DIRECT VARIATION, PARTIAL VARIATION OR NEITHER?

Complete the following table.

Situation	Type of Variation (Circle One)	Table of Values	Initial Value (b) and Constant of Variation (m)	Graph and Equation
Gasoline at GasAttack costs \$1.20/L. How does the <i>cost</i> of gasoline vary with the <i>volume</i> of gasoline purchased?	Graph passes through Origin Partial Direct Neither Starting Value of C 15 0.	V(L) C(\$) O O ID I 2 24 50 60 JUO I 20	$b = \underbrace{\bigcirc}_{m = 1.2}$	C Cost of Gasoline at GasAttack
Sam the electrician charges a base fee of \$30 plus \$50/h. How does Sam's <i>pay</i> vary with the <i>time</i> worked?	Graph doesn't Pass through the origin Partial Direct/ Neither Starting Value of P is 30	t (h) P (\$) 0 30 1 30 2 130 3 180 4 830 5 80 10 530	b = <u>30</u> m = <u>50</u>	Sam the Electrician's Pay 600 550 450 450 400 350 300 250 200 $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 4 \ 5 \ 7 \ 10 \ 11 \ 12 \ 4 \ 5 \ 10 \ 11 \ 12 \ 4 \ 10 \ 11 \ 12 \ 4 \ 10 \ 11 \ 12 \ 4 \ 10 \ 11 \ 12 \ 4 \ 10 \ 11 \ 12 \ 4 \ 10 \ 11 \ 12 \ 4 \ 10 \ 11 \ 12 \ 4 \ 10 \ 11 \ 12 \ 4 \ 10 \ 11 \ 12 \ 4 \ 10 \ 10 \ 11 \ 12 \ 4 \ 10 \ 10 \ 11 \ 12 \ 4 \ 10 \ 10 \ 11 \ 12 \ 4 \ 10 \ 10 \ 10 \ 11 \ 12 \ 4 \ 10 \ 10 \ 11 \ 12 \ 4 \ 10 \ 10 \ 11 \ 12 \ 4 \ 10 \ 10 \ 11 \ 12 \ 4 \ 10 \ 10 \ 11 \ 12 \ 4 \ 10 \ 10 \ 11 \ 12 \ 4 \ 10 \ 10 \ 10 \ 11 \ 12 \ 4 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 $
Abdul the salesperson is paid a base salary of \$30,000 plus 5% of sales. How does Abdul's <i>pay</i> vary with the amount of <i>sales</i> ?	5% = 0.05 Partia / Direct / Neither $e.g. \leq = 50000$ P = 0.05(5000) + 30000 = 38500	s (\$) P (\$) O 30000 10000 30500 20000 31000 50000 52500 100000 55000 100000 55000 100000 20000	b = <u>30000</u> m =0.05	Salesperson's Salary 100000 90000 80000 70000 60000 10000 10000 10000 200000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 100000 100000 10000 10000 10000
Simran likes bungee jumping. Whenever she jumps, her speed increases at a rate of 10 m/s. How does the <i>distance</i> fallen vary with <i>time</i> ?	See next page for explanation Partial/Direct/ Neither Simran must be attached to a very long BUNGEE cord!	$\begin{array}{c ccc} t (s) & d (m) \\ \hline 0 & 0 \\ I & 5 \\ 2 & 20 \\ 3 & 45 \\ 4 & 80 \\ 5 & 125 \\ \hline 1 & 125 \\ \end{array}$	b = 0 $m = \frac{N/A}{because the relation is not linear}$	Distance Fallen by Simran 120 110 100 90 10 2^{2} 7 10 10 2^{2} 7 10

Explanation of Simran's Bungee Jumping Adventure

Simran's speed increases at a constant rate of 10 m/s. This means that at any given time, her speed is 10 m/s faster than it was exactly one second earlier. This is shown in the following table for the first nine seconds.

Time (s)	0	1	2	3	4	5	6	7	8	9
Speed (m/s) at the Given Time	0	10	20	30	40	50	60	70	80	90

The next table shows Simran's average speed in each of the first nine one-second time intervals. Since Simran's speed increases at a constant rate, the average speed during any time interval is simply the average of the initial and final speeds. For example, the average speed in the first second (0 s to 1 s) is calculated as follows:

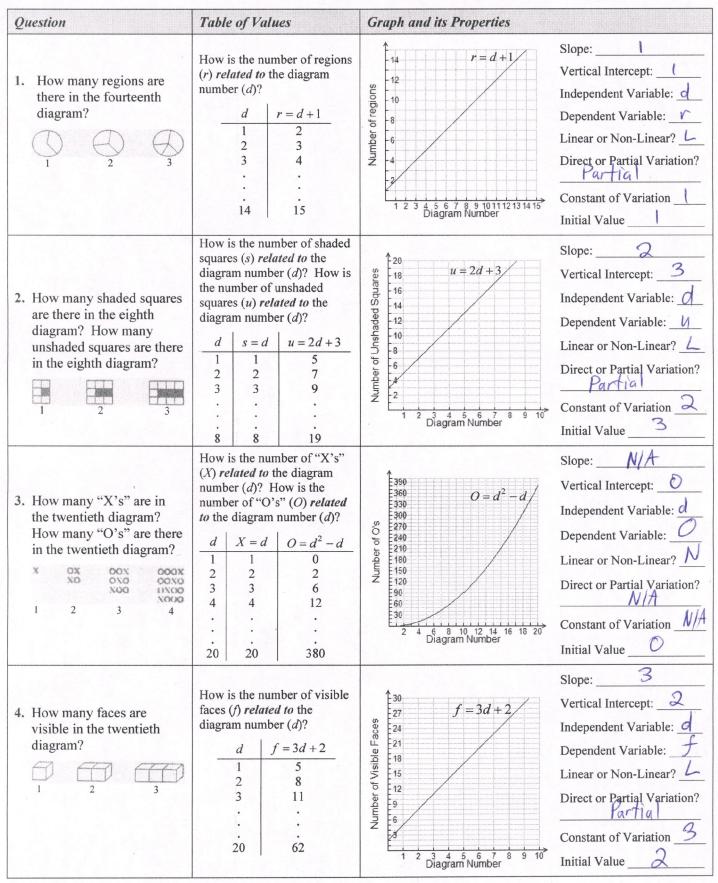
Average speed in the first second =
$$\frac{\text{speed at } 0 \text{ s} + \text{speed at } 1 \text{ s}}{2} = \frac{0+10}{2} = 5$$

