
- d) What are the restrictions on the values of *m* and *n* in part c)?

(a)
$$(5,12,13)$$
 is an ordered triple
(i.e. an ordered set consisting of 3 numbers)
The values 5, 12 and 13 satisfy the
Rythagorean theorem ;
 $5^2+12^2 = 25 \pm 144 \pm 169 = 13^2$
(b) Any multiple of $(34,5)$ is also a Rythagoran triple
Prof: Let n represent any positive integer.
Then $(3n, 4n, 5n)$ represents any multiple
of $(3, 4, 5)$
Now, $(3n)^2 \pm (4n)^2$ and $(5n)^2$
 $= 3n^2 \pm 4n^2$
 $= 25n^2$
 $\therefore (3n, 4n, 5n)$ is a Rythagorean Triple
) The ordered triple. $(m^2 - n^2) 2mn, m^2 \pm n^2)$
is AZWAYS a PYTHAGDREAN TRIPLE.
Prof: Requires algebra taught in grade 10 math:
 $(m^2 - n^2)^2 \pm (2mn)^2$
 $= (m^2)^2 dm^2 \pm (m^2)^2$
 $= m^4 = 2mn^2 \pm n^4 \pm 16m^2$
 $= m^4 = 2mn^2 \pm n^4 \pm 16m^2$

 $(m^{2}+n^{2})^{2} = (m^{2})^{2} + 2mn^{2} + (n^{2})^{2}$ $= m^{4} + 2mn^{4} + n^{4}$ $(m^{2}-n^{2})^{2}+(2m^{2}n^{2})^{2}=(m^{2}+n^{2})^{2}$. (m²-n², 2mn, m²+n²) is a Rythagorean tripe. As shown below, a spreadsheet can be used to generate Rythagorean triples.

	А	В	С	D	E	F	G	Н
1								
2								
3			а	b	с			
4	т	n	m ^2-n ^2	2mn	m ^2+n ^2		a ^2+b ^2	c^2
5	2	1	3	4	5		25	25
6	3	1	8	6	10		100	100
7	4	1	15	8	17		289	289
8	5	1	24	10	26		676	676
9	3	2	5	12	13		169	169
10	4	2	12	16	20		400	400
11	5	2	21	20	29		841	841
12	4	3	7	24	25		625	625
13	5	3	16	30	34		1156	1156
14	6	3	27	36	45		2025	2025
15	7	3	40	42	58		3364	3364
16								

(d) <u>Restrictions on mand n</u> a, b, and c, must all be positive > will be negative or 0 if m < n m > n (m must be greater than n)