
Understanding the Pythagorean Theorem

Pythagorean Theorem Proof 1 – President James Garfield's Brilliant Proof

James A. Garfield was the 20th president of the United States. In addition to being a highly successful statesman and soldier, President Garfield was also a noted scholar. Among his many scholarly accomplishments is his beautiful proof of the Pythagorean Theorem. It is outlined below.

(a) Calculate the area of trapezoid XZWU by summing the areas of ΔUXY , ΔYZW and ΔUYW . Simplify fully!

 $A_{Trap} = A_1 + A_2 + A_3$ $= \frac{ab}{2} + \frac{c(c)}{2} + \frac{ab}{2}$ = $\frac{ab+c^2+ab}{2}$ $= \frac{c^2 + 2ab}{2}$

(b) Calculate the area of the trapezoid by using the equation for the area of a trapezoid. Simplify fully!

 $A_{Trap} = \frac{h(a+b)}{2}$ $= \underbrace{(a+b)(a+b)}_{2}$ $= \underbrace{a^{2} + 2ab + b^{2}}_{2}$ Think! What is the height of the trapezoid?

20th President of the U.S.A. In Office: March 4, 1881- September 19, 1881 Assassinated at the age of 49 One of four assassinated presidents

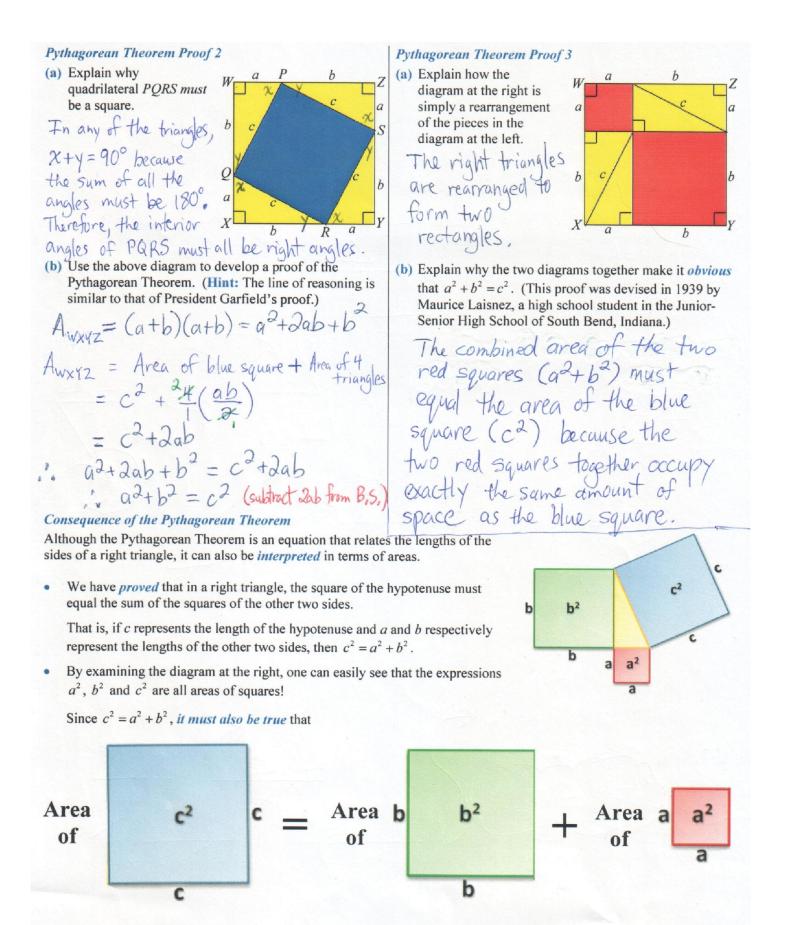
:; c2+2ab-2ab=d+2ab+b-2ab

This argument DEMONSTRATES that in a right triangle, it MUST be the case that

c2=02+b2

 $(:, c^2 = a^2 + ...$

(c) In parts (a) and (a) you developed two different expressions for the area of trapezoid XZWU. Since both expressions give the area of the same shape, they must be equal to each other! Set the expressions equal to each other and solve for c^2 .