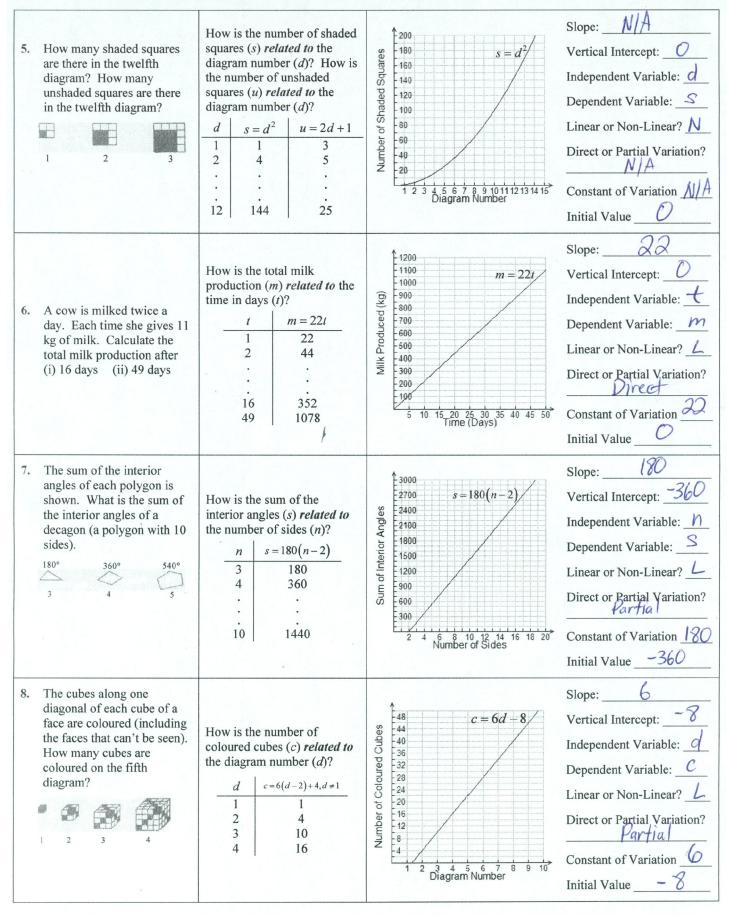
Then the distance fallen during the given time interval is simply the average speed multiplied by the elapsed time. For example, the distance fallen in the first second is calculated as follows:

Time Interval	0 s to 1 s	1 s to 2 s	2 s to 3 s	3 s to 4 s	4 s to 5 s	5 s to 6 s	6 s to 7 s	7 s to 8 s	8 s to 9 s
Average Speed (m/s) during Time Interval	5	15	25	35	45	55	65	75	85
Distance Fallen during Time Interval	5	15	25	35	45	55	65	75	

Finally, the distance fallen after a given amount of time has elapsed is calculated by adding the distance fallen up to exactly one second earlier to the distance fallen in the last second. For example, the distance fallen after 5 s is calculated as follows:

Distance fallen after 5 s have elapsed = (Distance fallen after 4 s) + (Distance fallen from 4 s to 5 s) = 80 m+45 m=125 m


Time (s)	0	1	2	3	4	5	6	7	8	9
Distance Fallen (m) by the Given Time	0	5	5+15 = 20	20+25 = 45	45 + 35 = 80	80 + 45 = 125	125 + 55 = 180	180 + 65 = 245	245 + 75 = 320	320+85 = 405


