
SOFTWARE DEVELOPMENT USING VISUAL BASIC – TABLE OF CONTENTS 
SOFTWARE DEVELOPMENT USING VISUAL BASIC – TABLE OF CONTENTS ................................................................... 1 

OBJECTS IN VISUAL BASIC, OBJECT-ORIENTED PROGRAMMING  AND VISUAL PROGRAMMING ......................... 4 

WHAT IS A PROGRAM?  WHAT IS A PROGRAMMING LANGUAGE? .......................................................................................................... 4 
WHAT IS OBJECTED-ORIENTED PROGRAMMING?  (SIMPLIFIED DESCRIPTION FOR PROGRAMMING NOVICES) ....................................... 4 
WHAT IS AN EVENT-DRIVEN PROGRAMMING LANGUAGE? .................................................................................................................... 4 
OBJECTS IN VISUAL BASIC ..................................................................................................................................................................... 5 
EVENTS COMMONLY USED IN VISUAL BASIC ......................................................................................................................................... 5 
QUESTIONS ............................................................................................................................................................................................ 6 

OBJECTS, PROPERTIES, EVENTS AND METHODS IN VB: CREATING YOUR FIRST VB PROGRAM THAT 
PROCESSES NUMERIC INFORMATION ......................................................................................................................................... 8 

INSTRUCTIONS TO BE READ CAREFULLY AND FOLLOWED ...................................................................................................................... 8 
QUESTIONS .......................................................................................................................................................................................... 11 

A PROGRAM THAT PROCESSES STRING (TEXT) INFORMATION ....................................................................................... 12 

EXTREMELY IMPORTANT QUESTIONS .................................................................................................................................................. 12 

VARIABLES IN MICROSOFT VISUAL BASIC .............................................................................................................................. 14 

INTRODUCTION .................................................................................................................................................................................... 14 
SPECIFIC ASPECTS OF VARIABLES IN VISUAL BASIC ............................................................................................................................ 14 
RULES FOR NAMING VARIABLES IN MICROSOFT VISUAL BASIC .......................................................................................................... 14 
SUMMARY ............................................................................................................................................................................................ 14 
DATA TYPES USED TO STORE INTEGER VALUES (WHOLE NUMBER VALUES, POSSIBLY INCLUDING A NEGATIVE SIGN) .................... 15 
DATA TYPES USED TO STORE FLOATING-POINT AND FIXED-POINT VALUES (NUMBERS WITH A FRACTIONAL PART I.E., “DECIMALS”)
 ............................................................................................................................................................................................................ 15 
DATA TYPES USED TO STORE TEXT ..................................................................................................................................................... 15 
MISCELLANEOUS DATA TYPES ............................................................................................................................................................ 15 
QUESTIONS .......................................................................................................................................................................................... 16 

WHAT IS THE DIFFERENCE BETWEEN AN OBJECT AND A VARIABLE? .......................................................................... 17 

VARIABLES .......................................................................................................................................................................................... 17 
OBJECTS .............................................................................................................................................................................................. 17 
QUESTIONS .......................................................................................................................................................................................... 17 

REVIEW OF ESSENTIAL CONCEPTS IN VISUAL BASIC .......................................................................................................... 18 

DATA (INFORMATION) – A PARTIAL LIST OF VB DATA TYPES ............................................................................................................ 18 
A COMPUTER AS A DATA PROCESSING MACHINE ................................................................................................................................ 18 
SOME USEFUL INTRINSIC (BUILT-IN) FUNCTIONS ................................................................................................................................ 18 

A COMPLETE LIST OF VISUAL BASIC DATA TYPES ............................................................................................................... 19 

DATA (INFORMATION) ......................................................................................................................................................................... 19 

UNDERSTANDING VISUAL BASIC PROGRAMMING ................................................................................................................ 20 

REVIEW: CONCEPTS THAT YOU NEED TO UNDERSTAND BEFORE YOU CAN CREATE GOOD VB PROGRAMS.......................................... 20 

WRITING YOUR OWN CODE: CURRENCY CONVERTER PROGRAM ................................................................................. 21 

THE MOST IMPORTANT LESSON OF THE ENTIRE UNIT ......................................................................................................................... 21 
PLANNING AND DEVELOPING SOLUTIONS TO SOFTWARE DEVELOPMENT PROBLEMS .......................................................................... 21 

Wrong!!!!! (Most Students) ............................................................................................................................................................ 21 
Right!!!!!! (George Polya) ............................................................................................................................................................. 21 
How these Steps Apply to Software Development .......................................................................................................................... 21 

EXAMPLE OF A GENERAL PROBLEM ..................................................................................................................................................... 22 
Step 1 – Analysis (Understand the Problem) .................................................................................................................................. 22 
Step 2 – Design (Choose a Strategy) .............................................................................................................................................. 22 
Step 3 – Implementation (Carry out the Strategy) .......................................................................................................................... 22 
Step 4 – Validation (Check the Solution) ........................................................................................................................................ 23 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-1 



VISUAL BASIC PRACTICE PROBLEMS: INPUT, PROCESSING, OUTPUT ........................................................................... 23 

VB REVIEW 1- IMPORTANT PROGRAMMING TERMINOLOGY ........................................................................................... 24 

VB REVIEW 2- TRANSLATING MATH FORMULAS INTO VB ................................................................................................. 26 

LEARNING ABOUT SELECTION STATEMENTS (IF STATEMENTS) BY STUDYING THE PYTHAGOREAN 
THEOREM PROGRAM ....................................................................................................................................................................... 27 

GENERAL STRUCTURE OF AN IF STATEMENT ....................................................................................................................................... 27 
AN IMPROVED VERSION OF THE PYTHAGOREAN THEOREM PROGRAM ................................................................................................ 28 

Picturing “If” Statements ............................................................................................................................................................... 28 
EXERCISES ........................................................................................................................................................................................... 28 

THE AREA CALCULATOR PROGRAM - ANOTHER PROGRAM THAT REQUIRES “IF” STATEMENTS ..................... 29 

INTRODUCTION – WHAT YOU WILL LEARN BY STUDYING THE AREA CALCULATOR ............................................................................. 29 
WHAT YOU NEED TO DO ....................................................................................................................................................................... 29 
QUESTIONS .......................................................................................................................................................................................... 29 

PIZZA PROGRAM SOLUTIONS AND QUESTIONS ..................................................................................................................... 30 

THE PROBLEM ...................................................................................................................................................................................... 30 
THE PLAN ............................................................................................................................................................................................ 30 

SEQUENCE, SELECTION AND REPETITION: THE UNDERPINNINGS OF PROGRAMMING .......................................... 32 

SEQUENCE ........................................................................................................................................................................................... 32 
SELECTION ........................................................................................................................................................................................... 32 
REPETITION .......................................................................................................................................................................................... 32 
QUESTIONS AND PROGRAMMING EXERCISES ....................................................................................................................................... 32 

SELECTED SOLUTIONS TO ASSIGNED VB PROBLEMS .......................................................................................................... 34 

SOLUTION 1 ......................................................................................................................................................................................... 34 
QUESTIONS RELATED TO SOLUTION 1 .................................................................................................................................................. 34 
SOLUTION 2 ......................................................................................................................................................................................... 35 
QUESTIONS RELATED TO SOLUTION 2 .................................................................................................................................................. 35 

THE EVOLUTION OF SOFTWARE PART I: HOW TO KEEP IMPROVING YOUR SOFTWARE ....................................... 36 

CASE STUDY – DEVELOPING A CRAPS GAME IN VB .......................................................................................................................... 36 
A SOLUTION TO PHASE ONE ................................................................................................................................................................ 36 

Questions ........................................................................................................................................................................................ 36 
TWO DIFFERENT SOLUTIONS TO PHASE TWO ....................................................................................................................................... 37 

Solution 1 – Craps 1.1a .................................................................................................................................................................. 37 
Questions ........................................................................................................................................................................................ 37 
Solution 2 – Craps 1.1b .................................................................................................................................................................. 38 

THINKING ABOUT PHASES THREE AND FOUR ....................................................................................................................................... 38 

THE EVOLUTION OF SOFTWARE PART II: FURTHER IMPROVEMENTS TO THE CRAPS SOFTWARE.................... 40 

QUESTIONS .......................................................................................................................................................................................... 40 
RESEARCH ASSIGNMENT...................................................................................................................................................................... 41 
QUESTIONS .......................................................................................................................................................................................... 41 

DO YOU UNDERSTAND THE CRAPS PROGRAM? ..................................................................................................................... 42 

QUESTIONS .......................................................................................................................................................................................... 42 

THE TEMPERATURE CONVERTER PROGRAM ......................................................................................................................... 45 

QUESTIONS TO CONSIDER BEFORE WRITING CODE .............................................................................................................................. 45 

OPERATORS IN VISUAL BASIC ...................................................................................................................................................... 47 

ARITHMETIC OPERATORS .................................................................................................................................................................... 47 
MATHEMATICAL FUNCTIONS ............................................................................................................................................................... 47 
COMPARISON OPERATORS ................................................................................................................................................................... 48 
LOGICAL OPERATORS .......................................................................................................................................................................... 48 
TRUTH TABLES FOR THE LOGICAL OPERATORS ................................................................................................................................... 48 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-2 



OPERATOR PRECEDENCE (ORDER OF OPERATIONS) ............................................................................................................................. 49 
INFREQUENTLY USED OPERATORS....................................................................................................................................................... 49 
TYPE CONVERSION FUNCTIONS ........................................................................................................................................................... 49 

IMPROVING YOUR VISUAL BASIC PROGRAMS ....................................................................................................................... 50 

ROUNDING OFF VALUES ...................................................................................................................................................................... 50 
ROUND FUNCTION ............................................................................................................................................................................... 50 
USING THE KEYPRESS EVENT TO “TRAP” INVALID CHARACTERS ....................................................................................................... 50 

Argument ........................................................................................................................................................................................ 50 
Square Brackets .............................................................................................................................................................................. 50 
Numeric Expression ....................................................................................................................................................................... 50 

KEY CODE CONSTANTS IN VISUAL BASIC ............................................................................................................................................ 51 

USING MESSAGE BOXES IN VB PROGRAMS .............................................................................................................................. 53 

SYNTAX ............................................................................................................................................................................................... 53 
SETTINGS ............................................................................................................................................................................................. 53 
RETURN VALUES ................................................................................................................................................................................. 54 
EXAMPLES ........................................................................................................................................................................................... 54 
QUESTIONS .......................................................................................................................................................................................... 54 
MORE QUESTIONS ................................................................................................................................................................................ 54 
ANOTHER EXAMPLE ............................................................................................................................................................................ 55 
EXERCISE ............................................................................................................................................................................................. 55 

LEARNING NEW PROGRAMMING CONCEPTS BY STUDYING EXAMPLES ...................................................................... 56 

LEFT FUNCTION ................................................................................................................................................................................... 58 
RIGHT FUNCTION ................................................................................................................................................................................. 58 

OBJECT NAMING CONVENTIONS ................................................................................................................................................. 59 

SUGGESTED PREFIXES FOR CONTROLS ................................................................................................................................................. 59 
SUGGESTED PREFIXES FOR DATA ACCESS OBJECTS (DAO) ................................................................................................................ 60 
SUGGESTED PREFIXES FOR MENUS ...................................................................................................................................................... 61 
CHOOSING PREFIXES FOR OTHER CONTROLS ....................................................................................................................................... 61 

 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-3 



OBJECTS IN VISUAL BASIC, OBJECT-ORIENTED PROGRAMMING  
AND VISUAL PROGRAMMING 

What is a Program?  What is a Programming Language? 

Why doesn’t this 
computer follow my 

instructions?  It listens 
even less than my 

husband! 

Why doesn’t this 
computer understand 
what I’m typing?  It 
understands me even 

less than my wife! 

Doesn’t she know that I 
don’t understand 
English?  I only 
understand my 

processor’s machine 
language! 

Doesn’t he realize that he 
needs a programming 

language to write 
software?  I can’t process 

instructions given in 
English! 

 
A computer program is a set of instructions that can be executed (carried out) by a computer’s CPU.  A programming 
language is any precise and unambiguous language that can be used by a computer programmer to create a computer 
program.  Examples of programming languages include C, C++, C#, J#, Perl, Java, Python, Cobra, Visual Basic, Pascal, 
Delphi, Turing, FORTRAN and COBOL. 

What is Objected-Oriented Programming?  (Simplified Description for Programming Novices) 
Object-oriented programming is in many ways similar to the process of manufacturing automobiles.  Companies such as 
Ford, Chrysler and General Motors assemble automobiles, but many of the parts that are used are made by other 
companies.  It is not commercially viable for auto manufacturers to produce all the parts needed to build cars.  Instead, 
nuts, bolts, spark plugs, fan belts, upholstery and a host of other parts are purchased from companies that specialize in the 
production of such parts. 

Similarly, object-oriented languages allow us to construct programs using reusable objects such as command buttons, text 
boxes, label boxes and picture boxes.  Instead of writing new code (programming instructions) for commonly used objects 
every time a new program is written, the code is written only once (often by the developers of the language).  Whenever 
we need to employ one of these commonly used objects, we simply use the code that is already provided for us. 

In a visual programming language like Visual Basic, the process of creating a user interface is as simple as clicking and 
dragging.  There is no need to learn how to write code for commonly used objects because it is automatically generated as 
the user interface is designed visually. 

What is an Event-Driven Programming Language? 
Programs written in an event-driven programming language respond to events such as clicking a command button, 
changing the value of a text box or moving the mouse pointer. 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-4 



Objects in Visual Basic 

This object is called a 
form.  It is used to 

contain all the other 
objects. 

 

  

This object is called a 
list box. 

This object is called a 
text box. 

Events Commonly used in Visual Basic 

This object is called a 
shape. 

This object is called a 
line. 

This object is called an 
image control. 

This object is called a 
picture box. 

This object is called a  
command button. 

Event Meaning 
Click The “Click” event occurs when the user presses and then releases a mouse button (left or right) over an object.  It 

can also occur when the value of a control is changed.  For a “Form” object, this event occurs when a blank area or 
a disabled control is clicked. 

DblClick The “DblClick” event occurs when the user presses and then releases a mouse button and then presses and releases 
it again over an object.  For a “Form” object, this event occurs when a blank area or a disabled control is double 
clicked. 

DragDrop The “DragDrop” event occurs when a drag-and-drop operation is completed as a result of dragging a control over an 
object and releasing the mouse button or using the “Drag” method with its action argument set to 2 (“Drop”). 

DragOver The “DragOver” event occurs when a drag-and-drop operation is in progress.  You can use this event to monitor the 
mouse pointer as it enters, leaves or rests directly over a valid target.  The mouse pointer position determines the 
target object that receives this event. 

MouseDown The “MouseDown” event occurs when a mouse button is pressed. 

MouseUp The “MouseUp” event occurs when a mouse button is released. 

MouseMove The “MouseMove” event occurs when the mouse pointer is moved across the screen. 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-5 



Questions 
1. Complete the following table.  You should not blindly copy what I have written.  You must demonstrate your 

understanding by paraphrasing. 

(a)  Define the terms “paraphrase” 
and “unambiguous.”  

(b)  What is a computer program?  

(c)  What is a programming 
language?  

(d)  What is the difference between 
a computer user and a 
computer programmer?  Does 
a computer user need to 
understand programming?  Is a 
computer programmer also a 
computer user? 

 

(e)  What is an object?  What is 
object-oriented programming?  
Explain the concept of visual 
programming. 

 

(f)  List one use of each of the 
following objects in programs 
that you have used (such as a 
word processor or Internet 
browser):  
text box, label box, picture 
box, check box, option button, 
combo box, list box 

 

(g)  Define the following terms: 
 
user interface, event, visual 
programming language, event-
driven programming language 

 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-6 



2. Complete the following table.  The first row is done for you! 

Picture of Familiar Object Name of Object List at least five(5) PROPERTIES of the object 

 

Office Chair 

(a) Colour of the upholstery 
(b) Material upholstery is made of 
(c) Colour of the frame 
(d) Material the frame made of 
(e) Does the chair swivel? 
(f) Is the height of the seat adjustable? 
(g) Does the chair have armrests? 
(h) Is the backrest adjustable? 

 

 

 

 

 

 

 

 

 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-7 



OBJECTS, PROPERTIES, EVENTS AND METHODS IN VB: 
CREATING YOUR FIRST VB PROGRAM THAT PROCESSES NUMERIC INFORMATION 

Instructions to be Read carefully and followed 
1. LAUNCH VISUAL BASIC: 

Click the START button, then move the mouse pointer to Programming, then to Microsoft Visual Studio 6.0 and finally to 
Visual Basic 6.0.  Click on Visual Basic 6.0 and wait for the VB program to load. 

2. Once the VB program loads, you will see a dialogue box as shown below: 
 

 

“Standard EXE” stands for “standard executable.”  
Choosing this option will allow you to create a 
standard Windows executable file.  If you have ever 
explored the files stored on your computer’s hard 
drive, you probably will have noticed several files 
with a “.exe” extension.  For example, if Microsoft 
Word is installed on your computer, you will find a 
file named “winword.exe.”  Files with a “.exe” 
extension are called executable files and they 
contain the instructions that are executed (carried 
out) by a CPU. 