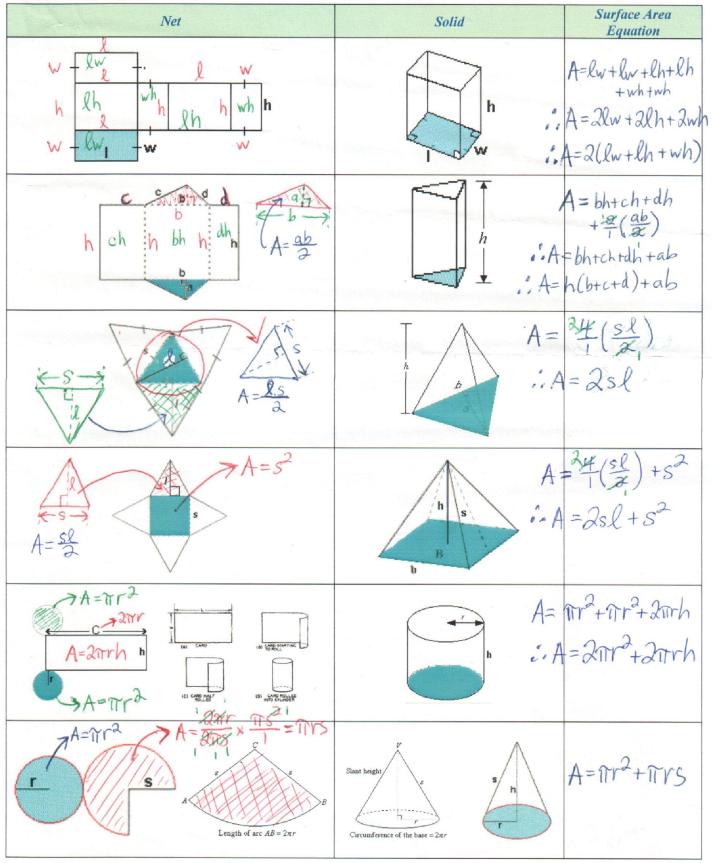

 $A_{Trap} = A_{Trap}$ $\frac{c^{2}+2ab}{2} = \frac{q^{2}+2ab+b^{2}}{2}$ $\frac{1}{1}\left(\frac{c^2+2ab}{2}\right) = \frac{2}{1}\left(\frac{a^2+2ab+b^2}{2}\right)$

Copyright ©, Nick E. Nolfi

 $=a^2+2ab+b^2$

MPM1D0 Unit 6 - Measurement and Geometry

MG-9



Copyright ©, Nick E. Nolfi

MG-10

MPM1D0 Unit 6 - Measurement and Geometry

Understanding Surface Area Equations

Copyright ©, Nick E. Nolfi

MPM1D0 Unit 6 - Measurement and Geometry

WHAT HAPPENS IF...

1. Complete the following table. The first row has been done for you.

Shape	Name of the Shape	What Happens to the Perimeter if	What Happens to the Area if
	Rectangle	the length is doubled Solution P = 2l + 2w If the length is doubled, the new length is $2l$. Then, the perimeter becomes P = 2(2l) + 2w = 4l + 2w = (2l + 2w) + 2l The perimeter increases by $2l$.	the width is tripled Solution A = lw If the width is tripled, the new width is $3w$. Then, the area becomes A = l(3w) = 3lw = 3(lw) The area is also tripled.
	Paralel- logram	the base is doubled Solution P = 2b + 2c If the base is doubled, the new base is $2b$. Then, the perimeter becomes P = 2(2b) + 2c = 4b + 2c = (2b + 2c) + 2b The perimeter increases by $2b$.	the height is quadrupled Solution A = bh If the height is quadrupled, the new height is $4h$. Then, the area becomes A = b(4h) = 4bh = 4(bh) The area is also quadrupled.
	Triangle	the base is tripled (if this can be done without changing the values of a and c) Solution P = a + b + c If the base is doubled, the new base is $2b$. Then, the perimeter becomes P = a + 2b + c = (a + b + c) + b The perimeter increases by b.	the height is tripled Solution $A = \frac{bh}{2}$ If the height is tripled, the new height is 3h. Then, the area becomes $A = \frac{b(3h)}{2} = \frac{3bh}{2} = \frac{3(bh)}{2}$ The area is also tripled.
$c \xrightarrow{a} b \xrightarrow{d} d$	Trapezoid	the base is tripled (if this can be done without changing the values of c and d) Solution P = a + b + c + d If the base is doubled, the new base is $2b$. Then, the perimeter becomes P = a + 2b + c + d = (a + b + c + d) + b The perimeter increases by b.	the height is doubled Solution $A = \frac{h(a+b)}{2}$ If the height is tripled, the new height is 2h. Then, the area becomes $A = \frac{2h(a+b)}{2} = 2\left(\frac{h(a+b)}{2}\right)$ The area is also doubled.
r d	Circle	the radius is doubled Solution $C = 2\pi r$ If the radius is doubled, the new radius is $2r$. Then, the perimeter becomes $C = 2\pi r = 2\pi (2r) = 4\pi r = 2(2\pi r)$ The circumference is doubled.	the radius is doubled Solution $A = \pi r^2$ If the radius is doubled, the new radius is $2r$. Then, the area becomes $A = \pi (2r)^2 = \pi (4r^2) = 4\pi r^2$ The area is quadrupled .