DEEPER ANALYSIS OF RELATIONS Victim: _______

Question	Solutions		Questions			
	How is the number	er of regions (r)	Equation of Relation	r	= d + 1	
1 11	related to the diag		Independent Variable		d	
1. How many regions are there in the fourteenth diagram?	d	r = d + 1	Dependent Variable		r	
MAA		23	Linear or Non-Linear?		linear	
$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array}$	• 3	4	If Linear, Partial or Direct Variation		Partial	
		•	If Linear, Constant of Variation		1	
	14	15	Initial Value		1	
	(s) <i>related to</i> the of How is the number	er of shaded squares diagram number (<i>d</i>)? er of unshaded squares	Equation of Relation Independent Variable	s = d	u=2d+3	
2. How many shaded squares are there in the eighth diagram? How many		diagram number (<i>d</i>)?	Dependent Variable	S	ů	
unshaded squares are there in the eighth diagram?	$\frac{d}{1} = \frac{s}{1}$	$\frac{d}{5} \qquad u = 2d + 3$	Linear or Non-Linear?	Linear	Linear	
	$\begin{array}{ c c c } 2 & 2 \\ 3 & 3 \end{array}$	7	If Linear, Partial or Direct Variation	Direct	Partial	
		•	If Linear, Constant of Variation	1	2	
			Initial Value	0	3	
 How many "X's" are in the twentieth diagram? How many "O's" are there in the twentieth diagram? X OX OOX OOX OOX OOX OOX OOX OOX OOX OO		d)?	Equation of Relation Independent Variable Dependent Variable Linear or Non-Linear? If Linear, Partial or Direct Variation If Linear, Constant of Variation Initial Value	X=d d X linear direct l 0	0=d ² -d d O non-linear N/A N/A O	
 4. How many faces are visible in the twentieth diagram? 1 2 3 	How is the number related to the diag	er of visible faces (f) gram number (d)? f = 3d + 2 5 8 11	Equation of Relation Independent Variable Dependent Variable Linear or Non-Linear? If Linear, Partial or Direct Variation If Linear, Constant of Variation Initial Value	Lin Pal	=3d+2 d near rtia 3 2	

			of shaded squares agram number (d)?	Equation of Relation	$s = d^2$	u = 2d + 1
5. How many shaded squares are there in	How is the	e number	of unshaded squares	Independent Variable	d	d
the twelfth diagram? How many unshaded squares are there in the	(u) related		agram number (d)?	Dependent Variable	S	и
twelfth diagram?	$\frac{d}{1}$	$\frac{s = d^2}{1}$	$\frac{u = 2d + 1}{3}$	Linear or Non-Linear?	non-linea	r linear
	23	4 9	5 7	If Linear, Partial or Direct Variation	NIA	Partia/
1 2 3		:	•	If Linear, Constant of Variation	NIA	2
	12	144	25	Initial Value	0	1
			k production (m)	Equation of Relation	1	m = 22t
	related to		n days (t) ?	Independent Variabl	e	t
6. A cow is milked twice a day. Each		$\frac{t}{1}$	m = 22t 22	Dependent Variable		m
time she gives 11 kg of milk. Calculate the total milk production		2 3	44 66	Linear or Non-Linear?		Linear
after (i) 16 days (ii) 49 days		•	٠	If Linear, Partial or Di Variation	rect	Direct
		•	352	If Linear, Constant of Variation		22
		16 49	1078	Initial Value		0
7. The sum of the interior angles of each			he interior angles	Equation of Relati	ion .	s=180(n-2)
polygon is shown. What is the sum of	f (s) related	d to the nu	mber of sides (n)?	Independent Variable		n
the interior angles of a decagon (a polygon with 10 sides).		n	s=180(n-2)	Dependent Varial	ole	5
180° 360° 540°		3	180 360	Linear or Non-Line	ear?	Linear
		5	540	If Linear, Partial or Direct Variation		Partial
3 4 5			•	If Linear, Constan Variation	t of	180
5		10	1440	Initial Value		-360
			of "X's" (X) am number (d)?	Equation of Relation	X = d + 1	$O = \frac{d(d+1)}{2}$
8. How many "X's" are in the tenth diagram? How many "O's" are there	How is th	e number	of "O's" (O) am number (d) ?	Independent Variable	d	d
in the tenth diagram?	d	X = d +	1(1,1)	Dependent Variable	X	0
0 00 00 0 00 00	1	2	1	Linear or Non-Linear?	Linear	Non-line
NX NXX XXX 1 2 3	23	3 4	3 6	If Linear, Partial or Direct Variation	Partial	NIA
		•		If Linear, Constant of Variation	1	NIA
	10	11	55	Initial Value	1	0
9. The cubes along one diagonal of each	ITerrited	0	of coloured out or	Equation of Relation	on c=	$6(d-2)+4, d\neq 1$
cube of a face are coloured (including	 Accordance and contract and contracts in the contract of the cont		of coloured cubes agram number (<i>d</i>)?	Independent Variab	le	d
the faces that can't be seen). How many cubes are coloured on the fifth	d	c =	$=6(d-2)+4, d \neq 1$	Dependent Variabl	e	C
diagram?	1		1	Linear or Non-Linea	ar?	Linear
	23		4 10	If Linear, Partial or Dir Variation		Partia)
	4 5		16 22	If Linear, Constant of Van	riation	6
1 2 3 4	5	L		Initial Value		-8

