| MPM1D9 Unit 2: Review Quiz                                                            | Victim: Mr Solutions                |
|---------------------------------------------------------------------------------------|-------------------------------------|
| 1. Give <i>one example</i> of each of the following: $(5/5)$<br>(a) Expression $3x+4$ | Well done $M.S. 11$ $\frac{41}{41}$ |
| (b) Equation that is Solved for the Unknown                                           | 3x+4=7                              |
| (c) Equation that Expresses a Mathematical Relation                                   | $A = 2\pi r^2 + 2\pi r h$           |
| (d) Identity $\chi + \chi = 2\chi$                                                    | _ /                                 |
| (e) A Value that Satisfies the Equation $x^2 = 64$                                    | x=8 or $x=-8$                       |

2. For the given equation, complete the flowchart, solve the equation by performing operations to *both sides* and check your solution. (10 /10)

| Equation                                                                                 | Flowchart                                                                         | Solve the Equation by<br>Performing Operations to<br>B.S.                                           | Check your Solution                                                       |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|                                                                                          |                                                                                   | $\frac{3}{2}x+\frac{1}{2}=\frac{3}{4}$                                                              | L.H.S. R.H.S.                                                             |
|                                                                                          |                                                                                   | $(\frac{4}{1})^{+}(\frac{3}{2})^{+}(\frac{4}{1})^{+}(\frac{4}{2})^{-}=\frac{4}{1}(\frac{3}{4})^{+}$ | $) \frac{3}{2}x + \frac{1}{2} \frac{3}{4}$                                |
| (a) $\frac{3}{2}x + \frac{1}{2} = \frac{3}{4}$                                           | X a · a                                                                           | $\therefore \frac{1}{2}x + \frac{4}{2} = \frac{12}{4}$<br>$\therefore 6x + 2 = 3$                   | $= \frac{3}{2}(\frac{1}{6}) + \frac{1}{2}$ $= \frac{3}{12} + \frac{1}{2}$ |
| Rough Work:                                                                              |                                                                                   | (6x+2-2) = 3-2                                                                                      | $= \frac{1}{4} + \frac{1 \times 2}{2 \times 2}$                           |
| $\frac{3}{4} - \frac{1}{2} = \frac{3}{4} + \frac{3}{4} + \frac{1}{4}$                    |                                                                                   | $\therefore  \frac{6x}{6} = \frac{1}{6}$                                                            | = + + + + +<br>= = = = +                                                  |
| $\frac{4}{4} \cdot \sqrt{2} - \frac{4}{4} \cdot \sqrt{3}$ $= \frac{3}{12} = \frac{1}{6}$ | $\begin{pmatrix} 3\\ 4\\ 4 \end{pmatrix} \begin{pmatrix} 3\\ 4\\ 4 \end{pmatrix}$ | $x = \frac{1}{6}$                                                                                   | Since L.H.S.= R.H.S.,<br>x= & is the solution                             |

3. Solve the given equation by performing operations to both sides. (9)

 $\frac{1}{4}(2y-7) + \frac{y-5}{6} = -3 - (5y-8)$  Multiply B.S. by LCD  $\rightarrow$  12.  $\frac{1}{1}\left[\frac{1}{4}(2\gamma-7)\right] + \frac{12}{1}\left(\frac{\gamma-5}{6}\right) = 12(-3) - 12(5\gamma-8)$ ...68y = 91 $\frac{12}{4}(2y-7) + \frac{12}{6}(y-5) = -36 - 60y + 96$  $\therefore 3(2y-7)+2(y-5) = -60y - 36+96$ 68y = 71  $\therefore 6y - 21 + 2y - 10 = -60y + 60$  $\therefore 8y - 31 = -60y + 60$  $\therefore 8y - 31 + 60y = -60y + 60 + 60y$ 

4. Two or more angles are complementary if their sum is 90°. In the diagram at the right, three angles are complementary. One angle is *one-half* of the largest angle. The smallest angle is *one-sixth* of the largest angle. Use an equation to find the measure of



፞፞፞፞፞፞፞፞፞፞፞፞፞፞፞፞ χ

5. The triangles shown below have the *same perimeter*. <u>Use an equation</u> to find the side lengths of each triangle. (10/10)