2. Complete the following table. The first row has been done for you.

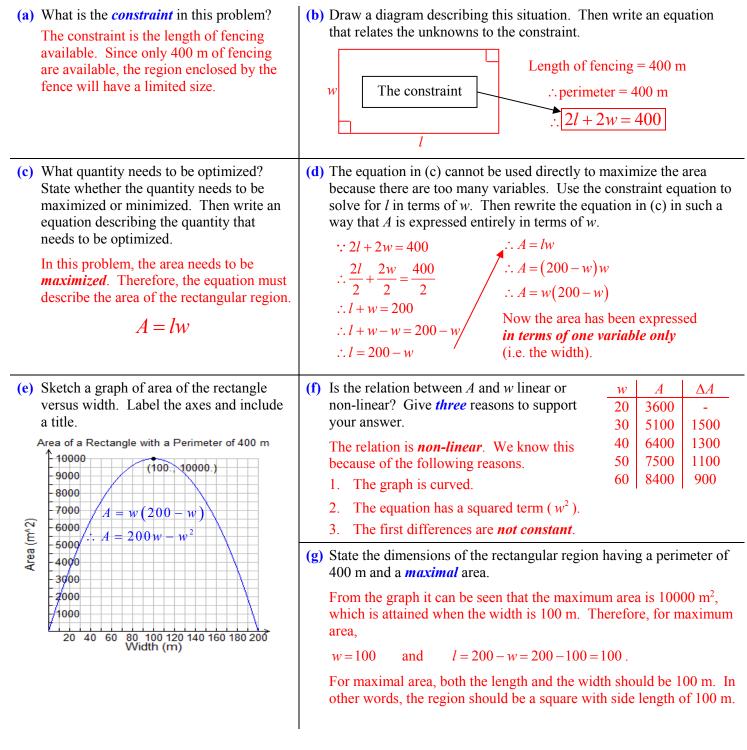
Shape Name of the Shape		What Happens to the Surface Area if	What Happens to the Volume if
h	Rectangular Prism	the length is doubled Solution A = 2lw + 2lh + 2wh If the length is doubled, the new length is $2l$. Then, the surface area becomes A = 2(2l)w + 2(2l)h + 2wh = 4lw + 4lh + 2wh = (2lw + 2lh + 2wh) + 2lw + 2lh The surface area increases by $2lw + 2lh$.	the width is tripled Solution V = lwh If the width is tripled, the new width is $3w$. Then, the volume becomes V = l(3w)h = 3lwh = 3(lwh) The volume is also tripled.
	Triangular Prism	b is doubled (if this can be done without changing the values of a and c) Answer The surface area increases by bl (i.e. bl is added to the surface area).	the height is quadrupled <i>Answer</i> The volume is also quadrupled (i.e. multiplied by 4).
h b b	Square- based Pyramid	the slant height is tripled Answer The surface area increases by 4bs (i.e. 4bs is added to the surface area).	the height is tripled <i>Answer</i> The volume is also tripled (i.e. multiplied by 3).
r	Sphere	the radius is doubled <i>Answer</i> The surface area <i>quadruples</i> (i.e. multiplied by 4).	the radius is doubled <i>Answer</i> The volume <i>is multiplied by 8!</i>
h	Cylinder	the radius is doubled Answer The surface area increases by $6\pi r^2 + 2\pi rh$ (i.e. $6\pi r^2 + 2\pi rh$ is added to the surface area).	the radius is doubled <i>Answer</i> The volume <i>quadruples</i> (i.e. multiplied by 4).
s h	Cone	the radius is doubled Answer The surface area increases by $3\pi r^2 + \pi rs$ (i.e. $3\pi r^2 + \pi rs$ is added to the surface area).	the radius is doubled <i>Answer</i> The volume <i>quadruples</i> (i.e. multiplied by 4).