OPENING ACTIVITY REVISITED

> m=slope=2, b=vertical int.=3

Drawing Conclusions

Equation	Lineor or Nov-Linear	Slope (If Linear)	Vertical Intercept	Partial or Direct Variation (If Linear)	Constant of Variation (If Linear)	Initial Value		
1. $r = d + 1$	L	1	1	P	1	' 🐮		
2. $u = 2d + 3$	L	2	3	P	2	3		
$O = d^2 - d$	N	NA	0	NA	NA	N.		
4. $f = 3d + 2$	L	3	2	P	3	2		
5. $s = d^2$	N	NA	0	NA	NA	9		
5. $m = 22t$	L	22	6	D	22	G		
7. $s = 180n - 360$	L	180	-30	P	180	-360		
8. $c = 6d - 8$	L	6	-76	P	6	-8-		
$\int_{a}^{b} \frac{1}{2} \frac{1}{2} \frac{d(d+1)}{d^{2} + \frac{1}{2}d} = \frac{1}{2} \frac{d^{2} + \frac{1}{2}}{d^{2} + \frac{1}{2}d} = \frac{1}{2} \frac{1}{2} \frac{d(d+1)}{d^{2} + \frac{1}{2}} = \frac{1}{2} $								
The equation form y = n $x \rightarrow ind., y \rightarrow$ 2. Equations 7 an	is linear or non-linear or no	the second state $s = 1$	M = 5 L M = 5 L 80(n-2) and $0n-360$ and c	tion is linear (c) c = 6(d-2) + 4. Shi c = 6d - 8.	the vertical inter b = ver th inferc ow how each of t	cal ept		
 What is the con 	mection between $M = 5$	slope and the con Q2e = Cons		9227 862	/first sta	for		
 What is the con 	nnection between			and the second	= Initia	1 calue		
	b = Ver	ticalintera	$e \sigma T = v$	_intercept.	- Instal	Value		

Copyright ©, Nick E. Nolfi

MPM1D0 Unit 3 - Analytic Geometry

SLOPE AS A RATE OF CHANGE

Example – Milk Production

	1200	(50,1100)	t	m = 22t	Slope = Constant of Variation =22
	- 1100	$m=22t/^{\circ}$	0	0	Explain how you can determine this using
	1000		1	22	(a) the graph choose two points for which the exact co-ordinates are known
kg)	- 900		2	44	exact co-ordinates are known
Milk Produced (kg)	- 800 - 700		3	66	$i'_{s} slope = m = \frac{\Delta y}{\Delta x} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} = \frac{1100 - 0}{50} = \frac{1100}{50} = 22$
Ince	- 600		4	88	, i supe - m = kix x2 x1
roc	- 500		5	110	(b) the equation > slope (coefficient of variable)
쓰	-400		6	132	m=22t is in the form y=mx+b
ž	300		7	154	$m = \alpha \alpha (13 \text{ mm}) + \alpha \alpha \gamma \gamma$
	200		8	176	(c) the table
	100		9	198	Choose any two points (i.e. rows), then
(0,0	5 1	10 15 20 25 30 35 40 45 50 Time (Days)	10	220	(c) the table Choose any two points (i.e. rows), then calculate Δy e.g. (2,44), (10,220)
					and an and an and and and and and and an

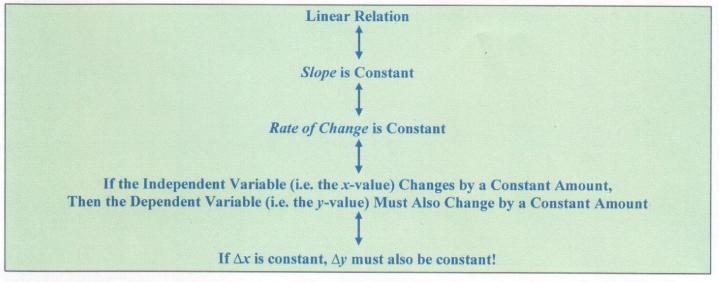
Observation

Every day, the cow produces 22 kg of milk. We can express this as a *rate*, that is, the cow produces 22 kg/day (i.e. 22 kg per day or 22 kg every day). This example suggests that *slope can also be interpreted as a rate of change*!

Rate of Change Definition

Let x represent an independent variable and y represent a variable whose value depends on x. By the *rate of change of y with respect to x* we mean *how fast y* changes as the value of x changes.

Examples of Rate of Change


Name	Independent Variable	Dependent Variable	Verbal Description	Example
Speed	Time (<i>t</i>)	Distance (d)	Speed is the rate of change of d with respect to t . That is, speed is a measure of how fast distance changes over time. (Units must be distance/time.)	A car travels at a speed of 120 km/h.
Hourly Wage	Time (<i>t</i>)	Money (M)	An <i>hourly wage</i> is the rate of change of <i>M</i> with respect to <i>t</i> . That is, hourly wage measures how fast money is earned over time. (Units must be money/time.)	Selene earns \$25/h.
Fuel Efficiency	Distance (d)	Fuel Used (f)	Fuel efficiency is the rate of change of f with respect to d. That is, fuel efficiency measures how fast fuel is used over distance travelled. (Units must be volume/distance.)	The Toyota Prius has a fuel efficiency of 4.3 L/100 km.

- alana -	rise	$= \frac{\text{change in independent variable}}{\text{change in dependent variable}} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$	
r = stope =	run	change in dependent variable $\Delta x = \frac{1}{\Delta x} - \frac{1}{x_2 - x_1}$	
= slope =	= const	ant of variation = $\begin{cases} y/x, \text{ direct variation} \\ (y-b)/x, \text{ partial variation} \end{cases}$	b = initial value = vertical intercept = y-intercept

IS THE RELATION LINEAR? ANALYTIC GEOMETRY ACTIVITY

Background

There is a very simple way to tell whether a relation is linear. The key to understanding this is to realize the following:

Example and Exercises

From the above, we can conclude that a relation is linear if Δy is constant whenever Δx is constant. The Δy values are called *first differences*. Therefore, a relation is linear if the first differences are constant whenever Δx is constant.