Note 

Choose the “Standard EXE” 
option and then click on “Open.” 

3.  

 

Use the Visual Basic Tool Box (shown at left) to create a form exactly like the one 
shown below.  Use the given names to name the objects on the form (see step 4 on the 
next page).  NOTE: To change the “message” that appears on a command button or a 
title bar of a form, change the value of the “Caption” property (see step 4 again). 
 
 

 

txtNumber2 

txtNumber1 

frmCalculator

txtSum 

cmdQuit 

cmdAdd 
cmdClear 

Visual Basic 
Tool Box 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-8 



4. The default object names assigned by Visual Basic, names like “Text1” or “Command2,” are not very helpful because they do not 
describe the functions of the objects bearing these names.  A much better practice is to use a descriptive name for each object.  
This helps us understand the purpose of each object and makes our code (programming instructions) much easier to read.  To 
improve the readability of your first VB program, change the “(Name)” property of each object on your form to the name given in 
step three. 
 
 
 
 
 
 

 

5. Now change the “Locked” property of the “txtSum” text box to “True.”  This prevents the user from editing the answer that is 
displayed in the text box.  In addition, change the Text property of all three text boxes so that nothing is displayed in each text box. 

6. Double click on the “Add” command button.  Then type the following code where indicated in the diagram. 
 

 

Property Window 
for Selected Object 

Selected Object 

Tool Box 

Description of 
Selected Property 

Project Explorer 

Form Layout 
Window 

“(Name)” 
Property 

  'MEMORY: Declare variables to allocate memory. 
  Dim Number1 As Double, Number2 As Double, Sum As Double 
   
  'INPUT: Obtain values from user. 
  Number1 = Val(txtNumber1.Text) 
  Number2 = Val(txtNumber2.Text) 
   
  'PROCESSING: Calculate the sum. 
  Sum = Number1 + Number2 
   
  'OUTPUT: Display the results. 
  txtSum.Text = CStr(Sum) 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-9 



7. Double click on the “Clear” command button.  Then type the given code where indicated in the diagram. 
 

 

'Clear all the text boxes by assigning 
'the NULL STRING to the "Text" property 
'of each text box. 

txtNumber1.Text = "" 
txtNumber2.Text = "" 
txtSum.Text = "" 

Notice that the code that appears between “Private 
Sub cmdAdd_Click ( )” and “End Sub” is 
indented one TAB space to the right.  This is done 
to make the code easier to read.  Please ensure that 
all your code is indented in the same way! 

8. Double click on the “Quit” command button.  Then type the given code where indicated in the diagram. 
 

s 

'End
End 

 the program 

9. Type the command “Option Explicit” (without the quotation marks) at the very top of the program.  By the time you are done, 
your code should look as follows: 
Option Explicit 
Private Sub cmdAdd_Click() 
    MORY: Dec r ables to a o emory.'ME la e vari ll cate m  
    Dim Number1 As Double, Number2 As Double, Sum As Double 
    'INPUT: Obtain values from user and store in variables. 
    Number1 = Val(txtNumber1.Text) 
    Number2 = Val(txtNumber2.Text) 
    'PROCESSING: Calculate the sum and assign to "Sum" 
    Sum = Number1 + Number2 
    'OUTPUT: Display results. 
    txtSum.Text = CStr(Sum) 
End Sub 

Private Sub cmdClear_Click() 
    'Clear all the text boxes by assigning the NULL STRING to the "Text" property 
    'of each text box. 
    txtNumber1.Text = "" 
    txtNumber2.Text = "" 
    txtSum.Text = "" 
End Sub 

Private Sub cmdQuit_Click() 
    'End the program 
    End 
End Sub 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-10 



10. SAVE YOUR WORK!  IT IS CRITICAL THAT YOU UNDERSTAND THIS STEP!  Click on the “save” button.  If you 
have not already saved your work, you will be asked to provide two filenames.  One filename is used for the project file and it 
will have a “.vbp” filename extension (“vbp” stands for “Visual Basic Project”).  The other filename is used to store the form file 
and it will have a “.frm” filename extension (“frm” stands for “form”).  Of these two files, the form file is by far the more 
important!  The form file stores all the Visual Basic code that you create as well as information regarding the appearance of your 
form.  The project file becomes more important when you create programs that have two or more forms.  Think of the project file 
as an “umbrella” file that contains information on each of the forms in your program.  To avoid serious difficulties, store the 
project file in the same folder as all your forms! 
 
 
 

 
 
 
 

Click the “play” button to run your program. 

Click the “save” button to save your program. 

11. Carefully check your code.  When you are confident that it is correct, execute (run) your program by clicking the “play” button 
on the Visual Basic standard tool bar.  Test your program carefully to ensure that it works properly. 

Questions 
1. Define the terms “object” and “property.” 

2. List names of the types of objects that you have used so far.  In addition, list the corresponding properties that you have learned so 
far.  The first one is done for you. 

Object Type Important Properties and Their Purpose 

Command Button 
(Name)    Stores the name used in code to identify an object. 
Caption    Stores the text displayed on the command button. 

  

  

  

3. Properties store characteristics of objects.  Methods are procedures (operations) that can be performed on objects.  
For example, the SetFocus method can be used to set the “focus” to any control that can accept input.  If used on a text 
box, the SetFocus method causes the cursor to appear in the text box, making it unnecessary for the user to click in the 
text box.  If used on a command button, the SetFocus method causes a “dotted” rectangle to appear on the button.  
When such a rectangle appears, the user does not need to click on the button.  It is enough to press the space bar or 
ENTER. 
 

Add the code “txtNumber1.SetFocus” (without the quotation marks) just before the “End Sub” in the  
“cmdAdd_Click( )” and “cmdClear_Click( )” sub procedures.  Describe the effect of this change on your program 
and explain how this change improves your program. 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-11 



A PROGRAM THAT PROCESSES STRING (TEXT) INFORMATION 

 

Option Explicit 
 

Private Sub cmdMessage_Click() 
 

  'MEMORY: Variable declaration 
  Dim UserName As String 
 

  'INPUT 
  UserName = Trim(txtName.Text) 
 

  'OUTPUT 
  lblMessage.Caption = "Hi " & UserName _ 
                        & "! I'm glad you can spell your name. " _ 
                        & "Your name can't possibly be Balraj " _ 
                        & "since you know how to spell! " _ 
                        & "It was nice meeting you " & UserName _ 
                        & ". Bye!" 
 

End Sub 

Extremely Important Questions 
1. The first statement in every VB program should be “Option Explicit.”  What is its purpose?  How does it help 

you to debug your programs?  What can go wrong if you forget to include it? 

2. An apostrophe (single quotation mark) is used to begin certain statements in VB.  (The word “Rem” can also be used to 
begin this type of statement.)  What are such statements called?  What is their purpose?  How does the computer 
process such statements?  How can these statements be used to remove a statement from a program without deleting it? 

3. A “Sub” is a program subroutine or subprogram, that is, a portion of a program that is named so that it can be 
accessed whenever needed.  The “Sub” shown above is automatically named “cmdMessage_Click” when you double 
click the “cmdMessage” command button.  Explain how VB determines this name. 

4. The statement “Dim UserName As String” is used to declare the variable “UserName.”  The name of the 
variable being declared is ________________ .  Its type is _________________, which means that it is used to store 
______________________ information.  Declaring variables helps programmers to ___________________ their 
programs, allows an operating system to determine how much ___________________ is needed to store the values of 
the variables and it helps to determine which ________________ can be used to process information of a given 
__________. 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-12 



5. The statement “UserName = Trim(txtName.Text)” is called an assignment statement because it is used to 
assign (give) a value to a variable.  Complete the following: 
 

Name of the variable being assigned a value: _________________________________________________________ 
 

Name of the object from which a property is being used in the assignment statement __________________________ 
 

Name of the property whose value is being assigned to the variable: _______________________________________ 
 
Purpose of the “Trim” intrinsic (built-in) function: _____________________________________________________ 
______________________________________________________________________________________________ 

6. Explain the difference between the name of a variable and the value of a variable.  Give an example to illustrate your 
answer. 

7. Explain the difference between the name of an object and the name of a variable.  Give an example to illustrate your 
answer. 

8. What is the purpose of the “&” operator?  What is it called?  To what type of data does it apply? 

9. What is the purpose of quotation marks in VB programs?  What will happen if you forget to use quotation marks 
when they are needed?  What will happen if you use quotation marks when they are not needed? 

10. What is the purpose of using a space followed by an underscore?  Why is this useful? 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-13 



VARIABLES IN MICROSOFT VISUAL BASIC 
Introduction 
Most of us are familiar with variables in a mathematical context.  As you probably already know, a variable is a quantity 
that is capable of assuming any of a set of values.  In other words, variables are used to represent (stand for) unspecified 
or unknown values.  We typically use symbols such as letters to represent such quantities.  For example, when we write  
“x ∈ ,” we mean that the letter x represents a quantity that can assume any natural number (i.e. 1, 2, 3, …) as its value. 

A variable that is used in a computer program is not very different from one that would be used in mathematics.  There is 
only one major difference.  Whereas in mathematics we use single letters (such as x, y and z) as variable names, 
programming languages allow us to use longer and more descriptive names.  This is done for two very simple reasons. 

First, in mathematics, we rarely need to use more than three or four different variables to solve any given problem; there is 
never any danger of running out of variable names.  In programming, however, it is quite possible that a program could 
require the use of far more variables than can be accommodated by the English alphabet. 

Second, and more importantly, it is simply not possible to restrict variable names to single characters and at the same time 
write programs that are easy to read and understand.  It is important to realize that software developers spend 
approximately eighty percent of their time modifying and debugging existing software (most of which is written by other 
people).  If programmers fail to communicate effectively their thoughts and methods, the task of completing projects in a 
timely fashion becomes difficult, if not impossible. 

Specific Aspects of Variables in Visual Basic 
Variables are placeholders that are used to store values in memory (RAM); they have names and data types.  The values 
of variables must be stored in such a way that the CPU of a computer can access them quickly whenever necessary.  
Therefore, primary storage (main memory, “RAM”) is the logical choice.  Since it is always wise to conserve memory, 
and since some types of data are incompatible with other types, programming languages provide the programmer with 
various data types, each having different memory requirements and different applications. 

The data type of a variable determines how the bits representing those values are stored in a computer’s memory.  When 
you declare a variable, you can also supply a data type for it.  All variables have a data type that determines what kind of 
data they can store.  By default, if you do not supply a data type, the variable is given the Variant data type.  The Variant 
data type is like a chameleon — it can represent many different data types in different situations.  You do not have to 
convert between these types of data when assigning them to a Variant variable.  Visual Basic automatically performs any 
necessary conversion. 

If you know that a variable will always store data of a particular type, however, Visual Basic can handle those data more 
efficiently if you declare a variable of that type.  For example, a variable to store a person’s name is best represented as a 
String data type, because a name is always composed of characters.  Data types apply to other things besides variables.  
When you assign a value to a property, that value has a data type.  In fact, just about anything in Visual Basic that 
involves data also involves data types. 

Rules for Naming Variables in Microsoft Visual Basic 
• The first character of a variable name must be a letter. 
• Variable names can contain the letters “a” to “z” or “A” to “Z,” the underscore and the digits 0 to 9. 
• Variable names are case sensitive (e.g. ‘sum’ is different from ‘Sum’). 
• The maximum length of a variable name is 255 characters. 

Summary 
• Variables are used to store values that need to be accessed by a computer’s CPU.  It is especially important to store such values 

whenever the CPU will need to access the values more than once.  The values of variables are stored in RAM. 
• Variables have names and data types.  The names that can be used are governed by the rules listed above.  In the interests of 

making programs easier to read, understand, modify and debug, variable names should be descriptive.  This means that the name 
of a variable should be closely connected with its purpose. 

• Although the Variant data type can be used to store any kind of data, it is generally not wise to use it unless the type of data is not 
known beforehand.  Variant variables use a great deal of memory and can significantly reduce the execution speed of a program. 

• If the type of data is known beforehand, a specific data type should be used.  This helps to conserve memory and it avoids the 
problems that can arise when incompatible data types are used together. 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-14 



 

Data Type Storage Range and Applications 

Data Types Used to Store Integer Values (Whole Number Values, Possibly Including a Negative Sign) 

Byte 1 byte 0 to 255 (0 to 28 – 1) (Used to store small whole numbers.) 

Integer 2 bytes -32,768 to 32,767 (–215 to 215 – 1) (Used to store integers of a moderate size.) 

Long 4 bytes -2,147,483,648 to 2,147,483,647 (–231 to 231 – 1) (Used to store large integers.) 

Data Types Used to Store Floating-Point and Fixed-Point Values (Numbers with a Fractional Part i.e., “Decimals”) 

Single 4 bytes 
−3.402823E38 to −1.401298E-45 for negative values; 1.401298E−45 to 3.402823E38 for 
positive values (Used to store relatively small numbers for scientific applications and for 
animation.) 

Double 8 bytes 
−1.79769313486232E308 to −4.94065645841247E-324 for negative values; 
4.94065645841247E−324 to 1.79769313486232E308 for positive values (Used to store 
relatively large numbers for scientific and financial applications, animation, etc.) 

Currency 8 bytes −922,337,203,685,477.5808 to 922,337,203,685,477.5807 (Used to store money values.) 

Decimal* 14 bytes 

+/−79,228,162,514,264,337,593,543,950,335 with no decimal point;  
+/−7.9228162514264337593543950335 with 28 places to the right of the decimal; smallest 
non-zero number is +/−0.0000000000000000000000000001 *(Variables cannot be declared as type 
“Decimal” but values can be converted to this type by using the “CDec” intrinsic function.  Use a Variant variable to 
store Decimal values.)

Data Types Used to Store Text 

String  
(variable-
length) 

10 bytes + 
string length 0 to approximately 2 billion characters 

String 
(fixed-length) 

Length of 
string 1 to approximately 65,400 characters 

Miscellaneous Data Types 

Boolean 2 bytes True or False (Used for any process that can be described as on/off or true/false, etc) 

Date 8 bytes January 1, 100 to December 31, 9999 

Object 4 bytes Any Object reference 

Variant 
(with numbers) 16 bytes Any numeric value up to the range of a Double 

Variant 
(with characters) 

22 bytes + 
string length Same range as for variable-length String 

User-defined 
(using Type) 

Number 
required by 
elements 

The range of each element is the same as the range of its data type. 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-15 



Questions 
1. In what way does a variable in a computer program differ from a variable used in math class?  Why is this difference 

important? 

2. List the rules for VB variable names.  Why do you suppose that variable names are not allowed to begin with a digit? 

3. Why do programming languages offer software developers so many different data types? 

4. Define the terms debugging, context, variable, primary storage, technicality and contrast. 

5. Why would it be extremely confusing in mathematics to allow variable names to be longer than a single character? 

6. When a computer program is running, where are the values of the variables stored? 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-16 



WHAT IS THE DIFFERENCE BETWEEN AN OBJECT AND A VARIABLE? 
Variables 
• A variable has a very simple structure compared to an object. 

• A variable is used only to store a single value in RAM. 

• When a new value is assigned to a variable, its old value is overwritten (i.e. erased, deleted). 

• Variable names should never begin with the special prefixes that are reserved for object names (e.g. “txt,” “cmd,” 
“lbl,” etc).  This causes a great deal of confusion.  If you do this, it means that you do not understand the difference 
between an object and a variable. 

• If “Option Explicit” is used, variables must be declared explicitly.  (Keep in mind that it is a very bad idea to 
omit “Option Explicit.”  Doing so will make it impossible for VB to detect misspelled variable names.) 

Objects 

Methods 

Properties 

• As shown in the diagram at the right, an object has a very 
complex structure compared to a variable. 

• An object is a collection of properties and methods.  As such, 
an object can store many different values (properties) and 
can perform a variety of different actions (methods). 

• Values can be assigned to the properties of objects but not to 
the objects themselves. 

• Object names in VB should always begin with the special prefixes that are reserved for object names 
(e.g. “txt,” “cmd,” “lbl,” etc).  A list of suggested prefixes for objects in VB can be obtained by searching for “Object 
Naming Conventions” in the MSDN help collection or by clicking here. 

• Normally, objects are not declared using the “Dim” keyword.  Objects are usually 
created visually using the VB form editor and named by using the “Name” property in 
the properties window. 

Questions 
1. An example of a rule in VB is that variable names must begin with a letter.  An 

example of a convention in VB is that object names should begin with a suggested 
prefix that helps to identify the type of object.  Explain the difference between a rule 
and a convention. 

2. Explain the differences between a property and a method.  Which of the two is similar to a variable?  Which is similar 
to a Sub? 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-17 



REVIEW OF ESSENTIAL CONCEPTS IN VISUAL BASIC 
Data (Information) – A Partial List of VB Data Types 
A computer can be viewed as a data processing machine.  Since data can be categorized into various forms that require differing 
amounts of memory and different types of operations, programming languages offer diverse data types.  A summary of the most 
commonly used types of data studied in this course is given in the following diagram. 