Sum of the Interior Angles of a Convex Polygon

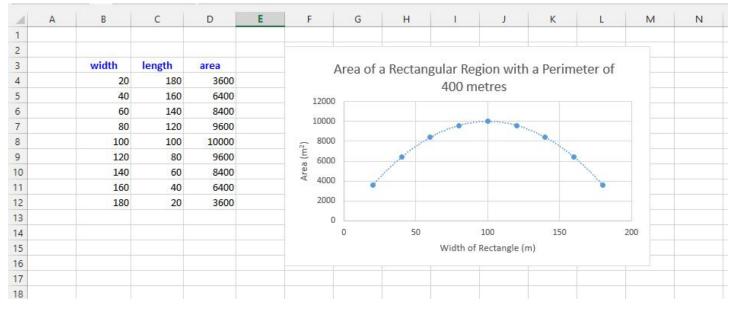
1. By dividing each polygon into triangles, calculate the sum of the interior angles of the following convex polygons. Note that one of the shapes has already been done for you.

Name: Quadrilateral	Name: Pentagon	Name: Hexagon	Name: Heptagon
Number of Sides: 4	Number of Sides: 5	Number of Sides: 6	Number of Sides: 7
Number of Triangles: 2	Number of Triangles: 3	Number of Triangles: 4	Number of Triangles: 5
Sum of Interior Angles: $2(180^\circ) = 360^\circ$	Sum of Interior Angles: $3(180^\circ) = 540^\circ$	Sum of Interior Angles: $4(180^\circ) = 720^\circ$	Sum of Interior Angles: $5(180^\circ) = 900^\circ$

2. Now summarize your results in the following table and sketch a graph relating the sum of the interior angles of a convex polygon to the number of sides. Then answer questions (a) to (f). n = number of sides in the polygon, s = sum of the interior angles of the polygon


e polygon,	s = sum of the interior angles of the polygon
-	· ·

<i>n</i> 3	s 180°	Δs (1 st Differences)	Sum of Interior Angles in Polygons 1440 1320 1200 1080 (a) Do you expect the pattern to continue indefinitely beyond $n = 7$? Explain. The pattern should continue indefinitely because increasing the number of sides by 1 also ingresses the number of triangles by 1
4	360°	180°	 also increases the number of triangles by 1. This means that the sum of the interior angles will grow by 180° for each increase by 1 in the number of sides. (b) Write an equation relating s to n. Explain why it is not surprising that the relation between s and n is linear.
5	540°	180°	by 1 in the number of sides.
6	720°	180°	(b) Write an equation relating s to n. Explain why it is not surprising that the relation between s and n is linear.
7	900°	180°	$ s = 180^{\circ}(n-2) = 180^{\circ}n - 360^{\circ} $
be m T	etween = slope he sum	s and n . e = 180 (from to of the interior	 (d) Does the vertical intercept of this linear relation have a meaning? Explain. The vertical intercept has no meaning because there is no such thing as a zero-sided polygon.
at It th	oove gra does no e numb	aph? Explain. ot make sense	connect the dots" in the o connect the dots because polygon must be a whole equal to 3. (f) State an easy way to remember how to calculate the sum of the interior angles of a polygon. sum of interior angles = $180^{\circ} \times (\# \text{ of triangles})$


OPTIMIZATION

Optimization Problem 1 – Solved using an Algebraic and Graphical Model

You have 400 m of fencing and you would like to enclose a rectangular region of *greatest possible area*. What dimensions should the rectangle have?

Optimization Problem 1 – Solved using a Numeric and Graphical Model

Formulas used to Calculate the Length and the Area

1	A	В	C	D	E	F	G	H	
1									
2									
3		width	length	area	Arc	a of a Roctangul	ar Rogion with	a Parimotor of	
4		20	=(400-2*B4)/2	=B4*C4		Area of a Rectangular Region with a Perimeter of			
5		40	=(400-2*B5)/2	=B5*C5	12000	4	100 metres		
6		60	=(400-2*B6)/2	=B6*C6	12000				
7		80	=(400-2*B7)/2	=B7*C7	10000				
8		100	=(400-2*B8)/2	=B8*C8	~ 8000			**** ®	
9		120	=(400-2*B9)/2	=B9*C9	² E 6000				
10		140	=(400-2*B10)/2	=B10*C10	Le.	and the second sec		100 March 100 Ma	
11		160	=(400-2*B11)/2	=B11*C11	≪ 4000				
12		180	=(400-2*B12)/2	=B12*C12	2000	-			
13					0				
14					0	50	100	150 200	
15					Width of Rectangle (m)				
16								8	
17									

Optimization Problem 2 – Solved using an Algebraic and Graphical Model

Design a cylindrical pop can that has the *greatest possible capacity* but can be manufactured using at most 375 cm² of aluminum.