- From the table, we can see that $\Delta x = 1$ and $\Delta y = -2$.
- Since both Δx and Δy are constant, the relation must be linear.
- slope = $m = \frac{\Delta y}{\Delta x} = \frac{-2}{1} = -2$
- y-intercept = b = 4 because the point (0,4) belongs to the relation.
- The equation of the relation must be y = -2x + 4

x	y y	Δy
-3	10	-
-2	8	8 - 10 = -2
-1	6	6 - 8 = -2
0	4	4 - 6 = -2
1	2	2-4=-2
2	0	0 - 2 = -2
3	-2	-2 - 0 = -2

- From the table, we can see that $\Delta x = \frac{1}{2}$ and $\Delta y = \frac{1}{4}$.
- Since both Δx and Δy are <u>Constant</u>, the relation must be <u>linear</u>.
- must be <u>linear</u>. • slope = $m = \frac{\Delta y}{\Delta x} = \frac{4}{2} = 2$
- y-intercept = b = 3because the point (0,3) belongs to the relation.
- The equation of the relation must be y = 2x+3

V

3

7

11

15

19

23

27

x

0

2

4

6

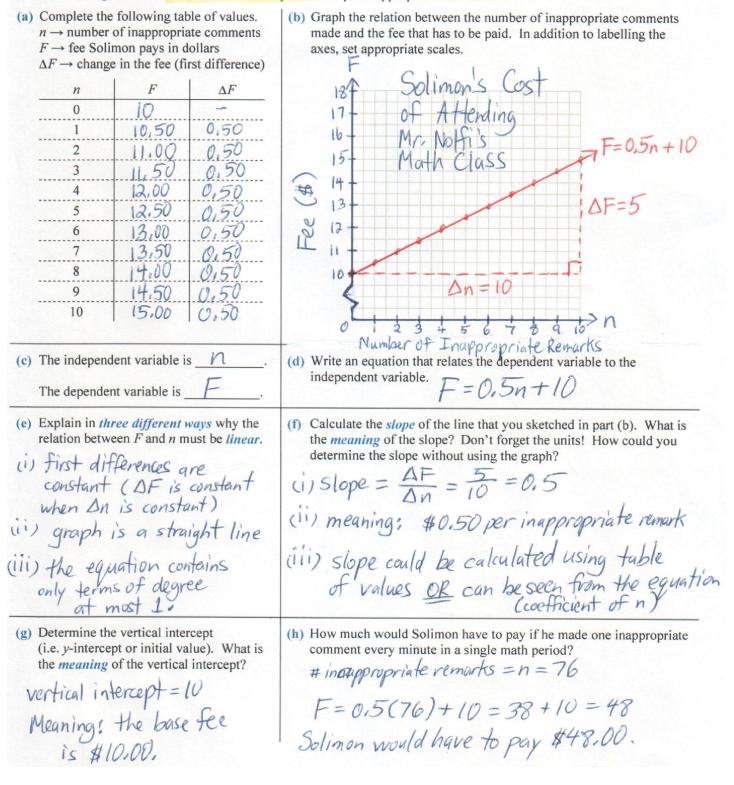
8

10

12

- From the table, we can see that $\Delta x = 1$ and $\Delta y = 1$.
- Since both Δx and Δy are <u>constant</u>, the relation must be <u>linear</u>.

slope =
$$m = \frac{\Delta y}{\Delta x} = \frac{1}{1} = \frac{1}{1}$$


- y-intercept = b = 3because the point (0,3) belongs to the relation.
- The equation of the relation must be $y = \chi + 3$

		1	
Δy	x	y	Δy
-	(-3	0	-
4	$\Delta x = 1 \sum_{n=2}^{\infty} -2$	1	1
4	7 -1	2	1
4	0	3	1
4	$\Lambda = 2^{2}$	5	2
4	11x-25 4	7	2
4	6	9	2
'		1	0

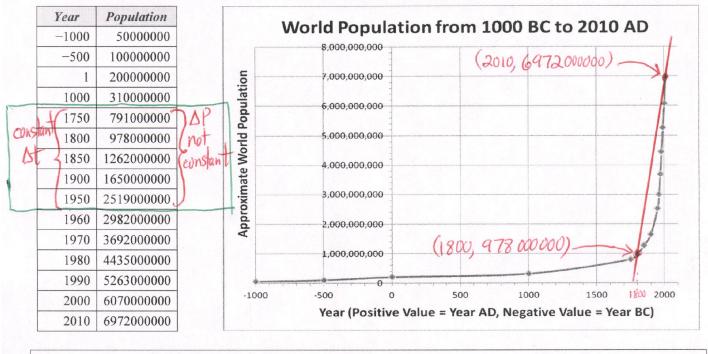
Problem 1 - Solimon's Dilemma - A Linear Relation

Mr. Nolfi believes very strongly in the importance of showing respect to others. Unfortunately, this view was not shared by one of his former students, the infamous Solimon. He often blurted out inappropriate remarks such as referring to his classmates as "retards" or "idiots."

After unsuccessfully having tried several strategies to teach Solimon the value of respect, Mr. Nolfi was forced to resort to a monetary tactic. He decided to charge Solimon a base fee of \$10.00 *plus* \$0.50 per inappropriate comment.

Mr. Nolfi's class is getting very expensive! Maybe I

should learn to be


respectful!

By the way, my rap name

is Mother Clucking SoulMan SO

Problem 2 - World Population - A Non-Linear Relation

The table and graph given below show how the world population has changed over the last 3 millennia (3000 years). From both the table and the graph, one can clearly see that the relation between global population and time is *non-linear*.