Data 

Numeric Text Logical 

Integers Floating Point Numbers Fixed Point Numbers 

  

Byte 
(1 byte 
storage) 

Integer 
(2 bytes storage) 

Long 
(4 bytes storage) 

Single 
(4 bytes storage) 

Double 
(8 bytes storage) 

Currency 
(8 bytes storage) 

String 
(10 bytes + 

string length 
storage)

Boolean 
(2 bytes storage) 

0 … 28 – 1 
 

(0 … 255) 

–215 … 215 – 1 
 

(−32768… 
32767) 

–231 … 231 – 1 
 
(−2147483648 
…2147483647) 

–3.402823E38 …  
–1.401298E – 45 

for negative values 

1.401298E – 45 … 
3.402823E38 for 
positive values 

(7 significant digits) 

– 1.79769313486232E308 … 
– 4.94065645841247E – 324 

for negative values 
 

4.94065645841247E – 324 … 
1.79769313486232E308 for 

positive values 

(15 significant digits) 

– 922,337,203,685,477.5808 
… 

922,337,203,685,477.5807  
 

(Used to store money 
values.) 

Used to 
store text 

information. 

True False 

+, −, *, /, ^, Sqr, … &, 
Left, 

Right, 
Mid, 
… 

And, 
Or, 
Not. 
… 

A Computer as a Data Processing Machine 

 

Processing 
e.g. +, −, *, /, 
CStr, Val, Sqr 

Memory 
e.g. variables, 

files 

Output 
e.g. text box, 

MsgBox, label 

Input 
e.g. text box, 

InputBox 

Some Useful Intrinsic (Built-In) Functions 
• Val  Converts a string value to a numeric value e.g. Val ("23.47") → 23.47 

• CStr  Converts any value to a string value e.g. CStr (23.47) → "23.47" 

• Sqr Returns the square root of any non-negative numeric value e.g. Sqr (100) → 10 

• Chr Converts an ASCII (ANSI) value to its corresponding character e.g. Chr (122) → "z" 

• Asc Returns the ASCII (ANSI) value of a character e.g. Asc ("z") → 122 

• Trim Remove all leading and trailing blank spaces from a string e.g. Trim("      Ashley      Walsh    ") → "Ashley      Walsh" 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-18 



A COMPLETE LIST OF VISUAL BASIC DATA TYPES 
Data (Information) 
A computer can be viewed as a data processing machine.  Since data can be categorized into various forms that require differing amounts of memory, designers of programming languages separate data into 
diverse types.  A summary of all the types of data studied in this course is given in the following diagram. 

Data 

Variant 

             Numeric  

 

Integers   Floating Point Numbers Fixed Point Numbers 

  

Byte 
(1 byte of 
storage) 

Integer 
(2 bytes of 

storage) 

Long 
(4 bytes of 

storage) 

Single 
(4 bytes of storage) 

Double 
(8 bytes of storage) 

Decimal 
(14 bytes of storage) 

Currency 
(8 bytes of storage) 

String 
(10 bytes + string length 

of storage) 

Boolean 
(2 bytes of 

storage) 

Date 
(8 bytes of storage) 

Object 
(4 bytes of 

storage) 

0 … 255 –215 … 215 – 1 –231 … 231 – 1 –3.402823E38 to  
–1.401298E – 45 for 

negative values 

1.401298E – 45 to 
3.402823E38 for 
positive values 

(7 significant digits) 

–1.79769313486232E308 
to  

–4.94065645841247E–324 
for negative values 

4.94065645841247E – 324 
to 1.79769313486232E308 

for positive values 

(15 significant digits) 

+/-79,228,162,514,264,337,593,543,950,335 
with no decimal point; 

+/-7.9228162514264337593543950335 with 
28 places to the right of the decimal; 

smallest non-zero number is  
+/-0.0000000000000000000000000001 

Note: In VB6, variables cannot be declared as type 
“Decimal.”  However, the CDec intrinsic function 
can be used to convert a given numeric type to type 
“Decimal.” 

-922,337,203,685,477.5808 
to 

922,337,203,685,477.5807 

Used to store text 
information. 

True False January 1, 100 to 
December 31, 9999 

Any Object 
reference 

A Variant variable can be used to store data of any type.  However, as always, 
there is a price to be paid!  Variant variables use up a great deal of memory, so 
they should be used sparingly.  Whenever the data type of a variable is known 
beforehand, a specific type such as Integer should be used.  This reduces 
memory requirements, which in turn improves the overall efficiency of a 
program. 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic SDVB-19 



UNDERSTANDING VISUAL BASIC PROGRAMMING 
Review: Concepts that you need to Understand before you can Create Good VB Programs 

Concept Explanation 

1. Variables and Variable 
Types 

1. Variables in programming languages are similar to mathematical variables.  They are used to store 
any value (in RAM) from a set of values (i.e. to stand for a certain value from a set of values).  
For example, the VB statement “Dim Age As Byte” means that the name “Age” is used to store 
any whole number from 0 to 255 inclusive. 

2. Why is it necessary to 
declare variables? 

2. The VB statement shown above (“Dim Age As Byte”) is called a variable declaration.  It 
“declares” both the name and the type of the variable.  Declaring the name helps in debugging 
programs because misspelled variable names are detected immediately.  Declaring the type is also 
helpful because it allows the OS to know exactly how much memory your program needs to store 
the values of variables and it determines which operations can be applied to the data. 

3. What are the rules for 
naming variables? 

3. Variable names can be 1 to 255 characters long.  The only allowed characters are the letters from 
“a” to “z” (uppercase or lowercase), the digits from 0 to 9 and the underscore.  To avoid confusing 
variable names with numbers, variable names are not allowed to begin with a digit.  They must 
begin with an alphabetic character (i.e. a letter). 

4. What are the most 
commonly used variable 
types? 

4. In this course, we shall be using the integer variable types Byte, Integer and Long, the floating-
point types Single and Double, the text type String and the logical type Boolean.  Programming 
languages offer many variable types to allow programmers to use memory efficiently and to allow 
for logical distinctions to be made among different types of data. 

5. What on Earth is a 
String? 

5. A string is simply a sequence or a “string” of characters, that is, a piece of text.  Examples of 
strings include “Central Peel” and “32 Kennedy Road North.”  String values are always enclosed 
in quotation marks to distinguish them from variable names, object names, procedure names 
(e.g. “Sub” names and “Function” names) and VB keywords. 

6. What is a good practice 
for naming variables? 

6. “UpperCamelCase” should be used for naming variables in VB.  Since spaces are not allowed in 
variable names, a good practice is to capitalize the first letter of each word.  For example, it is 
much easier to read the variable name FirstName than it is to read the variable name firstname. 

7. Does the user know 
anything about variable 
names? 

7. Everything about a program, except for the interface, is invisible to users.  Variable names, object 
names and all other aspects of code are seen only by programmers.  Remember that variable 
names allow programmers to store, recall and modify values in memory.  It is useful to think of 
memory (RAM) as a workspace in which data and instructions are stored. 

8. How should objects be 
named? 

8. “lowerCamelCase” should be used to name objects in VB.  In addition, to minimize confusion, 
most VB programmers use prefixes to identify the various types of objects.  Text box names begin 
with txt, form names begin with frm, command button names begin with cmd and label box 
names begin with lbl.  (e.g.  

9. What is an assignment 
statement? 

9. Assignment statements are used to give values to variables. 
e.g. FirstName = "Jordan"  'String value assigned to string variable 
     Age=16  'Numeric value assigned to numeric variable 

10. How are math operations 
written in VB? 

10. +, −, *, /, ^ are used for “add,” “subtract,” “multiply,” “divided by” and “to the exponent of” 
respectively.  Scientific notation is written with an “E” (e.g. 2 × 1030 is written 2E30). 

11. What is a property? 

11. A property is an attribute or characteristic of an object.  Objects have many different properties.  
Some of the properties can be modified at design-time (when the program is being written) or 
run-time (when the program is running), while others can only be modified at run-time.  In VB 
code, the object name and property name are separated by a dot (e.g. txtDisplay.Text). 

12. What is debugging? 

12. Debugging is the process of systematically eliminating errors from software.  Two types of 
programming errors can occur.  Syntax errors are caused by breaking the rules of the 
programming language.  Such errors are detected by the programming environment.  Logic errors 
exist in code when the software does not perfectly accomplish what it is intended to.  Such errors 
can only be detected by extremely thorough testing. 

13. Why is it important to 
indent programs 
correctly? 

13. Indenting programs correctly makes them much easier to read, understand, debug and modify.  
Each statement within a Sub should be indented one TAB space to the right.  See pages 10, 27 
and 30 for more information on proper indentation.  In addition, you should study the 
programming examples stored on the “I:” drive to see examples of proper indentation. 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-20 



WRITING YOUR OWN CODE: CURRENCY CONVERTER PROGRAM 
The Most Important Lesson of the Entire Unit 
The process of writing a program can be viewed as a form of “teaching.”  Whenever you write any computer program, 
you are, in a sense, “teaching” a computer how to solve a particular problem.  KEEP IN MIND THAT YOU CANNOT “TEACH” 
A COMPUTER TO SOLVE A PROBLEM THAT YOU DO NOT KNOW HOW TO SOLVE! 

 
BEFORE YOU EVEN ATTEMPT TO WRITE CODE (PROGRAMMING INSTRUCTIONS), FIRST YOU MUST DEVISE A STRATEGY!  
BEFORE YOU CAN DEVISE A STRATEGY, YOU MUST ENSURE THAT YOU UNDERSTAND THE PROBLEM!  THE FOLLOWING 
TABLE DESCRIBES A SOUND APPROACH TO SOFTWARE DEVELOPMENT.  IF YOU HOPE TO BE SUCCESSFUL, FOLLOW THE 
GUIDELINES IN THE SECOND AND THIRD COLUMNS.  DO NOT FOLLOW THE STEPS IN THE FIRST COLUMN! 

Planning and Developing Solutions to Software Development Problems 
Wrong!!!!! 

(Most Students) 
Right!!!!!! 

(George Polya) How these Steps Apply to Software Development 

1. Read problem 

2. Type code 

3. Click on the 

       
   button 

 

1. Analysis 
Understand the 
problem 

• Do you understand what is required?  If you do not, you run the risk of 
creating an incomplete solution or solving the wrong problem altogether! 

• What information must be input? 
• What information must be output? 

  
• Have you tried solving a few specific examples of the given general 

programming problem using pencil, paper and calculator? 
2. Design 

Choose a strategy 
• Do not write any code yet! 
• On paper, design a few different possible interfaces (i.e. forms) for your 

program. 
• Develop or look up an algorithm for solving the problem.  (An algorithm is 

a step-by-step recipe for solving a given problem.) 
• Consider alternative algorithms. 

3. Implementation 
Carry out the 
strategy 

• Write the code but not all in one fell swoop. 
• Break up the large problem into several smaller sub-problems. 
• Solve each sub-problem separately. 
• Do not integrate a solution to a sub-problem into the larger solution until 

you are confident that it is correct. 
• It is also wise to save each version of your program.  In case of a 

catastrophe, you can always go back to an earlier version. 
4. Validation 

Check the 
solution 

• Extensive testing should take place to find bugs that were not noticed in the 
implementation phase. 

• It is best to allow the testing to be done by average computer users who are 
not programmers.  Because of their computer expertise, programmers 
subconsciously tend to avoid actions that cause computer programs to fail. 

• Once the software is released, additional bug fixes will usually be necessary 
as users report previously undiscovered bugs.  This is known as the 
maintenance phase. 

? Input Output 

I told you to solve that 
problem for me!  It 

shouldn’t matter that I 
can’t solve it! 

 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-21 



Example of a General Problem 
Write a program that uses a given exchange rate to convert one currency into another. 
Step 1 – Analysis (Understand the Problem) 

• Amount in “From” 
Currency to be Exchanged 

Input Output Converted amount in “To” Currency 

• “To” Currency 
• “From” Currency 
• Exchange Rate 

 
Example of a Pencil/Paper/Calculator Solution of a Specific Example 
Suppose that the exchange rate for converting Canadian funds into American funds is 0.924556.  If you wish to convert 
$1000.00 Canadian to American funds you need to do the following: 
 

Equivalent American Amount = 1000×0.924556 = $924.56 

Step 2 – Design (Choose a Strategy) 
DO NOT write code at this stage.  First decide how the input information will be 
processed.  Use your specific example from step one as a model for creating a general 
solution to the problem. 
 
Amount in “To Currency” = (Amount in “From Currency”)*(Exchange Rate) 

Step 3 – Implementation (Carry out the Strategy) 
Now it IS time to write code!  However, before you rush to your computer, use the format shown below to write a plan on 
paper first! 

ALGORITHM 

INPUT 
What information does the user enter? 
• Amount in “From” Currency to be 

Exchanged 
• Exchange Rate 
• “From” Currency 
• “To” Currency 

PROCESSING 
What must be done with the information? 
Amount in “To Currency” =  
(Amount in “From Currency”)*(Exchange Rate) 

OUTPUT 
What should be displayed after 
processing is complete? 
Amount in “To Currency” 

VARIABLES (MEMORY) 
LOCAL VARIABLES 

 

GLOBAL VARIABLES 

No global variables are required. 

CODE 
Code for Input 
AmountToExchange = Val(txtAmount.Text) 

ExchangeRate = Val(txtExchangeRate.Text) 

FromCurrency = Trim(txtFromCurrency.Text) 

ToCurrency = Trim(txtToCurrency.Text) 

Code for Processing 
ConvertedAmount = Round(AmountToExchange * ExchangeRate, 2) 

Code for Output 
lblResult.Caption = Format(AmountToExchange, "Currency") & " in " & FromCurrency _ 
                 & " funds is equivalent to " & Format(ConvertedAmount, "Currency") _ 
                 & " in " & ToCurrency & " funds." 
 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-22 



Step 4 – Validation (Check the Solution) 
Test your program thoroughly before you decide that you are finished. 
• Try entering very large numbers or extremely small numbers. 
• Try entering characters other than digits. 
• Try leaving certain text boxes blank. 
• Pretend that you are two years old and that buttons fascinate you.  Press a variety of different keys, including 

combinations of keys, to see what happens.  In addition, try clicking the mouse buttons in the most ridiculous ways 
imaginable. 

If your program survives these tests, it is likely that it is correct.  If not, track down the bugs and correct them.  Then 
repeat the testing process until all the pesky bugs have been exterminated. 

VISUAL BASIC PRACTICE PROBLEMS: INPUT, PROCESSING, OUTPUT 
1. Write a program that asks the user to type her name in a text box.  The 

program responds by displaying a friendly message in a label box.  For 
example, if Linda were to type in her name, the computer would display 
the message “Hi Linda! I’m glad you can spell your name. Your name 
can’t possibly be Balraj since you know how to spell! It was nice 
meeting you Linda. Bye!” 
 
Hint: To solve this problem, you need to know how to use the string 
concatenation operator (“&”). 
 

Solution 
I:\Out\Nolfi\Ics3m0\Simple VB Examples\Friendly Message\FriendlyMessage.vbp 

 
2. Write a program that asks the user for his name and a number.  The 

program then responds by displaying, in a label box, a message along 
with the square of the number.  For instance, if Bryan were to enter his 
name and the number 13, the program would display the message, “The 
square of 13 is 169, oh great master Bryan!” 
 
Hint: To solve this problem, you need to know understand the 
difference between local variables and global variables. 

 
3. Write a program that allows a user to enter unit cost, quantity and a rate 

of discount.  The program then displays the discount, the GST (6%), the 
PST (8%) and the total cost. 
 

Note that the discount should be applied before taxes are calculated!  In 
the example shown at the right, the amount before taxes is $1935.00.  
Then a 10% discount is applied, resulting in a cost of $1741.50 before 
taxes.  The GST and PST are then calculated using the $1741.50 figure.
 
Solution 
I:\Out\Nolfi\Ics3m0\Simple VB Examples\GST PST\GSTPSTExample.vbp 

 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-23 



VB REVIEW 1- IMPORTANT PROGRAMMING TERMINOLOGY 
1. State the meaning of each of the operators given in the table below.  In addition, provide an example of how each 

operator can be used in Visual Basic. 

Operator Meaning Example 

+   

−   

*   

/   

^   

<   

>   

<=   

>=   

< >   

&   

2. Explain the difference between an object and a variable.  Give an example to illustrate your answer. 

3. Victor has used the following variable declarations.  Explain what is wrong with the variable names that Victor has 
chosen.  Has he made any errors in choosing the data type of any of the variables? 
 
Dim txtName As String, lblNumber As Integer, cmdAddress As String 
Dim numberofstudents As String, familyname As Integer, x As String, y As String 

4. Complete the following. 
 
Private Sub cmdPressMe_Click() 
 

   Dim Name As String 
   Name = txtName.Text 
   lblGreeting.Visible = True 
   lblGreeting.Caption = "Have a nice day " & Name & "." 
 