 (a) What is the <i>constraint</i> in this problem? The surface area of the pop can must be at most 375 cm². 	(b) Draw a diagram describing this situation. Then write an equation that relates the unknowns to the constraint. (Let <i>r</i> represent the radius of the cylinder and let <i>h</i> represent its height.) Constraint Surface area = 375 $\therefore 2\pi r^2 + 2\pi rh = 375$
(c) What quantity needs to be optimized? State whether the quantity needs to be maximized or minimized. Then write an equation describing the quantity that needs to be optimized. The volume needs to be maximized. $V = \pi r^2 h$	(d) The equation in (c) cannot be used directly to maximize the volume because there are too many variables. Use the constraint equation to solve for <i>h</i> in terms of <i>r</i> . Then rewrite the equation in (c) in such a way that <i>V</i> is expressed entirely in terms of <i>r</i> . $2\pi r^2 + 2\pi rh = 375$ $\therefore 2\pi rh = 375 - 2\pi r^2$ $\therefore h = \frac{375 - 2\pi r^2}{2\pi r}$ $\therefore V = \frac{\pi r^2}{1} \left(\frac{375 - 2\pi r^2}{2\pi r}\right)$ $\therefore V = \frac{r(375 - 2\pi r^2)}{2} = \frac{375}{2}r - \pi r^3$ Now the volume has been expressed <i>in terms of one variable only</i> (i.e. the radius).
(e) Sketch a graph of volume of the cylindrical can versus radius. Label the axes and include a title. Volume of a Cylinder with a Surface Area of 375 cm ² C	(f) Is the relation between V and r linear or non-linear? Give three reasons to support your answer.rV ΔV The relation between V and r is non-linear2349.9165.5The relation between V and r is non-linear3477.7127.8Reasons4548.971.21.The graph is curved.5544.8-4.12.The equation has a polynomial term of degree three $(-\pi r^3)$ 4.13.The first differences are not constant.(g) State the dimensions of the cylindrical can having a surface area of 375 cm² and a maximal volume.state area sollows: $r = 4.5$ cm (estimated from graph) $h = \frac{375 - 2\pi r^2}{2\pi r} = \frac{375 - 2(3.14)(4.5)^2}{2(3.14)(4.5)} = 8.8$ cmFor maximal volume, the diameter is equal to the height!

Optimization Problem 3 – Solved using an Algebraic and Graphical Model

A container for chocolates must have the shape of a *square prism* and it must also have a volume of 8000 cm³. Design the box in such a way that it can be manufactured using the *least amount of material*.

(a) What is the <i>constraint</i> The volume of the con 8000 cm ³ .	•	 (b) Draw a diagram describing this situation. Then write an equation relates the unknowns to the construct (Let <i>x</i> represent the side length of square base and let <i>h</i> represent the height.) Constraint Volume = 8000 ∴ x²h = 8000 	raint.			
	eeds to be maximized or e an equation describing the be optimized.	(d) The equation in (c) cannot be used directly to <i>minimize</i> the surface area because there are too many variables. Use the constraint equation to solve for <i>h</i> in terms of <i>x</i> . Then rewrite the equation in (c) in such a way that <i>A</i> is expressed entirely in terms of <i>x</i> . $\therefore x^{2}h = 8000$ $\therefore h = \frac{8000}{x^{2}}$ Now the surface area has been expressed <i>in terms of one variable only</i> (i.e. <i>x</i>).				
Surface Area of a Squ 10000 9000 -9000 -8000 -7000 -7000 -6000 -5000 -4000	me of the square prism the axes and include a title. are Prism with V=8000 cm^3 $= 2x^2 + \frac{32000}{x}$	 (f) Is the relation between A and x linear or non-linear? Give <i>three</i> reasons to support your answer. The relation between A and x is <i>non-linear</i> Reasons 1. The graph is curved. 2. The equation has a squared te 3. The first differences are <i>not c</i> 				
-2000 (20 -1000	., 2400.) 28 32 36 40 44 48 52 56 60 f Square Base (cm)	(g) State the dimensions of the square prism with a volume of 8000 cm ³ and a <i>minimal</i> surface area. The dimensions for minimal surface area are as follows: x = 20 cm (estimated from graph) $\therefore h = \frac{8000}{x^2} = \frac{8000}{20^2} = \frac{8000}{400} = 20$ cm For minimal surface area, the square prism must be a cube!				