Note

- For graphing convenience, the dividing line between the BC and AD eras is shown as year 0. However, there was no "year 0"in reality. The BC era ended with year 1, which was immediately followed by year 1 in the AD era.
- Some authors refer to the BC ("before Christ") era as BCE ("before the current/common era") and to the AD (*anno domini* or "In the year of the Lord") era as CE ("current/common era").

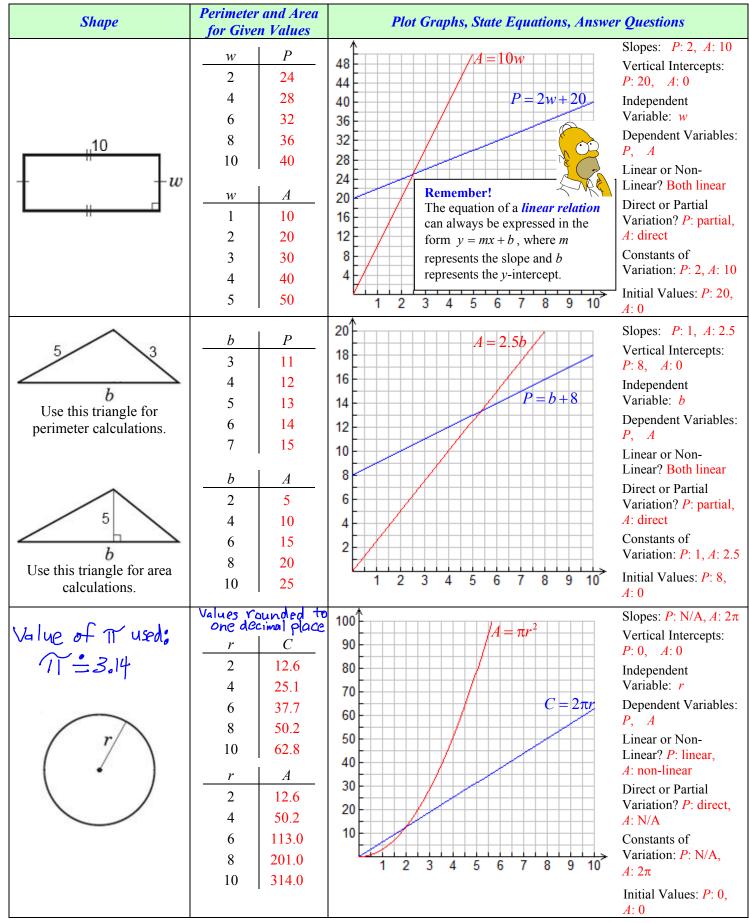
(a) Calculate $\frac{\Delta P}{\Delta t} = \frac{\text{change in population}}{\text{change in time}}$ from 1800 to 2010. $\Delta P = \frac{6972000000 - 973000000}{2010 - 1800}$ the change in population $= \frac{5994000000}{210} = 28500000$ $210 \to \text{the change in time}$

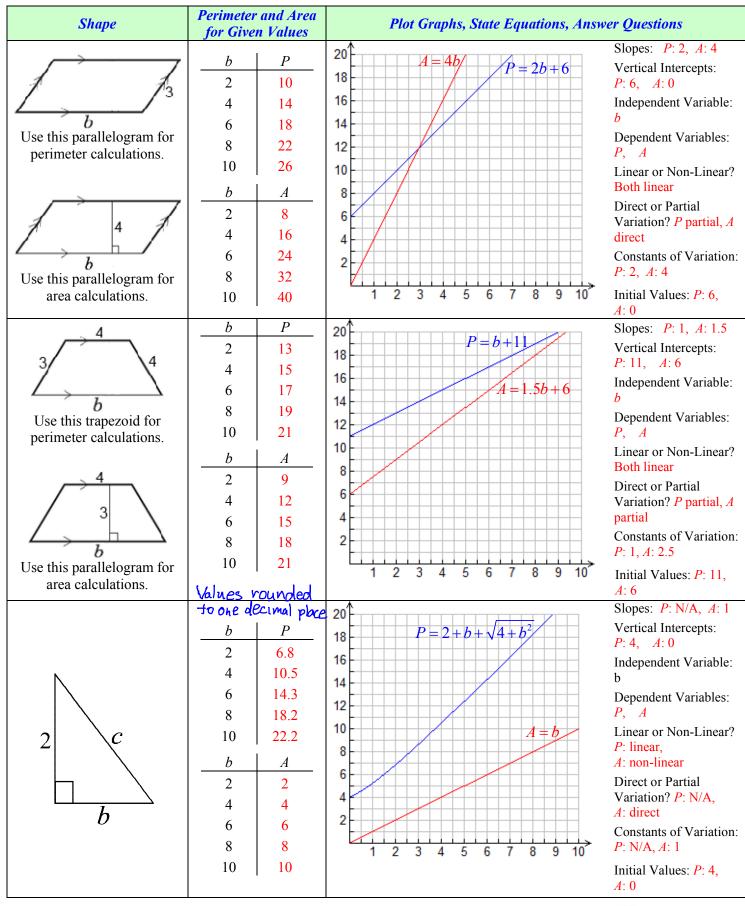
(c) On the grid given above, sketch a line whose slope equals the value you calculated in question (a). What conclusion(s) can you draw?

The average rate of change of population with respect to time from 1800-2010 is about 28500000 people/year. (See graph for the line) (b) Interpret your answer from question (a) as a rate of change.

From 1800 to 2010, the population increased at an average rate of about 28500000 people/year.