End Sub 

Name of 

Name of 

Name of 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-24 



5. The following VB sub will work correctly but it is somewhat unclear; that is, the statements within the sub may be 
difficult for some people to understand.  Explain why. 
 

Private Sub cmdClear_Click() 
 

    txtName = "" 
    txtAddress = "" 
    lblSalePrice = "" 
    lblSalesTax = "" 
 

End Sub 

6. Classify each of the following VB concepts. 
VB Concepts Circle the term that best describes the VB concepts in the left column 
Private, Sub, End, Dim, 
String, Byte, Integer, Long, 
Single, Double, Currency, As, 
If, ElseIf, Else, True 

String 
Cons- 
tant 

Num- 
eric 
Cons- 
tant 

Num- 
eric 
Vari- 
able 

Data 
Types 

String  
Vari- 
able 

Value 
of a 
vari- 
able 

Oper- 
ators 

Assign- 
gnment 
State- 
ment 

Prop- 
erty 

VB 
key- 
words 

Ob- 
ject 

Intrin- 
sic 
Func- 
tions 

Meth- 
od 

Expre-  
ssion 

+, -, *, /, ^, <, >, <=, >=, < >, & 
String 
Cons- 
tant 

Num- 
eric 
Cons- 
tant 

Num- 
eric 
Vari- 
able 

Data 
Types 

String 
Vari- 
able 

Value 
of a 
vari- 
able 

Oper- 
ators 

Assign- 
gnment 
State- 
ment 

Prop- 
erty 

VB 
key- 
words 

Ob- 
ject 

Intrin- 
sic 
Func- 
tions 

Meth- 
od 

Expre-  
ssion 

"Central Peel Secondary" 
String 
Cons- 
tant 

Num- 
eric 
Cons- 
tant 

Num- 
eric 
Vari- 
able 

Data 
Types 

String  
Vari- 
able 

Value 
of a 
vari- 
able 

Oper- 
ators 

Assign- 
gnment 
State- 
ment 

Prop- 
erty 

VB 
key- 
words 

Ob- 
ject 

Intrin- 
sic 
Func- 
tions 

Meth- 
od 

Expre-  
ssion 

String, Byte, Integer, Long, 
Single, Double, Currency 

String 
Cons- 
tant 

Num- 
eric 
Cons- 
tant 

Num- 
eric 
Vari- 
able 

Data 
Types 

String  
Vari- 
able 

Value 
of a 
vari- 
able 

Oper- 
ators 

Assign- 
gnment 
State- 
ment 

Prop- 
erty 

VB 
key- 
words 

Ob- 
ject 

Intrin- 
sic 
Func- 
tions 

Meth- 
od 

Expre-  
ssion 

Val, Int, Round, Trim, Format, 
CStr, Str 

String 
Cons- 
tant 

Num- 
eric 
Cons- 
tant 

Num- 
eric 
Vari- 
able 

Data 
Types 

String  
Vari- 
able 

Value 
of a 
vari- 
able 

Oper- 
ators 

Assign- 
gnment 
State- 
ment 

Prop- 
erty 

VB 
key- 
words 

Ob- 
ject 

Intrin- 
sic 
Func- 
tions 

Meth- 
od 

Expre-  
ssion 

23.7395624584 
String 
Cons- 
tant 

Num- 
eric 
Cons- 
tant 

Num- 
eric 
Vari- 
able 

Data 
Types 

String  
Vari- 
able 

Value 
of a 
vari- 
able 

Oper- 
ators 

Assign- 
gnment 
State- 
ment 

Prop- 
erty 

VB 
key- 
words 

Ob- 
ject 

Intrin- 
sic 
Func- 
tions 

Meth- 
od 

Expre-  
ssion 

Age (declared as Byte) 
String 
Cons- 
tant 

Num- 
eric 
Cons- 
tant 

Num- 
eric 
Vari- 
able 

Data 
Types 

String  
Vari- 
able 

Value 
of a 
vari- 
able 

Oper- 
ators 

Assign- 
gnment 
State- 
ment 

Prop- 
erty 

VB 
key- 
words 

Ob- 
ject 

Intrin- 
sic 
Func- 
tions 

Meth- 
od 

Expre-  
ssion 

Address (declared as String) 
String 
Cons- 
tant 

Num- 
eric 
Cons- 
tant 

Num- 
eric 
Vari- 
able 

Data 
Types 

String  
Vari- 
able 

Value 
of a 
vari- 
able 

Oper- 
ators 

Assign- 
gnment 
State- 
ment 

Prop- 
erty 

VB 
key- 
words 

Ob- 
ject 

Intrin- 
sic 
Func- 
tions 

Meth- 
od 

Expre-  
ssion 

SubTotal * 0.07 
String 
Cons- 
tant 

Num- 
eric 
Cons- 
tant 

Num- 
eric 
Vari- 
able 

Data 
Types 

String  
Vari- 
able 

Value 
of a 
vari- 
able 

Oper- 
ators 

Assign- 
gnment 
State- 
ment 

Prop- 
erty 

VB 
key- 
words 

Ob- 
ject 

Intrin- 
sic 
Func- 
tions 

Meth- 
od 

Expre-  
ssion 

GST = SubTotal * 0.07 
String 
Cons- 
tant 

Num- 
eric 
Cons- 
tant 

Num- 
eric 
Vari- 
able 

Data 
Types 

String  
Vari- 
able 

Value 
of a 
vari- 
able 

Oper- 
ators 

Assign- 
gnment 
State- 
ment 

Prop- 
erty 

VB 
key- 
words 

Ob- 
ject 

Intrin- 
sic 
Func- 
tions 

Meth- 
od 

Expre-  
ssion 

PizzaBasePrice = 18.9 
(underlined part) 

String 
Cons- 
tant 

Num- 
eric 
Cons- 
tant 

Num- 
eric 
Vari- 
able 

Data 
Types 

String  
Vari- 
able 

Value 
of a 
vari- 
able 

Oper- 
ators 

Assign- 
gnment 
State- 
ment 

Prop- 
erty 

VB 
key- 
words 

Ob- 
ject 

Intrin- 
sic 
Func- 
tions 

Meth- 
od 

Expre-  
ssion 

txtName.Text 
(underlined part) 

String 
Cons- 
tant 

Num- 
eric 
Cons- 
tant 

Num- 
eric 
Vari- 
able 

Data 
Types 

String  
Vari- 
able 

Value 
of a 
vari- 
able 

Oper- 
ators 

Assign- 
gnment 
State- 
ment 

Prop- 
erty 

VB 
key- 
words 

Ob- 
ject 

Intrin- 
sic 
Func- 
tions 

Meth- 
od 

Expre-  
ssion 

txtName.Text 
(underlined part) 

String 
Cons- 
tant 

Num- 
eric 
Cons- 
tant 

Num- 
eric 
Vari- 
able 

Data 
Types 

String  
Vari- 
able 

Value 
of a 
vari- 
able 

Oper- 
ators 

Assign- 
gnment 
State- 
ment 

Prop- 
erty 

VB 
key- 
words 

Ob- 
ject 

Intrin- 
sic 
Func- 
tions 

Meth- 
od 

Expre-  
ssion 

txtName.SetFocus 
(underlined part) 

String 
Cons- 
tant 

Num- 
eric 
Cons- 
tant 

Num- 
eric 
Vari- 
able 

Data 
Types 

String  
Vari- 
able 

Value 
of a 
vari- 
able 

Oper- 
ators 

Assign- 
gnment 
State- 
ment 

Prop- 
erty 

VB 
key- 
words 

Ob- 
ject 

Intrin- 
sic 
Func- 
tions 

Meth- 
od 

Expre-  
ssion 

What is this string called?  What is its purpose? 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-25 



VB REVIEW 2- TRANSLATING MATH FORMULAS INTO VB 
1. Translate the following mathematical formulas into VB.  Remember to use meaningful, descriptive variable names! 

Hints: + = +, − = −, × = *, ÷ = /, integer division = \, exponent = ^, = Sqr, 
(See “Math Functions” in the MSDN collection for a complete list of mathematical functions.) 

2A rπ=   

34
3V rπ=   

2
bhA =   

( )
2

h a bA +
=   

2 2c a b= +   

2 2b c a= −   

2. Write a VB program that can calculate the area of a circle, triangle, rectangle, parallelogram or trapezoid.  Your 
program should have some way of allowing the user to select the desired shape and to enter the required dimensions.  
Remember to use the following format to plan your solution. 

ALGORITHM 

INPUT 
What information does the user 
enter? 

PROCESSING 
What must be done with the information? 

OUTPUT 
What should be displayed after 
processing is complete? 

VARIABLES (MEMORY) 
LOCAL VARIABLES GLOBAL VARIABLES 

CODE 

Code for Input Code for Processing Code for Output 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-26 



LEARNING ABOUT SELECTION STATEMENTS (IF STATEMENTS) BY STUDYING THE 

PYTHAGOREAN THEOREM PROGRAM 
'Code for Solve button 

Private Sub cmdSolve_Click() 

    'MEMORY 

    Dim Base As Double, Height As Double 
    Dim Hypotenuse As Double 

    'INPUT 

    Height = Val(txtHeight.Text) 
    Base = Val(txtBase.Text) 
    Hypotenuse = Val(txtHypotenuse.Text) 

    'PROCESSING and OUTPUT 

    If Hypotenuse = 0 Then 
        Hypotenuse = Sqr(Base ^ 2 + Height ^ 2) 
        txtHypotenuse.Text = CStr(Hypotenuse) 

Review 1 
The words displayed in boldface are called VB 
keywords.  Keywords have special meanings in VB and 
cannot be used as variable or object names.  In other 
words, keyword names are reserved names. 

When you are in the process of designing a VB program, 
in what colour are the keywords displayed? 

    ElseIf Base = 0 Then 
        Base = Sqr(Hypotenuse ^ 2 - Height ^ 2) 
        txtBase.Text = CStr(Base) 
    ElseIf Height = 0 Then 
        Height = Sqr(Hypotenuse ^ 2 - Base ^ 2) 
        txtHeight.Text = CStr(Height) 
    Else 
        ' There are errors in data entered by user. 

        MsgBox "You have entered invalid data!", _ 
                   vbExclamation, "There is a problem!" 

Review 2 
These are VB comments.  What is their purpose?  In 
what colour are they displayed while you are designing a 
VB program? 

    End If 

End Sub 

 

• Both If and ElseIf clauses must have a condition and must have the keyword Then. 
• There may be zero Else clauses or one Else clause.  Else must follow If and ElseIf, and Else must not have a condition 

or the keyword Then.  Else means “if all else fails.” 

• There must be exactly one If and one End If 
• There may be zero or more ElseIf clauses.  ElseIf clauses must follow If and precede Else. 

If statements are used in programs to make decisions or selections.  The rules for If statements are as follows: 

• If statements begin with the word If and end with the words End If 

 
 

{
• There must be exactly one If. 

• There may be zero or more 
ElseIf clauses. 

• There may be zero or one Else 
clauses. 

• There must be exactly one  
End If (to mark the end of the 
selection structure). 

Else 
 statements 
End If 

• A condition is formed by using 
conditional operators such as 
=, <, >, <=, >=, < >, Is and Like. 
 

e.g. If Age >= 19 Then 

• Conditions can be combined by 
using logical operators such as 
And, Or and Not. 

• The term statements refers to any 
group of valid VB statements.  
Notice that the statements are 
further indented one TAB within 
If statements.  The statements 
that begin with If, ElseIf and 
Else are NOT indented further. 

General Structure of an 
If Statement 

If condition Then 
 statements 
ElseIf condition Then 
 statements 

. 

. 

. 
ElseIf condition Then 
 statements 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-27 



An Improved Version of the Pythagorean Theorem Program 
If you have thoroughly tested the preliminary version 1.0.0 of the “Triangle Solver,” you should have noticed several bugs.  The 
following version uses conditional operators and extra conditions to correct the bugs and make the program foolproof. 
'Code for Solve button 

Private Sub cmdSolve_Click() 

    'MEMORY 

    Dim Base As Double, Height As Double, Hypotenuse As Double 

    'INPUT 

    Height = Val(txtHeight.Text) 
    Base = Val(txtBase.Text) 
    Hypotenuse = Val(txtHypotenuse.Text) 

    'PROCESSING and OUTPUT 

    If Hypotenuse = 0 And Base > 0 And Height > 0 Then 
        Hypotenuse = Sqr(Base ^ 2 + Height ^ 2) 
        txtHypotenuse.Text = CStr(Hypotenuse) 

    ElseIf Base = 0 And Height > 0 And Hypotenuse > Height Then 
        Base = Sqr(Hypotenuse ^ 2 - Height ^ 2) 
        txtBase.Text = CStr(Base) 

    ElseIf Height = 0 And Base > 0 And Hypotenuse > Base Then 
        Height = Sqr(Hypotenuse ^ 2 - Base ^ 2) 
        txtHeight.Text = CStr(Height) 

    Else 
        ' There are errors in the data entered by the user. 

        MsgBox "You have entered invalid data!", _ 
                             vbExclamation, "There is a problem!" 

In the other two compound conditions, why do 
we have Hypotenuse > Base and 
Hypotenuse > Height?  Why don’t we 
use the condition Hypotenuse > 0? 

The logical operator And is being used to create 
a compound condition.  For the compound 
condition to be True, ALL the conditions 
connected by And must be true. 

For example, for the hypotenuse to be 
calculated correctly, the user must enter a 
positive value for the height, a positive value 
for the base and leave the text box for the 
hypotenuse blank.  The first compound 
condition checks that all these requirements are 
met. 

    End If 

End Sub 

After I finish high school, should I go to 
university, college or find a job? Picturing “If” Statements 

The following diagram can be useful in understanding the 
flow of information during the execution of an “If” statement 
is executed.  “If” statements are a lot like travelling along a 
path and suddenly reaching a “fork.”  When this happens, a 
decision needs to be made. 

Apply for Jobs Apply to Universities Apply to Colleges 

College is Chosen Job is Chosen University is Chosen 

Exercises 
1. Write a program that allows a user to enter a mark in an input box.  The 

program then displays “Congratulations you have PASSED,” or “Sorry, you 
have FAILED” in a message box depending on whether the mark is greater 
than or equal to 50 or less than 50. 

2. Most universities in North America use a grading system known as the GPA 
(grade point average) system.  It is summarized in the table given below. 

Percentage Grade Grade Point Score 
85% − 100% 4.0 
80% − 84% 3.7 
77% − 79% 3.3 
74% − 76% 3.0 
70% − 73% 2.7 
67% − 69% 2.3 
64% − 66% 2.0 
60% − 63% 1.7 
57% − 59% 1.3 
54% − 56% 1.0 
50% − 53% 0.7 
0% − 49% 0.0 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-28 



THE AREA CALCULATOR PROGRAM - ANOTHER PROGRAM THAT REQUIRES “IF” STATEMENTS 
Introduction – What you will learn by studying the Area Calculator 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-29 

• How to use option buttons 
• How to create a VB project that uses two or more forms 
• How a form can access objects on a different form 
• The most basic way of using a message box (For a more detailed 

explanation of message boxes, see pages 53-55.) 

What you need to do 
The “Area Calculator” program can be found in 
I:\Out\Nolfi\Tik2o0\Area Calculator .  Load this program and study the code carefully.  Notice that an “If” statement is 
used to determine the shape selected by the user. 
Private Sub cmdGo_Click() 

If optRectangle.Value = True Then 
  frmChosenShape.imgShape.Picture=imgRectangle.Picture 
  frmChosenShape.Caption = "Area of Rectangle" 
  frmChosenShape.lblDimension1.Visible = True 
  frmChosenShape.lblDimension2.Visible = True 
  frmChosenShape.lblDimension3.Visible = False 
  frmChosenShape.lblDimension1.Caption = "l=" 
  frmChosenShape.lblDimension2.Caption = "w=" 
  frmChosenShape.lblDimension3.Caption = "" 
  frmChosenShape.txtDimension1.Visible = True 
  frmChosenShape.txtDimension2.Visible = True 
  frmChosenShape.txtDimension3.Visible = False 
  frmChosenShape.Show 

ElseIf optParallelogram.Value = True Then 
  frmChosenShape.imgShape.Picture=imgParallelogram.Picture 
  frmChosenShape.Caption = "Area of Parallelogram" 
  frmChosenShape.lblDimension1.Visible = True 
  frmChosenShape.lblDimension2.Visible = True 
  frmChosenShape.lblDimension3.Visible = False 
  frmChosenShape.lblDimension1.Caption = "b=" 
  frmChosenShape.lblDimension2.Caption = "h=" 
  frmChosenShape.lblDimension3.Caption = "" 
  frmChosenShape.txtDimension1.Visible = True 
  frmChosenShape.txtDimension2.Visible = True 
  frmChosenShape.txtDimension3.Visible = False 
  frmChosenShape.Show 

ElseIf optTriangle.Value = True Then 
  frmChosenShape.imgShape.Picture=imgTriangle.Picture 
  frmChosenShape.Caption = "Area of Triangle" 
  frmChosenShape.lblDimension1.Visible = True 
  frmChosenShape.lblDimension2.Visible = True 
  frmChosenShape.lblDimension3.Visible = False 
  frmChosenShape.lblDimension1.Caption = "b=" 
  frmChosenShape.lblDimension2.Caption = "h=" 
  frmChosenShape.lblDimension3.Caption = "" 
  frmChosenShape.txtDimension1.Visible = True 
  frmChosenShape.txtDimension2.Visible = True 
  frmChosenShape.txtDimension3.Visible = False 
  frmChosenShape.Show 

ElseIf optCircle.Value = True Then 

  frmChosenShape.imgShape.Picture=imgCircle.Picture 
  frmChosenShape.Caption = "Area of Circle" 
  frmChosenShape.lblDimension1.Visible = False 
  frmChosenShape.lblDimension2.Visible = True 
  frmChosenShape.lblDimension3.Visible = False 
  frmChosenShape.lblDimension1.Caption = "" 
  frmChosenShape.lblDimension2.Caption = "r=" 
  frmChosenShape.lblDimension3.Caption = "" 
  frmChosenShape.txtDimension1.Visible = False 
  frmChosenShape.txtDimension2.Visible = True 
  frmChosenShape.txtDimension3.Visible = False 
  frmChosenShape.Show 

ElseIf optTrapezoid.Value = True Then 

  frmChosenShape.imgShape.Picture=imgTrapezoid.Picture 
  frmChosenShape.Caption = "Area of Trapezoid" 
  frmChosenShape.lblDimension1.Visible = True 
  frmChosenShape.lblDimension2.Visible = True 
  frmChosenShape.lblDimension3.Visible = True 
  frmChosenShape.lblDimension1.Caption = "a=" 
  frmChosenShape.lblDimension2.Caption = "b=" 
  frmChosenShape.lblDimension3.Caption = "h=" 
  frmChosenShape.txtDimension1.Visible = True 
  frmChosenShape.txtDimension2.Visible = True 
  frmChosenShape.txtDimension3.Visible = True 
  frmChosenShape.Show 

Else 
  MsgBox "Please select one of the shapes before clicking 'Go!'", _ 
  
End If 

        vbExclamation 

End Sub 
 

Questions 
1. What prefix should be used for naming option buttons? 

2. What property of an option button can your program check to see if the option button is selected? 

3. Explain how a form can access objects from a different form. 

4. The area calculator program uses two forms, one that is used to select the shape and another that is used to allow the 
user to enter the dimensions of the shape.  How is this accomplished? 

5. Once the user chooses a shape and clicks “Go,” another form is displayed to allow the user to enter the dimensions of 
the shape.  How would you prevent the user from returning to the original form (the parent form) unless the new form 
(the child form) is first closed?



PIZZA PROGRAM SOLUTIONS AND QUESTIONS 

  
The Problem 
“Newfoundland Style Pizzeria Problem” 

The Plan 

INPUT 
What information must the user 
enter? 
Process Order Button 
Pizza Size, Number of Pizzas, Number 
of Toppings, Number of Drinks 

Calculate Change Button 
Amount of money customer pays. 

PROCESSING 
What must be done with the information? 
Process Order Button 
1. Determine base price for pizza size chosen 
2. Determine price per topping for chosen size 
3. Calculate cost before taxes 
4. Calculate GST and PST 
5. Calculate total for order 
6. Add total to total for all customers 
7. Increase the number of orders by 1 
8. Calculate the average cost of each order 

Calculate Change Button 
Calculate change. 

OUTPUT 
What should be displayed after 
processing is complete? 
Process Order Button 
1. Display subtotal 
2. Display GST 
3. Display PST 
4. Display total 
5. Display total spent by all customers 
6. Display average amount spent by 

each customer 
Calculate Change Button 
Display change. 

   

VARIABLES (MEMORY) 

LOCAL VARIABLES GLOBAL VARIABLES 

Integer Variables 
NumPizzas 

NumToppings 

NumDrinks 

Currency Variables 
PizzaBasePrice 
PricePerTopping 
SubTotal 
GST 
PST 
Change 
CashTendered 
AverageAmountSpent 

Currency Variables 
TotalCostOfOrder 

TotalSpentByAllCustomers 

NumOrders 

SIZE BASE PRICE EACH TOPPING 
Small $9.95 $1.00 

Medium $12.95 $1.25 
Large $15.95 $1.50 

Party Size $18.95 $2.00 
Drinks $1.25 

1. Explain why most of the variables are declared 
as local variables while a few are declared as 
global variables. 

3. Explain the purpose of the “NumOrders” 
variable. 

These variables 
store values that 

involve an 
amount  of money 

These variables 
store values that 
involve a number 

of items 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-30 



Option Explicit 'Used to force variable declarations. 

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' The following variables are called GLOBAL VARIABLES because they are declared OUTSIDE the subs, which means 

'       1. the values of these variables remain stored in RAM as long as the 
'          form is loaded in RAM (i.e. the computer will "remember" the values 
'          of these variables for as long as the form remains loaded) 
'       2. these variables are VISIBLE to all the subs.  Each sub can access each 
'          global variable, allowing two or more subs to SHARE their values. 

' A variable should be declared GLOBALLY whenever two or more subs need to access it (i.e. use or change its 
' value) and/or whenever its value needs to be "remembered" after a sub has finished executing. 
''' '' '''''''' '' '''''''' '' '''''''
Dim TotalSpentByAllCustomers As Currency, TotalCostOfOrder As Currency, NumOrders As Integer 

'''''''''''''''''''''''''' ' ''''''''''''''''''' ' '''''''''''' ' '''''''''''''''''''' 

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' A "Form_Load" sub is executed automatically as soon as a form is loaded "Form_Load" subs should be used. 
' whenever INITIALIZATION code needs to be executed BEFORE the user is allowed to interact with the program. 
' This "Form_Load" sub is used to set to zero the initial values of the number of orders and the total spent 
' by all customers. Each time an order is processed, the values of these variables are updated. 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
Private Sub Form_Load() 
    NumOrders = 0 
    TotalSpentByAllCustomers = 0 
End Sub 

Private Sub cmdProcessOrder_Click() 

    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ' The variables declared inside a sub are called LOCAL VARIABLES.  Local variables are 

    '       1. VISIBLE only within the sub in which they are declared. 
    '       2. CREATED when the sub is invoked (i.e. called or executed). 
    '       3. DESTROYED when the sub returns (has finished executing). 

    ' Local variables should be used whenever possible. They help to reduce the time needed to debug a program 
    ' because they keep information PRIVATE. If information is needed only by a particular sub, it is best 
    ' to HIDE it from other subs. Local variables also help to conserve memory because they are discarded 
    ' as soon as the sub returns. 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Dim PizzaBasePrice As Currency, PricePerTopping As Currency, SubTotal As Currency 
    Dim GST As Currency, PST As Currency, AverageAmountSpent As Currency 
    Dim NumPizzas As Integer, NumDrinks As Integer, NumToppings As Integer 

    'INPUT: Obtain information from user. 
    NumPizzas = Val(txtPizzas.Text) 
    NumToppings = Val(txtToppings.Text) 
    NumDrinks = Val(txtDrinks.Text) 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-31 

    'PROCESSING 
    'Decide what the base price and price per topping should be. 
    If optSmall.Value = True Then 
        PizzaBasePrice = 9.95 
        PricePerTopping = 1 
    ElseIf optMedium.Value = True Then 
        PizzaBasePrice = 12.95 
    cePerTopping = 1.    Pri 25 
    ElseIf optLarge.Value = True Then 
        PizzaBasePrice = 15.95 
        PricePerTopping = 1.5 
    Else 
        PizzaBasePrice = 18.95 
        PricePerTopping = 2 
    End If 

    'Now perform all calculations 
    SubTotal = (PizzaBasePrice + PricePerTopping * NumToppings) * NumPizzas + NumDrinks * 1.25 
    GST = Round(SubTotal * 0.07, 2) 
    PST = Round(SubTotal * 0.08, 2) 
    TotalCostOfOrder = SubTotal + GST + PST 
    TotalSpentByAllCustomers = TotalSpentByAllCustomers + TotalCostOfOrder 
    NumOrders = NumOrders + 1 
    AverageAmountSpent = Round(TotalSpentByAllCustomers / NumOrders, 2) 

    'OUTPUT: Display results. 
    lblSubTotal.Caption = Format(SubTotal, "Currency") 
    lblGST.Caption = Format(GST, "Currency") 
    lblPST.Caption = Format(PST, "Currency") 
    lblTotal.Caption = Format(TotalCostOfOrder, "Currency") 
    lblTotalSpent.Caption = Format(TotalSpentByAllCustomers, "Currency") 
    lblAverageSpent.Caption = Format(AverageAmountSpent, "Currency") 

End Sub 

Private Sub cmdCalculateChange_Click() 

    Dim Change As Currency, CashTendered As Currency 

    'INPUT 
    CashTendered = Val(txtAmountPaid.Text) 

    'PROCESSING 
    Change = Round(CashTendered - TotalCostOfOrder, 2) 

    'OUTPUT 
    lblChange.Caption = Format(Change, "Currency") 

1. Explain why “Else” is used instead of 
“ElseIf” for the final clause of this “If” 
statement. 

2. Explain why the change calculations are done in 
the “cmdCalculateChange_Click” sub instead of 
the “cmdProcessOrder_Click” sub. 

End Sub 

Private Sub cmdClear_Click() 

    optSmall.Value = True 

    txtToppings.Text = "" 
    txtPizzas.Text = "" 
    txtDrinks.Text = "" 
    txtAmountPaid.Text = "" 

    lblSubTotal.Caption = "" 
    lblGST.Caption = "" 
    lblPST.Caption = "" 
    lblTotal.Caption = "" 
    lblChange.Caption = "" 

End Sub 



SEQUENCE, SELECTION AND REPETITION: THE UNDERPINNINGS OF PROGRAMMING 

Sequence Selection Repetition 

Instructions are executed (carried out) in 
sequence (in order, one after the other).  All 
statements are executed exactly once; none of 
the statements is omitted. 

Example 
' Frie dly gree
Option Explicit 

n ting program 

Private Sub cmdPressMe_Click() 
 'Memory 
 Dim FirstName As String 

 'Input 
 FirstName = Trim(txtName.Text) 

 'Processing and Output 
 lblGreeting.Visible = True 
 lblGreeting.Caption = "Have a " & _ 

  "nice day " & FirstName & "."     
End Sub 

Private Sub cmdQuit_Click() 
 Unload frmGreeting 
  
End Sub 

End

Based on a condition or a set of 
conditions, some statements are selected 
and some are rejected.  The idea of 
selection should be used whenever your 
program needs to make a decision. 

Example 
' Whic  number 
Option Explicit 

h is larger? 

Private Sub cmdLarger_Click() 
 'Memory 
 Dim Num1 As Double, _ 
             Num2 As Double, _ 
              Larger As Double 

 'Input 
 Num1 = Val(txtNum1.Text) 
 Num2 = Val(txtNum2.Text) 

 'Processing 
 If Num1 > Num2 Then 
  Larger = Num1 
 Else 
 ger = Num2  Lar
 End If 

 'Output 
 lblLarger.Caption =CStr(Larger) 

End Sub 

Whenever your program needs to repeat 
certain instructions two or more times, 
the concept of repetition (looping) is 
used.  Many different types of loops can 
be constructed, depending on the 
particular situation. 

Example 
' Program to add the cubes of the  
' numbers from 1 to 5 

Option Explicit 

Private Sub cmdSumOfCubes_Click() 
    'Memory 
    Dim I As Byte 
    Dim Total As Double 

    'Processing 
    Total = 0 

    'I is called a loop counter  
    'variable 

    For I = 1 To 5 
        Total = Total + I ^ 3 
    Next I 

    'Output 
    Print "The sum is "; Total 

End Sub 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-32 

 

 

 

 

 

 
Questions and Programming Exercises 
1. What is the purpose of the statement continuation character? 

2. Why is it important to indent programs properly? 

3. Explain the terms sequence, selection and repetition. 

4. Define the term underpinning. 

5. To understand the example of repetition given above, it is very helpful to trace the execution of the program by using something 
called a memory map.  A memory map is simply a table that displays the changing values of variables.  Complete the memory map 
shown below. 

I I^3 Total 
0 0 0 
1 1 1 
2 8 9 
3   
4   
5   
6   

If you are typing a long logical line of 
code, it will be easier to read if you 
break it up into two or more physical 
lines.  To do this, use the statement 
continuation character “ _” (a space 
followed by an underscore). 

Notice the indentation used in these programs.  Although your programs will 
work without proper indentation, they will be extremely difficult to read, 
understand and debug.  The rules of indentation are simple and must be 
observed by all students.  Failing to indent properly will result in a significant 
loss of marks.  RULES OF INDENTATION: Indent one tab space within subs, if 
statements and loops (more details will be given in subsequent examples). 

{
Each of these 
Rows Shows 

Values of 
Variables 
after each 
Repetition 

After 
Loop 

Before 
Loop 



6. In the example shown above for repetition, you will find the assignment statement Total = Total + I^3.  Since you are accustomed 
to mathematical equations, you may misinterpret this Visual Basic statement.  In Visual Basic, the statement above should be 
interpreted as follows: 
                                                                                      Total = Total + I ^ 3 
 
 
 
 
 
 
(The new value of the variable ‘Total’) is assigned the value of (The current value of the variable ‘Total’) plus (I to the exponent 3) 

Now consider the mathematical equation x = x + 3.  How does the meaning of this equation differ from that of the assignment 
statement shown above?  Does this mathematical equation have a solution?  Explain. 

7. For each of the example programs shown above, design a form and create working programs. 

8. Modify the “sum of the cubes” problem so that it can calculate the sum of the cubes from Num1 to Num2, where Num1 and Num2 
are integer values.  To prevent numeric overflow errors, think carefully about the type of the Total variable. 

9. Write Visual Basic programs that use “For” loops to 

(a) print the following on your form 

*****          *****  ******** 
*****          *****  ******** 
*****          *****  ******** 
*****          *****  ******** 
*****          *****  ******** 
***************  ******** 
***************  ******** 
***************  ******** 
*****          *****  ******** 
*****          *****  ******** 
*****          *****  ******** 
*****          *****  ******** 
*****          *****  ******** 

(b) fill your form with asterisks (i.e. *) 

(c) find the sum of the numbers from 1 to 1000 

(d) find the sum of the even numbers from 2 to 1000 

(e) find the sum of the squares of the numbers from 1 to 1000 
(Note: The Integer variable type does not have a large 
enough range for this program.  Try Long instead.) 

10. Modify further the program in question 8 so that it can calculate the sums of consecutive numbers to any exponent.  Do not expect 
your program to work for all values that you enter.  Remember that like your calculators, computers can only represent numbers 
that are so large or so small.  Try different values to find out the limitations of your program. 

 
11. Write a Visual Basic program for a number guessing game.  Your program 

should generate a random integer between 1 and 100.  Then the user keeps 
guessing until the number is found or until the “I give up” button is clicked.  
Each time the user enters an incorrect guess, your program should indicate 
whether the secret number is higher or lower.  If the guess is correct, your 
program should output a congratulatory message. 

NOTE: Use the VB code SecretNumber = Int (Rnd * 100 + 1) to generate the 
secret numbers.  If you are observant, you will notice that your game will be 
very predictable.  We shall soon discuss a solution to this problem.  

 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-33 



SELECTED SOLUTIONS TO ASSIGNED VB PROBLEMS 
Solution 1 
' This program will calculate the sum of consecutive 
' integers each raised to an exponent chosen by the user. 
' For example, if the user chooses to start at 5, end at  
' 50 and an exponent of 3, the program will calculate the 
' sum of the cubes of the integers from 5 to 50. 

Option Explicit 
Private Sub cmdCalculate_Click() 

 ' Memory 
 Dim I As Integer, Start As Integer, Finish As Integer 
 Dim Total As Double, Exponent As Byte 
 ' Input 
 Start = Val(txtStart.Text) 
 Finish = Val(txtEnd.Text) 
 Exponent = Val(txtExponent.Text) 
 ' Processing 
 Total = 0 

 For I = Start To Finish 
 al = Total + I ^ Exponent  Tot
 Next I 
 ' Output 
 lblAnswer.Visible = True 
 lblAnswer.Caption = "The sum is " & Str(Total) & "." 
End Sub 

Private Sub txtEnd_Change() 
 lblAnswer.Visible = False 
End Sub 

Private Sub txtExponent_Change() 
 blA
End Sub 

l nswer.Visible = False 

Private Sub txtStart_Change() 
 blA
End Sub 

l nswer.Visible = False 
 

Private Sub cmdClose_Click() 
    Dim Response As VbMsgBoxResult 
    Response = MsgBox("Are you sure you want to" & _ 
                             "quit?", vbYesNo, "Quitting...") 
    If Response = vbYes Then 
        Unload Me 
        End 
    End If 
End Sub 

 
 
Note 
1. For the given program to work, you must use the 

same object names that I have used.  Otherwise, you 
will need to modify the given program so that the 
object names agree with the ones that you have 
chosen. 