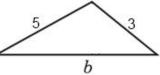
(d) Use the values given in the table to explain why the relation between world population and time must be non-linear. (Be careful! Remember that both Δx and Δy must be constant for a relation to be linear. To show that a relation is non-linear, you must show that for some part of the relation, Δy is *not constant* when Δx *is* constant.)

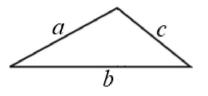

From 1750 to 1950, At is constant between consecutive t-values, However, the first differences, AP, are not constant.


Copyright ©, Nick E. Nolfi

MPM1D0 Unit 3 - Analytic Geometry

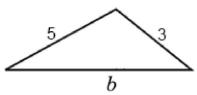
RAG-23


Activity: Complete the following table. The first row is done for you.


Question

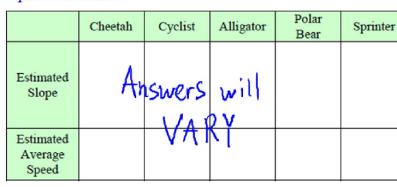
For the triangle shown at the right, explain why the value of b must be greater than 2 and less than 8. (See answer on next page.)

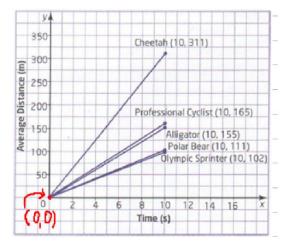
As shown in the diagram, let a, b and c represent the side lengths of any triangle. Then, it must be the case that


> a+c > ba+b > cand b+c > a.

This follows directly from the fact that the shortest path between two points is a straight line.

Then for the given triangle, it must be true that

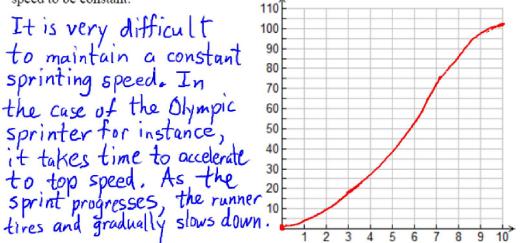

5+3 > band b+3 > 5.

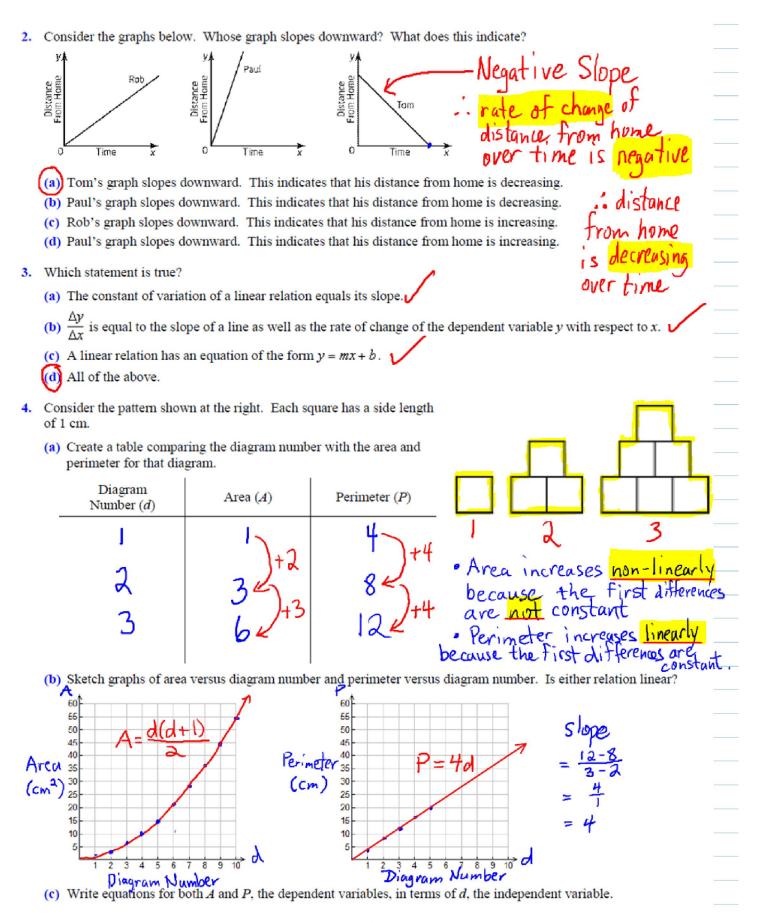


Therefore, 8 > b and b > 2, which means that the value of *b* must be greater than 2 and less than 8.

ANALYTIC GEOMETRY: REVIEW PROBLEMS

- Consider the graphs shown at the right. Each graph gives a typical example of how *average distance* varies over time for a ten-second sprint performed by various animals, an Olympic sprinter and a professional cyclist.
 - (a) Using only the graphs, estimate the slope of each line segment. (Do not use the given co-ordinates to obtain your estimate.) Show how you arrived at your estimate. In addition, state the average speed in each case.