2. Also, note that the variable called Finish may seem 
like a strange choice.  Names like End and Stop 
would have been simpler choices, however, both of 
these names cannot be used as variable or object 
names because both are Visual Basic keywords 
(reserved words).  Therefore, I was forced to choose 
a different name. 

3. I have added code for the three text boxes.  The sub 
procedures for the text boxes simply cause the label 
box “lblAnswer” to disappear whenever the value in 
any of the text box changes.  Notice the use of the 
“Change” event in each sub procedure. 

Questions Related to Solution 1 
1. Explain the purpose of the “Val” function and the “CStr” function.  In your answer, do not forget to mention the difference 

between string and numeric data types. 
2. What is the function of the “&” operator? 
3. Explain why the words “End” and “Stop” cannot be used for Visual Basic variable or object names. 
4. Explain how the “Change” event differs from the “Click” event. 
5. Explain why this program is superior to the programs that only work for specific numbers.  How does the use of variables make it 

possible for this program to work for any numbers chosen by the user? 
6. Notice in the solution above that all the variables are declared within a sub procedure.  Such variables are called local variables.  

How do they differ from variables that are declared outside of any procedure (called global variables)? 
7. Complete the following memory map for the program shown above. 

Total I I ^ Exponent Start Finish Exponent 
0 0 0 3 8 2 
   3 8 2 
   3 8 2 
   3 8 2 
   3 8 2 
   3 8 2 
   3 8 2 
   3 8 2 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-34 



Solution 2 
Option Explicit 
Dim SecretNumber As Byte 
'This sub procedure is executed as soon as the form loads. 
Private Sub Form_Load() 
    Randomize 'This is used to make the game unpredictable 
    SecretNumber = Int(Rnd * 100 + 1) 
    frmGuess.Show 'Make form visible 
    txtGuess.SetFocus 'Give focus to the txtGuess text box 
End Sub 
 
Private Sub cmdClose_Click() 
    Unload Me 
    End 
End Sub 
 
Private Sub cmdEnterGuess_Click() 
    Dim Guess As Byte 
    Guess = Val(txtGuess.Text) 
    If Guess > SecretNumber Then 
        lblMessage.Caption = "Sorry," & Str(Guess) & " is too high." 
    ElseIf Guess < SecretNumber Then 
        lblMessage.Caption = "Sorry," & Str(Guess) & " is too low." 
    Else 
        lblMessage.Caption = "Great work," & Str(Guess)& " is correct!" 
    End If 
    txtGuess.Text = "" 'Clear the txtGuess text box. 
    txtGuess.SetFocus 'Give focus to the txtGuess text box 
End Sub 
 
Private Sub cmdGenerateRandomNum_Click() 
    SecretNumber = Int(Rnd * 100 + 1) 
    lblMessage.Caption = "" 'Clear message label box 
    txtGuess.SetFocus 'Give focus to the txtGuess text box 
End Sub 
 
Private Sub cmdIGiveUp_Click() 
    lblMessage.Caption="The secret number is " & CStr(SecretNumber)&"." 
   txt
End Sub 

 Guess.SetFocus 'Give focus to the txtGuess text box 

 

 
 
Note 
1. This program uses two variables, 

SecretNumber and Guess.  One is a local 
variable and the other is global. 

2. The SetFocus method is used in several 
places to give the focus to the txtGuess 
text box.  This is done so that the user 
does not need to keep clicking in the text 
box to enter a guess.  Regardless of which 
button is clicked, the focus always 
immediately returns to the text box. 

3. The null string has been used to clear the 
contents of the txtGuess text box and the 
lblMessage label box.  The null string is 
simply a string consisting of zero 
characters.  This is why it is written as 
two consecutive quotation marks (""). 

4. Randomize is used to prevent your 
program from generating the same 
random numbers every time it is run.  This 
makes your game unpredictable. 

Questions Related to Solution 2 
1. Why is SecretNumber declared as a global (module or external) variable while Guess is declared as a local (procedure level or 

automatic) variable? 

2. Explain the purpose of the SetFocus method. 

3. Explain the purpose of a Form_Load sub procedure.  How would you get Visual Basic to automatically generate the first line and 
the last line of a Form_Load sub procedure. 

4. Modify the program shown above so that 
a) it can generate a secret number between any two integers chosen by the user 
b) it gives the user a limited number of guesses (allow the user to set this number according to the desired level of difficulty) 
c) the messages in the label box are displayed in different colours (e.g. red for incorrect guess, green for correct guess) 
d) the total number of guesses is displayed (and updated every time that the “Enter Guess” button is clicked) 

5. Suggest other modifications to the above program that will improve its functionality and make it more interesting to use. 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-35 



THE EVOLUTION OF SOFTWARE PART I: HOW TO KEEP IMPROVING YOUR SOFTWARE 
Case Study – Developing a CRAPS Game in VB 

• Phase 1: Develop a program that simulates the rolling of a pair of dice. 
• Phase 2: Use the Internet to find pictures of dice and then incorporate them into your program.  After every roll, your 

software should display pictures of dice that correspond to the roll.  Write code that is as general and efficient as possible. 
• Phase 3: Use the Internet to find the rules for the game of CRAPS. 
• Phase 4: Incorporate the rules into your program. 
• Phase 5: Enhance your program by including new features and by improving the code.  (The following diagram describes the 

process of continually improving software.) 

The flowchart shown at the left is a simplified visual representation of the 
software development process.  Notice that programmers use a simple 
version as a foundation upon which future versions can be built.  Also, note 
that once the initial simple version has been implemented, an essentially 
infinite loop is entered.  Since software development involves open-ended 
tasks, there is virtually no limit to the improvements that can be made. 
When engaged in this process, try to keep in mind the following points: 
• Break up large, complex problems into several smaller problems. 
• Solve one small problem at a time.  Ensure that each solution is perfect 

before integrating it into the overall system. 
• Be realistic!  It is far better to produce simple software that works well 

than it is to produce sophisticated software that does not work at all. 
• Do not limit yourself during the idea generation phase.  Write down all 

your ideas (including those that seem over-ambitious or downright 
crazy). 

 
A Solution to Phase One 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' CRAPS Version 1.0 (N. Nolfi) 
' This version simply gets the dice rolling properly. 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 

Option Explicit 

Private Sub Form_Load() 
   Ran
End Sub 

 domize 

'Sub procedure to roll dice and display results 

Private Sub cmdRoll_Click() 

    Dim Die1 As Byte, Die2 As Byte, Roll As Byte 

    'Generate random integers and find sum 
    Die1 = Int(Rnd * 6 + 1) 
    Die2 = Int(Rnd * 6 + 1) 
    Roll = Die1 + Die2 

    'Display the results in label boxes 
    lblDie1.Caption = "Die 1 shows a" & Str(Die1) & "." 
    lblDie2.Caption = "Die 2 shows a" & Str(Die2) & "." 
    lblRoll.Caption = "The roll is a" & Str(Roll) & "." 

End Sub 

'Sub to close the program 

Private Sub cmdClose_Click() 

    Unload frmCraps 
    End 

End Sub 

 
Questions 
1. By carefully reading the code at the left, determine 

the name of each object on the above form. 
2. When you run this program, you will notice that the 

maximize button is disabled and that the form 
cannot be “resized.”  How was this accomplished? 

3. Why does the command “Randomize” appear in the 
“Form_Load” sub procedure?  What would happen 
if this command were omitted? 

4. Why are the variables “Die1,” “Die2” and “Roll” 
declared as “Byte” variables? 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-36 



Two Different Solutions to Phase Two 

Solution 1 – Craps 1.1a 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' CRAPS Version 1.1a (N. Nolfi) 
' This version incorporates pictures of dice.  Notice that 
' this version uses a selection structure (i.e. "If" statement) 
' to decide which dice pictures to display. 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 

Option Explicit 

Private Sub Form_Load() 

    Randomize 

End Sub 

Private Sub cmdClose_Click() 

    Unload Me 
    End 

End Sub 

'Sub procedure to roll dice and display results 

Private Sub cmdRoll_Click() 

    Dim Die1 As Byte, Die2 As Byte, Roll As Byte 
    Dim Die1PathName As String, Die2PathName As String 

    'Generate random integers and find sum 
    Die1 = Int(Rnd * 6 + 1) 
    Die2 = Int(Rnd * 6 + 1) 
    Roll = Die1 + Die2 

    cide whic e pictures to display 'De h dic
If ie1 = 1 Then     D

        1PathName :\dice-1.jpg" Die  = "g
    ElseIf Die1 = 2 Then 
        1PathName :\dice-2.jpg" Die  = "g
    ElseIf Die1 = 3 Then 
        Die1PathName = "g:\dice-3.jpg" 
    ElseIf Die1 = 4 Then 
        Die1PathName = "g:\dice-4.jpg" 
    ElseIf Die1 = 5 Then 
        Die1PathName = "g:\dice-5.jpg" 
    Else 
        Die1PathName = "g:\dice-6.jpg" 
    End If 

    If Die2 = 1 Then 
        2PathName :\dice-1.jpg" Die  = "g
    ElseIf Die2 = 2 Then 
        2PathName :\dice-2.jpg" Die  = "g

ElseIf Die2 = 3 Then     
        2PathName :\dice-3.jpg" Die  = "g
    ElseIf Die2 = 4 Then 
        2PathName :\dice-4.jpg" Die  = "g
    ElseIf Die2 = 5 Then 
        Die2PathName = "g:\dice-5.jpg" 
    Else 
        Die2PathName = "g:\dice-6.jpg" 
    End If 

    'Display the results 
    imgDie1.Picture = LoadPicture(Die1PathName) 
    imgDie2.Picture = LoadPicture(Die2PathName) 

    If Roll <> 8 And Roll <> 11 Then 
        lblRoll.Caption = "The roll is a "& CStr(Roll) & "." 
    Else 
        lblRoll.Caption = "The roll is an " & CStr(Roll) & "." 
    End If 

End Sub 

 
Questions 
1. When you run this version of the program, you 

will notice that the form has a light blue 
background and that the buttons have a yellow 
background.  How was this accomplished? 

2. State at least three ways in which version 1.1b 
is superior to version 1.1a. 

3. In version 1.1b, why have I used “App.Path” 
instead of a drive letter and folder path name? 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-37 



Solution 2 – Craps 1.1b 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' CRAPS Version 1.1b (N. Nolfi) 
' This version incorporates pictures of dice.  Notice that 
' this version DOES NOT use an "if" statement to decide which 
' dice pictures to display. 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 

Option Explicit 

Private Sub Form_Load() 

    Randomize 

End Sub 

Private Sub cmdClose_Click() 

    Unload frmCraps 
    End 

End Sub 

'Sub procedure to roll dice and display results 

Private Sub cmdRoll_Click() 

    Dim Die1 As Byte, Die2 As Byte, Roll As Byte 
    Dim Die1PathName As String, Die2PathName As String 

    'Generate random integers and find sum 
    Die1 = Int(Rnd * 6 + 1) 
    Die2 = Int(Rnd * 6 + 1) 
    Roll = Die1 + Die2 

    'Build path names for die1 and die 2 pictures 
    Die1PathName = App.Path & "\dice-" & CStr(Die1) & ".jpg" 
    Die2PathName = App.Path & "\dice-" & CStr(Die2) & ".jpg" 

    'Display the results 
    imgDie1.Picture = LoadPicture(Die1PathName) 
    imgDie2.Picture = LoadPicture(Die2PathName) 

    If Roll <> 8 And Roll <> 11 Then 
        lblRoll.Caption = "The roll is a "& CStr(Roll) & "." 
    Else 
        lblRoll.Caption = "The roll is an " & CStr(Roll) & "." 
    End If 

End Sub 

4. What is the purpose of the “If” statement in 
the “cmdRoll_Click” sub procedure? 

5. What is the purpose of the “CStr” intrinsic 
(built-in) function? 

 

Thinking about Phases Three and Four 
Presented below are the rules for the game of Craps.  As you can see, the rules are quite complicated and it would be far too ambitious 
to try to implement them all at once.  A better approach is to implement them one at a time.  For now, we shall focus only on the “Pass 
Line” rules.  Very skilful programmers may decide to do more. 

Craps is a game that allows you to bet with or against a “shooter” (the person who rolls the dice).  To shoot the dice, you must make 
a bet on either the “Pass Line” or the “Don’t Pass Line.” 

Pass Line 
When you put your money on the “Pass Line” and the shooter rolls a 7 or 11 on the first roll of the dice, you win.  If the shooter rolls 
a 2, 3 or 12 (Craps), you lose.  If any other number occurs (4, 5, 6, 8, 9 or 10), it becomes the shooters “point.”  The shooter must 
roll that point again, before a 7, in order for you to win.  If the point is rolled, you will be paid the amount of your “Pass Line” bet. 

Don’t Pass Line 
When you bet the “Don't Pass Line,” the reverse occurs.  You lose if a 7 or 11 is rolled on the first roll and you win if 3 or 12 is rolled.  
However, if a 2 shows up on the first roll, it is a “push.”  If a 4, 5, 6, 8, 9 or 10 is rolled, it becomes the “front line point.” In order 
for you to win, the 7 must be rolled before the point is rolled again.  Should the 7 roll first, you will win your “Don't Pass” bet. 

Come 
After a “point” has been established, you may make a “Come” bet.  This area is also clearly defined on the Craps layout.  You may 
bet this any time after the first roll.  When you bet the “Come Line,” you win if the next roll is a 7 or 11.  You lose if the next roll is a 
2, 3 or 12.  If any other number is rolled (4, 5, 6, 8, 9 or 10), it becomes your “point.”  Should a 7 roll before your point, you lose.  
However, if your point rolls before a 7 is rolled, you win the amount you bet on the “Come Line.” 

Don't Come 
After a point has been established, you may make a “Don't Come” bet.  You may bet this area any time after the first roll.  When you 
bet the “Don't Come Line,” you win if the next roll is a 3 or a 12.  If that next roll is a 2, it is a stand-off.  Should that next roll be a 7 
or 11, you lose.  If any other number is rolled (4, 5, 6, 8, 9 or 10), it becomes your point.  If that point rolls before a 7, your bet 
loses.  However, if a 7 rolls first, you win your “Don't Come” bet. 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-38 



Field 
This is a one-roll bet and may be bet at any time.  If you bet the “Field” and a 3, 4, 9, 10 or 11 rolls, you win the amount you have 
bet.  However, if a 2 rolls, you win twice the amount bet and if a 12 rolls you win three times your bet.  Should any other number 
roll (5, 6, 7 or 8), you lose your bet. 

Big Six or Eight 
On the outside corners of each side of the Craps layout, you will see a big red 6 and 8.  On this bet, you are wagering that a 6 or 8 
will roll before a 7 rolls.  If it does, you win. 

Any Seven 
On this, you are wagering that a 7 will roll on the next throw of the dice.  If it does, you win four times the amount of your bet.  This 
is a one-roll bet. 

Bet the Horn 
On this bet, you are wagering that a 2, 3, 11 or 12 will roll on the next throw of the dice.  “Betting the Horn” is a fun bet that pays 
high odds if you win.  If a 2 or 12 rolls, you win $6.75 for every dollar bet.  If a 3 or 11 rolls, you win $3 for every dollar bet.  This is 
a one-roll bet. 

Hard Ways 
You are wagering that the next time a 4, 6, 8 or 10 is rolled, it will be rolled as a pair of 2s, 3s, 4s or 5s.  This area on the Craps 
layout shows the odds paid.  Ask the dealer to explain this particular bet. 

Any Craps 
This is also a one-roll bet.  If a 2, 3 or 12 is rolled, you win 7 times your bet. 

Proposition Bets 
You bet on 2, 3, 11 or 12 before any roll.  If a 2 or 12 occurs, you win 30 to 1; a 3 or 11 pays 15 to 1. 

Place Bets 
You can bet on 4, 5, 6, 8, 9 or 10.  If a 6 or 8 is rolled, you collect 7 to 6; if 5 or 9 come up, you get 7 to 5.  A roll of 4 or 10 pays 9 
to 5.  “Place Bets” can be removed any time before a roll. 
 

 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-39 



Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-40 

THE EVOLUTION OF SOFTWARE PART II: 
FURTHER IMPROVEMENTS TO THE CRAPS SOFTWARE 

''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' CRAPS Version 1.1c (N. Nolfi) 
' NOTE: This version is a correction of version 1.1b.  In 
'       version 1.1a there is a bug that sometimes causes the 
'       path name to be incorrect. 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 

Option Explicit 

Private Sub cmdClose_Click() 
    End 
End Sub 

'Sub procedure to roll dice and display results 
Private Sub cmdRoll_Click() 

    Dim Die1 As Byte, Die2 As Byte, Roll As Byte 
    Dim Die1PathName As String, Die2PathName As String, ApplPath As String 

    'Generate random integers and find sum 
    Die1 = Int(Rnd * 6 + 1) 
    Die2 = Int(Rnd * 6 + 1) 
    Roll = Die1 + Die2 

    'Build path names for die1 and die 2 pictures.  If the path name 
    'already has a backslash at the end, then remove it.  This is 
    'done to correct the bug in version 1.1a. 

    ApplPath = App.Path 
    If Right(ApplPath, 1) = "\" Then 
        ApplPath = Right(ApplPath, Len(ApplPath) – 1) 
    End If 

    Die1PathName = ApplPath & "\dice-" & CStr(Die1) & ".jpg" 
    Die2PathName = ApplPath & "\dice-" & CStr(Die2) & ".jpg" 

    'Display the results 
    imgDie1.Picture = LoadPicture(Die1PathName) 
    imgDie2.Picture = LoadPicture(Die2PathName) 
    If Roll <> 8 And Roll <> 11 Then 
        lblRoll.Caption = "The roll is a " & CStr(Roll) & "." 
    Else 
        lblRoll.Caption = "The roll is an " & CStr(Roll) & "." 
    End If 

End Sub 

Private Sub Form_Load() 
    Randomize 
End Sub 

Questions 
1. If you test this program carefully, 

you will notice an annoying time 
lag every time you press the 
“Roll” button (i.e the program 
takes too long to display the 
pictures of the dice).  What 
causes this?  Suggest a method 
for improving the performance of 
this program. 

2. Explain the bug in version 1.1a.  
What sometimes causes the “File 
not found” error to be displayed?  
(Hint: g:\\) 

3. Study the description of the string 
manipulation keyword “Right” 
given below.  Then study the 
examples on the next page.  After 
doing so, write a brief explanation 
of how it is used in version 1.1b 
of CRAPS. 

Syntax 
Right(string, length)  
Returns a Variant (String) containing a specified number of characters from the right side of a string. 
The Right function syntax has these named arguments: 

Part Description 

string Required.  String expression from which the rightmost characters are returned.  If string contains Null, Null is returned.

length Required;  Variant (Long).  Numeric expression indicating how many characters to return.  If 0, a zero-length string ("") 
is returned.  If greater than or equal to the number of characters in string, the entire string is returned. 



 

Right Function Example Right Function Example 
' This example uses the Right function to return a specified  ' This example uses the Right function to return a specified  
' number of characters from the right side of a string. ' number of characters from the right side of a string. 
Dim AnyString As String, MyString As String Dim AnyString As String, MyString As String 
AnyString = "Hello World"  ' Define string AnyString = "Hello World"  ' Define string  
MyString = Right (AnyString, 1)   ' Returns "d" 

 
MyString = Right (AnyString, 1)   ' Returns "d" 
MyString = Right (AnyString, 6)   ' Returns " World" MyString = Right (AnyString, 6)   ' Returns " World" 
MyString = Right (AnyString, 20)   ' Returns "Hello World" MyString = Right (AnyString, 20)   ' Returns "Hello World" 

Research Assignment Research Assignment 
Use http://msdn.microsoft.com or Visual Basic MDSN files to find information on each of the following string manipulation functions: Use 

• Left, Right, Mid, Len, Trim, RTrim, Ltrim, InStr • Left, Right, Mid, Len, Trim, RTrim, Ltrim, InStr 
http://msdn.microsoft.com or Visual Basic MDSN files to find information on each of the following string manipulation functions: 

Write a brief explanation of each. Write a brief explanation of each. 

''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' CRAPS Version 1.2 (N. Nolfi) ' CRAPS Version 1.2 (N. Nolfi) 
' ' 
' This version incorporates pictures of dice, but is faster than ' This version incorporates pictures of dice, but is faster than 
' version 1.1.  The improved speed is due to the fact that all ' version 1.1.  The improved speed is due to the fact that all 
' the pictures are stored on a separate form which is not ' the pictures are stored on a separate form which is not 
' visible to the user.  Since the form is stored in RAM, the ' visible to the user.  Since the form is stored in RAM, the 
' pictures can be copied very quickly.  In version 1.1, the ' pictures can be copied very quickly.  In version 1.1, the 
' pictures were loaded from a file (stored on a disk drive). ' pictures were loaded from a file (stored on a disk drive). 
' Since disk drives are so slow compared to RAM, version 1.1 was ' Since disk drives are so slow compared to RAM, version 1.1 was 
' quite slow. ' quite slow. 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
Option Explicit Option Explicit 
Private Sub Form_Load() Private Sub Form_Load() 
    Randomize     Randomize 
    Load frmPictures ' Load the pictures form, but keep it invisible.     Load frmPictures ' Load the pictures form, but keep it invisible. 
End Sub End Sub 

Private Sub cmdClose_Click() Private Sub cmdClose_Click() 
    Unload Me     Unload Me 
    End     End 
End Sub End Sub 
'Sub pr ced
Private Sub cmdRoll_Click() 
'Sub pr ced
Private Sub cmdRoll_Click() 

o ure to roll dice and display results o ure to roll dice and display results 

    Dim Die1, Die2 As Byte, Roll As Byte     Dim Die1, Die2 As Byte, Roll As Byte 
    'Generate random integers and find sum     'Generate random integers and find sum 
    Die1 = Int(Rnd * 6 + 1)     Die1 = Int(Rnd * 6 + 1) 
    Die2 = Int(Rnd * 6 + 1)     Die2 = Int(Rnd * 6 + 1) 
    Roll = Die1 + Die2     Roll = Die1 + Die2 
    'Display the results     'Display the results 
    imgDie1.Picture = frmPictures.imgDie(Die1 - 1).Picture     imgDie1.Picture = frmPictures.imgDie(Die1 - 1).Picture 
    imgDie2.Picture = frmPictures.imgDie(Die2 - 1).Picture     imgDie2.Picture = frmPictures.imgDie(Die2 - 1).Picture 
    If Roll <> 8 And Roll <> 11 Then     If Roll <> 8 And Roll <> 11 Then 
        lblRoll.Caption = "The roll is a " & CStr(Roll) & "."         lblRoll.Caption = "The roll is a " & CStr(Roll) & "." 
    Else     Else 
        lblRoll.Caption = "The roll is an " & CStr(Roll) & "."         lblRoll.Caption = "The roll is an " & CStr(Roll) & "." 
    End If     End If 

End Sub End Sub 

Questions Questions 
1. Explain why version 1.2 displays the 

dice pictures much more quickly than 
version 1.1 

1. Explain why version 1.2 displays the 
dice pictures much more quickly than 
version 1.1 

2. In what other ways is version 1.2 better 
than version 1.1? 

2. In what other ways is version 1.2 better 
than version 1.1? 

3. Hard disk drive access times are 
measured in milliseconds (ms).  RAM 
access times are measured in 
nanoseconds (ns).  Approximately how 
many times faster than a hard drive is 
RAM? 

3. Hard disk drive access times are 
measured in milliseconds (ms).  RAM 
access times are measured in 
nanoseconds (ns).  Approximately how 
many times faster than a hard drive is 
RAM? 

  

 

This form is called frmPictures.  It is never visible, 
but it is stored in RAM.  This allows much faster 
access to the dice pictures.  Loading the pictures from 
a file stored on a disk drive is extremely slow. 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-41 

http://msdn.microsoft.com/


DO YOU UNDERSTAND THE CRAPS PROGRAM? ROGRAM? 
Try the following practice quiz to find out how well you understand version 1.91 of the “Craps” program as well as VB in 
general.  When you are finished, obtain an answer sheet from me and compare your answers to mine.  If you do well, you 
are ready to move on.  Otherwise, some remedial work is necessary! 

Try the following practice quiz to find out how well you understand version 1.91 of the “Craps” program as well as VB in 
general.  When you are finished, obtain an answer sheet from me and compare your answers to mine.  If you do well, you 
are ready to move on.  Otherwise, some remedial work is necessary! 

  

  

 
 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' CRAPS Version 1.91 – Corrections of Minor Bugs in V1.9 
' (N. Nolfi) pass line betting only 
''''''''''''''''
Option Explicit 

''''''''''''''''''''''''''''''''''''''''''''' 

Dim Money As Currency, Bet As Currency, NumOfRolls As Integer, YourPoint As Byte 

'Code f r "
Private Sub cmdNewGame_Click() 

o New Game" button 

    Dim Response As String 
    Response = InputBox("How much money are you willing to risk?", _  
  "Are You a Gambler?") 

    'Start a new game only if a value is entered and "OK" is clicked. 
    'Do not start a new game if "Cancel" is clicked or no value is entered. 

    If Response <> "" Then 

        Money = Val(Response) 
        If Money > 0 And Money <= 1000000 Then 
            lblMoney.Caption = "You have " & Format(Money, "Currency") & "." 
            cmdPlaceBet.Visible = True 
            lblBet.Visible = True 
            lblNumberOfRolls.Visible = True 
            lblNumberOfRolls.Caption = "Number of Rolls: 0" 
            txtBet.Visible = True 
            txtBet.SetFocus 
            Call ResetGame 
        Else 
            MsgBox "Please enter a value between $0.01 and $1000000", _  
       vbExclamation,  "Try Again" 
        End If 
         
    End If 
End Sub 
Private Sub Form_Load() 
    Randomize 
    frmCraps.Show 
    Load frmPictures ' Load the pictures form, but keep it invisible. 
End Sub 

'*************The code continues on the next page.************************* 

 

Questions 
1. Carefully study the provided 

code.  Then state the name 
of each object on the form at 
the left. 

2. Explain why the variables 
Money, Bet, NumofRolls and 
YourPoint are all declared as 
global variables. 
 
 
 
 
 
 
 
 
 
 
 

3. Why are Money and Bet 
declared as Currency 
variables? 
 
 
 
 
 
 
 
 
 

4. Why is NumOfRolls declared 
as an Integer variable while 
YourPoint is declared as a 
Byte variable? 
 
 
 
 
 
 
 
 
 
 
 

 
 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-42 



Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-43 

'Sub procedure to roll dice and display results 

Private Sub cmdRoll_Click() 

    Dim Die1 As Byte, Die2 As Byte, Roll As Byte 

    'Generate random integers and find sum 
    Die1 = Int(Rnd * 6 + 1) 
    Die2 = Int(Rnd * 6 + 1) 
    Roll = Die1 + Die2 

    'Display the results of the roll 
    imgDie1.Visible = True 
    imgDie2.Visible = True 
    imgDie1.Picture = frmPictures.imgDie(Die1 - 1).Picture 
    imgDie2.Picture = frmPictures.imgDie(Die2 - 1).Picture 
    lblRoll.Visible = True 
    lblRoll.Caption = "Your roll is" & Str(Roll) & "." 
    lblNumberOfRolls.Caption = "Number of Rolls:" & Str(NumOfRolls) 

    'Decide if the shooter wins, loses or continues to roll.  (Pass line rules) 
    If NumOfRolls > 1 Then 'After the first roll 

        If Roll = 7 Then 'LOSE! 
            lblRoll.Caption = lblRoll.Caption & " You lose" & _ 
                                                 Format(Bet, "Currency") & "!" 
            Money = Money - Bet 
            lblMoney.Caption = "You have " & Format(Money, "Currency") & "." 
            MsgBox lblRoll.Caption, vbInformation, "Craps Pass Line Betting" 
            Call ResetGame 

        ElseIf Roll = YourPoint Then 'WIN! 

            Money = Money + Bet 
            lblRoll.Caption = lblRoll.Caption & " You win $" & _ 
                                               Format(Bet, "Currency") & "!" 
            lblMoney.Caption = "You have " & Format(Money, "Currency") & "." 
            MsgBox lblRoll.Caption, vbInformation, "Craps Pass Line Betting" 
            Call ResetGame 

        Else 'Keep rolling! 

            lblRoll.Caption = lblRoll.Caption & "  Keep rolling!" 
            NumOfRolls = NumOfRolls + 1 

        End If 

    Else    'First roll of the dice 

        If Roll = 7 Or Roll = 11 Then       'WIN! 

            Money = Money + Bet 
            lblRoll.Caption = lblRoll.Caption & "  You win $" & _ 
                                               Format(Bet, "Currency") & "!" 
            lblMoney.Caption = "You have " & Format(Money, "Currency") & "." 
            MsgBox lblRoll.Caption, vbInformation, "Craps Pass Line Betting" 
            Call ResetGame 

        ElseIf Roll = 2 Or Roll = 3 Or Roll = 12 Then      'LOSE! 

            Money = Money - Bet 
            lblRoll.Caption = lblRoll.Caption & "  You lose $" &  
                                             Format(Money, "Currency") & "!" 
            lblMoney.Caption = "You have " & Format(Money, "Currency") & "." 
            MsgBox lblRoll.Caption, vbInformation, "Craps Pass Line Betting" 
            Call ResetGame 

        Else         'Establish point. 

            YourPoint = Roll 
            lblRoll.Caption = lblRoll.Caption & _  
                              "  This is your point.  Keep rolling!" 
            NumOfRolls = NumOfRolls + 1 
            lblYourPoint.Visible = True 
            lblYourPoint.Caption = "Your Point:" & Str(YourPoint) 

        End If 

    End If 

End Sub 
 

 

 

 

 

' *********************The code continues on the next page.***************** 

 

 

 

5. In what way does the 
ResetGame sub procedure 
differ from all the other sub 
procedures in this program? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. How is the ResetGame 
procedure invoked (“called 
into action”)? 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Explain the difference 
between the Visible property 
and the Enabled property.  
Use an example from the 
given code to illustrate your 
answer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-44 

 

 

Private Sub cmdPlaceBet_Click() 

    Bet = Val(txtBet.Text) 

    If Bet > 0 And Bet <= Money Then 
        cmdRoll.Enabled = True 
        cmdPlaceBet.Enabled = False  'Disallow change of bet once 
        txtBet.Enabled = False       'bet is placed. 
    Else 
        txtBet.Text = "" 
        txtBet.SetFocus 
    End If 

End Sub 
 
'A "General" procedure that is used to reset several game parameters 
'once the shooter either wins or loses. 

Private Sub ResetGame() 

    NumOfRolls = 1 
    lblYourPoint.Visible = False 
    lblRoll.Visible = False 
    lblNumberOfRolls.Caption = "Number of Rolls: 0" 
    cmdRoll.Enabled = False 
    txtBet.Text = "" 
    txtBet.Enabled = True 
    txtBet.SetFocus 
    cmdPlaceBet.Enabled = True 
    imgDie1.Visible = False 
    imgDie2.Visible = False 

    If Money <= 0 Then 
        MsgBox "Sorry, you have run out of money.", vbInformation, "Game Over!" 
        cmdPlaceBet.Enabl False ed = 
        txtBet.Enabled = False 
    End If 

End Sub 

'Code for "Close" button 
Private Sub cmdClose_Click() 
    Unload frmCraps 
    End 
End Sub 

8. In various places in the given 
code, you will find the 
assignment statements 
Money=Money−Bet and 
Money=Money+Bet.  
Explain the purpose of each 
line.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9. In this program, you will 
notice the use of the VB 
keyword “Or”.  In other 
programs that we have 
studied, you will have 
noticed the use of the VB 
Keyword “And.” 
 
Explain the meaning of each 
keyword. 
 
 
 
 
 
 
 
 
Explain the uses of each 
keyword. 



THE TEMPERATURE CONVERTER PROGRAM 
Write a program that will convert a temperature expressed in a certain unit to three other units (as shown in the form given 
below). 
 

 
 

Notice that all these equations represent straight lines. 
4. The image shown on the form at the left is stored in a file called 

tempGraph.bmp in the folder I:\Out\Nolfi\Tik2o0.  Use an 
image control to display this picture on your form. 

2. You should be aware of the fact that you will need to use the 
intrinsic functions CStr and Val.  (If nothing is entered in a text 
box, then its Text property is assigned a value of the null string 
(i.e. "").  In this case, using Val will return a value of zero.) 

3. The following formulas are used to convert from Celsius 
degrees to each of the others.  The variables C, K, F and R 
represent Celsius degrees, Kelvin degrees, Fahrenheit degrees 
and Rankine degrees respectively. 
F = 1.8C + 32 
K = C + 273.15 
R = 1.8C + 491.67 

• no temperatures entered by the user 
• impossible temperatures entered by the user 

1. Your program should behave intelligently if the user enters 
invalid information.  Please ensure that your program can deal 
with errors such as 

Note 

Questions to Consider before Writing Code 

1. Absolute zero, the lowest temperature possible, is the temperature at which atoms stop emitting heat energy.  Therefore, 
the Kelvin and Rankine temperature scales can never be negative because for both, zero degrees is defined as absolute 
zero.  The only difference between the two is that the Kelvin scale has units of exactly the same size as the Celsius scale 
and the Rankine scale has units of the same size as the Fahrenheit scale. 
 
Use this information to express absolute zero in degrees Celsius and degrees Fahrenheit.  What temperatures should 
your program reject? 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-45 



Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-46 

2. By using the skills that you have learned in math class, rearrange the formulas given above to solve for C (degrees 
Celsius).  How will you use these rearranged formulas in your program? 