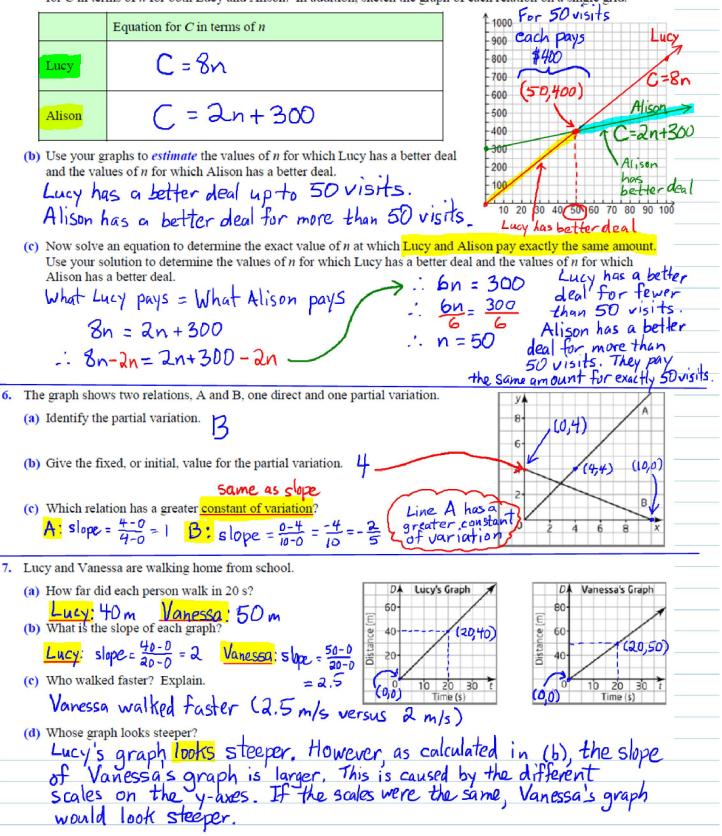

(b) Now calculate the exact slope of each line segment as well as the exact average speed. Show all calculations.


		Cheetah	Cyclist	Alligator	Polar Bear	Sprinter
<u>Δγ</u> Δχ	Exact Slope	311-0 10-0 = 31.1	<u>165-0</u> = 16,5	155-0 = 15.5 10-0 = 15.5	$\frac{111-0}{10-0} = 11.$	102-0 = 10.2
d t	Exact Average Speed	$\frac{311 m}{10s} = 31.1 m/s$	16.5 m = 16.5 m/s	155 m = 15.5 10 s = 15.5 m/s	$\frac{111 \text{ m}}{10 \text{ s}} = 11.1 \text{ m/s}$	$\frac{100 \text{ m}}{10 \text{ s}} = 10.2 \text{ m/s}$

(c) Let d represent average distance in metres and t represent time in seconds. Write an equation of each line.

	Cheetah	Cyclist	Alligator	Polar Bear	Sprinter
Equation	d=31.1 t	d = 16.5t	d=15.5t	d=11.12	d=10.2t

- (d) Being straight lines, each of the given graphs is of a linear relation. This might suggest to some that the speed is constant (not average speed) in each case. (Of course, average speed over an interval of time must be constant.)
 - (i) Explain why it is not realistic for the speed to be constant.
 (ii) Sketch a more realistic graph for the typical Olympic sprinter.



Copyright ©, Nick E. Nolfi

MPM1D0 Unit 3 - Analytic Geometry

AG-19

- 5. Alison and Lucy belong to different fitness clubs. Alison has a membership that cost her \$300 and she pays \$2 each time she visits the club. Lucy has a pay-as-you-go membership and she pays \$8 each time she visits her club.
 - (a) Let *n* represent the number of visits to the fitness club and let *C* represent the total cost in dollars. Write equations for *C* in terms of *n* for both Lucy and Alison. In addition, sketch the graph of each relation on a single grid.

- The length of a trip <u>varies directly</u> with the amount of gasoline used. Yael's car used 16 L for the first 145 km of his trip from Toronto to Montreal.
 - (a) How much gasoline, rounded to the nearest litre, should he expect to use in the remaining 400 km of his trip?

F → amount of fuel used (L) d → distance travelled (km) <u>16 L</u> <u>145 km</u> = constant of variation (b) If gasoline costs \$1.13/L, can be complete the trip with a budge $\Rightarrow : F = \frac{16}{145} d$ If d = 400 + hen $F = \frac{16}{145} \left(\frac{400}{1}\right) \doteq \frac{44}{145}$ use a Cost of fuel = (44+16) (\$1.13) = 60(\$1.13) = \$67.80 Total fuel used Yael can complete the trip with a budget of \$70.00. 9. Jorgen is designing a set of steps from his deck to the garden 2 m below. He knows that a comfortable slope for steps is about 0.6. In addition, he wants the tread width to be 30 cm. tread (a) What should the height of each riser be? width Let h represent the riser height in cm. : slope = 0.6 The riser height should be 18 cm. iser reight $\frac{h}{30} = 0.6$ 30)= 30(0.6) (b) How many steps will the staircase have? Be sure to give an integer answer and explain the effects of your choice. # Steps = $\frac{\text{total height}}{\text{riser height}} = \frac{200 \text{ cm}}{18 \text{ cm}} = 11.1$ There should be 11 steps. In addition, the riser height should be increased slightly to ensure that that the staircase spans the entire 2 m distance. 10. Modified True/False Indicate whether each statement is true or false. If the statement is false, change the underlined part(s) to make the statement true. Change: Direct Partial variation occurs when the ratio of the dependent variable to the independent variable is constant. Any linear relation has an equation of the form y = mx + b, where *m* represents Change: M re the fixed, or initial value of y, and b represents the constant of variation. The vertical intercept, constant of variation and rate of change all represent the Change: Slope same concept for a linear relation. The following are all units of change: Change: / kilometres per hour, dollars per kilogram, litres per 100 km, breaths per minute