3. Why do the graphs for “Kelvin versus Celsius” and “Rankine versus Celsius” intersect exactly where they “begin” (i.e. 
leftmost point of each)?  Why is this point of intersection on the horizontal axis? 

4. Why are the graphs for “Rankine versus Celsius” and “Fahrenheit versus Celsius” parallel? 



Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-47 

OPERATORS IN VISUAL BASIC 
Arithmetic Operators 

Operator Meaning 

+ Add two numbers and return a floating-point result. 

− Subtract two numbers and return a floating-point result. 

* Multiply two numbers and return a floating-point result. 

/ Divide two numbers and return a floating-point result. 

\ Divide two numbers and return an integer result.  Any fractional portion is 
truncated.  (e.g. 7 \ 5 returns 1 because the “0.4” portion is “chopped off.”) 

^ Used to raise a number to an exponent and return a floating-point result. 

Mod Used to divide two numbers and return only the remainder. 
 

Mathematical Functions 

Function Meaning 

Int Returns a number rounded down to the nearest integer. 

Fix Returns the integer portion of a number (any fractional part is truncated). 

Sqr Returns the square root of a non-negative number. 

Abs Returns the absolute value of a number. 

Sin Returns the sine of a number. 

Cos Returns the cosine of a number. 

Tan Returns the tangent of a number. 

Atn Returns the arctangent (inverse tangent) of a number. 

Rnd Returns a Single value containing a random number that is greater than or 
equal to zero and less than one. 

Exp Returns a Double value specifying e (the base of natural logarithms) raised to 
an exponent. 

Log Returns a Double specifying the natural logarithm of a positive number. 

Other math 
functions 

Other math functions can be derived from the basic functions listed above.  
For more information, refer to “Derived Math Functions” in the Microsoft 
Visual Studio help files or “MSDN Online” at http://msdn.microsoft.com. 

http://msdn.microsoft.com/


Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-48 

Comparison Operators 
Operator Meaning 

= Is equal to 

< Is less than 

<= Is less than or equal to 

> Is greater than 

>= Is greater than or equal to 

< > Is not equal to 

Logical Operators 

Operator Meaning 

And 
(logical conjunction) 

expression1 And expression2 is True if and only if expression1 is True and expression2 is 
True; otherwise, it is False 

Or 
(logical disjunction) 

expression1 Or expression2 is True if expression1 is True or expression2 is True; it is False if 
and only if expression1 is False and expression2 is False 

Not 
(logical negation) Not expression is True if expression is False and False if expression is True 

Xor * 
(logical exclusion or 
exclusive OR) 

expression1 Xor expression2 is True if expression1 is True or expression2 is True but not both 

Eqv * 
(logical equivalence 
or exclusive NOR) 

expression1 Eqv expression2 is True if and only if expression1 Xor expression2 is False 

Imp * 
(logical implication) 

expression1 Imp expression2 is False if and only if expression1 is True and expression2 is 
False; otherwise, it is True 

* These logical operators are not used very frequently in the kinds of applications that we have written.  And, Or and Not are used 
much more frequently (and are much easier to understand). 

Truth Tables for the Logical Operators 

expression1 expression2 
expression1 

And 
expression2 

expression1 
Or 

expression2 

expression1 
Xor 

expression2 

expression1 
Eqv 

expression2 

expression1 
Imp 

expression2 
F F F F F T T 
F T F T T F T 
T F F T T F F 
T T T T F T T 

 
expression Not expression 

F T 
T F 



Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-49 

Operator Precedence (Order of Operations) 
• When expressions contain operators from more than one category, arithmetic operators are evaluated first, comparison 

operators are evaluated next and logical operators are evaluated last. 
• Comparison operators all have equal precedence; that is, they are evaluated in the left-to-right order in which they appear. 
• Arithmetic and logical operators are evaluated in the following order of precedence: 

Arithmetic Comparison Logical 

Exponentiation (^) Equality (=) Not 

Negation (not subtraction) (–) Inequality (< >) And 

Multiplication and division (*, /) Less than (<) Or 

Integer division (\) Greater than (>) Xor 

Modulus arithmetic (Mod) Less than or equal to (<=) Eqv 

Addition and subtraction (+, –) Greater than or equal to 
(>=) 

Imp 

String concatenation (&) Like, Is  

Note 
• When multiplication and division occur together in an expression, each operation is evaluated as it occurs from left to right. 

• When addition and subtraction occur together in an expression, each operation is evaluated in order of appearance from left 
to right. 

• Parentheses can be used to override the order of precedence and force some parts of an expression to be evaluated before 
others.  Operations within parentheses are always performed before those outside.  Within parentheses, however, operator 
precedence is maintained. 

• The string concatenation operator (&) is not an arithmetic operator, but in precedence, it does follow all arithmetic operators 
and precede all comparison operators. 

• The Like operator is equal in precedence to all comparison operators, but is actually a pattern-matching operator. 

• The Is operator is an object reference comparison operator.  It does not compare objects or their values; it checks only to 
determine if two object references refer to the same object. 

 

Infrequently Used Operators 
 

Operator Description For More Information 

Is object reference comparison operator See “Is Operator” in MSDN  

Like a pattern-matching operator See “Like Operator” in MSDN 
 

Type Conversion Functions 
 

Type conversion functions are used to coerce (force) a conversion from one data type to another.  The two most commonly used type 
conversion functions are Val and CStr.  For more information, consult the MSDN collection. 



IMPROVING YOUR VISUAL BASIC PROGRAMS 
Rounding Off Values 
In our first attempt to write the “Temperature Converter” program, we noticed several flaws.  Two of these problems, hardware round 
off errors and the displaying of answers with too many decimal places, can be solved easily with the help of the “Round” function. 
The following is a description (taken directly from the MSDN collection) of the “Round” intrinsic (built-in) function.  It is used to 
round off any numeric expression to a desired number of decimal places.  (The square brackets shown in the description indicate that 
the numDecimalPlaces argument is optional.) 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-50 

Round Function 
Description 
Returns a number rounded to a specified number of decimal places. 
Syntax 
Round(expression [,numDecimalPlaces]) 
The Round function syntax has these parts: 

Part Description 

expression Required.  Numeric expression being rounded.

numDecimalPlaces Optional.  Number indicating how many places to the right of the decimal are included in the 
rounding.  If omitted, integers are returned by the Round function. 

Numeric Expression 
A numeric expression is any expression that can be 
evaluated as a number.  Elements of an expression can 
include any combination of keywords, variables, 
constants and operators that result in a number.

Argument 
An argument is a value on which 
a function or procedure operates. 

Square Brackets 
Square brackets are used to indicate 
that an argument is optional. 

Example 
' Round off the Fahrenheit temperature to 2 decimal places. 
Fahrenheit = Round(1.8 * Celsius + 32, 2) 

Using the KeyPress Event to “Trap” Invalid Characters 
In the “Temperature Converter” program version 1.0, non-numeric characters are not rejected.  This produces strange 
results that might confuse users.  Luckily, Visual Basic provides a simple method for rejecting invalid characters.  The 
KeyPress event consists of pressing and releasing an ANSI key (see table of characters below).  When the KeyPress 
event is generated by the pressing and releasing of an ANSI key, the numeric code (ASCII code) representing the 
character is stored in a variable called KeyAscii.  Your program can check the value of the KeyAscii variable to determine 
if the stored ANSI code is in the set of acceptable characters. 

 

Your “Temperature Converter” program needs to have a sub procedure, like the one shown below, 
for each text box.  To create a sub procedure for a particular text box, double-click on the text box.  
Note that this will not produce a sub procedure for the KeyPress event.  Instead, the default event 
for text boxes (Change) will appear.  To create a sub procedure for KeyPress, simply choose 
“KeyPress” from the drop-down list.  Then erase the Change event sub procedure (e.g. 
txtCelsius_Change). 
' Reject any characters typed in the "txtCelsius" text box that do 
' not lie between 0 and 9, except for the backspace key, 
' the decimal point (".") and the negative sign ("-"). 
Private Sub txtCelsius_KeyPress(KeyAscii As Integer) 
  If (KeyAscii < vbKey0 Or KeyAscii > vbKey9) And KeyAscii <> vbKeyBack _ 
           And Chr(KeyAscii) <> "." And Chr(KeyAscii) <> "-" Then 
        KeyAscii = 0 
  End If 
End Sub 



Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-51 

Key Code Constants in Visual Basic 

Constant Value Description Constant Value Description Constant Value Description

vbKeyA 65 A key vbKey0 48 0 key vbKeyF1 0x70 F1 key

vbKeyB 66 B key vbKey1 49 1 key vbKeyF2 0x71 F2 key

vbKeyC 67 C key vbKey2 50 2 key vbKeyF3 0x72 F3 key

vbKeyD 68 D key vbKey3 51 3 key vbKeyF4 0x73 F4 key

vbKeyE 69 E key vbKey4 52 4 key vbKeyF5 0x74 F5 key

vbKeyF 70 F key vbKey5 53 5 key vbKeyF6 0x75 F6 key

vbKeyG 71 G key vbKey6 54 6 key vbKeyF7 0x76 F7 key

vbKeyH 72 H key vbKey7 55 7 key vbKeyF8 0x77 F8 key

vbKeyI 73 I key vbKey8 56 8 key vbKeyF9 0x78 F9 key

vbKeyJ 74 J key vbKey9 57 9 key vbKeyF10 0x79 F10 key

vbKeyK 75 K key vbKeyLButton 0x1 Left mouse vbKeyF11 0x7A F11 key

vbKeyL 76 L key vbKeyRButton 0x2 Right mouse vbKeyF12 0x7B F12 key

vbKeyM 77 M key vbKeyCancel 0x3 CANCEL key vbKeyF13 0x7C F13 key

vbKeyN 78 N key vbKeyMButton 0x4 Middle mouse vbKeyF14 0x7D F14 key

vbKeyO 79 O key vbKeyBack 0x8 BACKSPACE vbKeyF15 0x7E F15 key

vbKeyP 80 P key vbKeyTab 0x9 TAB key vbKeyF16 0x7F F16 key

vbKeyQ 81 Q key vbKeyClear 0xC CLEAR key vbKeyEnd 0x23 END key

vbKeyR 82 R key vbKeyReturn 0xD ENTER key vbKeyHome 0x24 HOME key

vbKeyS 83 S key vbKeyShift 0x10 SHIFT key vbKeyLeft 0x25 LEFT 

vbKeyT 84 T key vbKeyControl 0x11 CTRL key vbKeyUp 0x26 UP

vbKeyU 85 U key vbKeyMenu 0x12 MENU key vbKeyRight 0x27 RIGHT

vbKeyV 86 V key vbKeyPause 0x13 PAUSE key vbKeyDown 0x28 DOWN

vbKeyW 87 W key vbKeyCapital 0x14 CAPS LOCK vbKeySelect 0x29 SELECT

vbKeyX 88 X key vbKeyEscape 0x1B ESC key vbKeyPrint 0x2A PRT SCR

vbKeyY 89 Y key vbKeySpace 0x20 SPACEBAR vbKeyExecute 0x2B EXECUTE 

vbKeyZ 90 Z key vbKeyPageUp 0x21 PAGE Up vbKeySnapshot 0x2C SNAPSHOT 

   vbKeyPageDown 0x22 PAGE Down vbKeyInsert 0x2D INSERT 

      vbKeyDelete 0x2E DELETE 

      vbKeyHelp 0x2F HELP key

      vbKeyNumlock 0x90 Num Lock



 

Constant Value Description 

vbKeyNumpad0 0x60 0 key 

vbKeyNumpad1 0x61 1 key 

vbKeyNumpad2 0x62 2 key 

vbKeyNumpad3 0x63 3 key 

vbKeyNumpad4 0x64 4 key 

vbKeyNumpad5 0x65 5 key 

vbKeyNumpad6 0x66 6 key 

vbKeyNumpad7 0x67 7 key 

vbKeyNumpad8 0x68 8 key 

vbKeyNumpad9 0x69 9 key 

vbKeyMultiply 0x6A MULT. SIGN (*) 

vbKeyAdd 0x6B PLUS SIGN (+) 

vbKeySeparator 0x6C ENTER key 

vbKeySubtract 0x6D MINUS SIGN  

vbKeyDecimal 0x6E DECIMAL POINT

vbKeyDivide 0x6F DIVISION SIGN (/) 

Notice that some of the key code values are written as ordinary 
decimal (base 10) values while others are written as 
hexadecimal (base 16) values.  The hexadecimal values are 
preceded by the “0x” prefix.  Details on the hexadecimal 
system will be given in class. 

vbKeySeparator → ENTER key on numeric keypad 

e.g. vbKeyReturn → ENTER key near SHIFT key 

This table lists the VB key code constants for the numeric 
keypad.  Notice that the constant names are different from the 
names of corresponding keys elsewhere on the keyboard. 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-52 



USING MESSAGE BOXES IN VB PROGRAMS 
The MsgBox function displays a message in a dialogue box, waits for the user to click a button and returns an Integer indicating 
which button the user clicked. 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-53 

Syntax 
MsgBox (prompt[, buttons] [, title] [, helpfile, context]) 

The square brackets mean that the argument is optional. 

The MsgBox function syntax has these named arguments: 

Part Description 

prompt Required.  String expression displayed as the message in the dialogue box.  The maximum length of prompt is approximately 1024 
characters, depending on the width of the characters used.  If prompt consists of more than one line, you can separate the lines using a 
carriage return character (Chr(13)), a linefeed character (Chr(10)) or carriage return – linefeed character combination (Chr(13) & Chr(10)) 
between each line. 

buttons Optional.  Numeric expression that is the sum of values specifying the number and type of buttons to display, the icon style to use, the 
identity of the default button, and the modality of the message box.  If omitted, the default value for buttons is 0. 

title Optional.  String expression displayed in the title bar of the dialogue box.  If you omit title, the application name is placed in the title bar. 

helpfile Optional.  String expression that identifies the Help file to use to provide context-sensitive Help for the dialogue box.  If helpfile is 
provided, context must also be provided. 

context Optional.  Numeric expression that is the Help context number assigned to the appropriate Help topic by the Help author.  If context is 
provided, helpfile must also be provided. 

Settings 
The buttons argument settings are: 

Constant Value Description Constant Value Description 

vbOKOnly 0 Display OK button only. vbDefaultButton1 0 First button is default. 

vbOKCancel 1 Display OK and Cancel 
buttons. 

vbDefaultButton2 256 Second button is default. 

vbAbortRetryIgnore 2 Display Abort, Retry and 
Ignore buttons. 

vbDefaultButton3 512 Third button is default. 

vbYesNoCancel 3 Display Yes, No, and Cancel 
buttons. 

vbDefaultButton4 768 Fourth button is default. 

vbYesNo 4 Display Yes and No buttons. vbApplicationModal 0 Application modal; the user must respond to 
the message box before continuing work in 
the current application. 

vbRetryCancel 5 Display Retry and Cancel 
buttons. 

vbSystemModal 4096 System modal; all applications are 
suspended until the user responds to the 
message box. 

vbCritical 16 Display Critical Message 
icon. 

vbMsgBoxHelpButton 16384 Adds Help button to the message box 

vbQuestion 32 Display Warning Query 
icon. 

VbMsgBoxSetForeground 65536 Specifies the message box window as the 
foreground window 

vbExclamation 48 Display Warning Message 
icon. 

vbMsgBoxRight 524288 Text is right aligned 

vbInformation 64 Display Information 
Message icon. 

vbMsgBoxRtlReading 1048576 Specifies text should appear as right-to-left 
reading on Hebrew and Arabic systems 

The first group of values (0–5) describes the number and type of buttons displayed in the dialogue box.  The second group (16, 32, 48, 64) 
describes the icon style; the third group (0, 256, 512, 768) determines which button is the default; and the fourth group (0, 4096) determines the 
modality of the message box.  When adding numbers to create a final value for the buttons argument, use only one number from each group. 



Note 
To specify more than the first named argument, you must use MsgBox in an expression.  To 
omit some positional arguments, you must include the corresponding comma delimiter. 

If the dialogue box displays a Cancel button, pressing the ESC key has the same effect as 
clicking Cancel.  If the dialogue box contains a Help button, context-sensitive Help is 
provided for the dialogue box.  However, no value is returned until one of the other buttons is 
clicked. 

When both helpfile and context are provided, the user can press F1 to view the Help topic 
corresponding to the context.  Some host applications, for example, Microsoft Excel, also 
automatically add a Help button to the dialogue box. 

Remarks Return Values 

Constant Value Description 

vbOK 1 OK 

vbCancel 2 Cancel 

vbAbort 3 Abort 

vbRetry 4 Retry 

vbIgnore 5 Ignore 

vbYes 6 Yes 

vbNo 7 No In this case, parentheses are not used and there is no assignment statement. 

In this example, MsgBox is not being used to obtain a response from the user.  It is simply 
used to make the user aware of something (usually a problem). 

Examples 
'Code for Quit button 

Private Sub cmdQuit_Click() 

    'VbMsgBoxResult is a special data type used to 
    'store responses obtained from message boxes. 

    Dim Response As VbMsgBoxResult 

    Response = MsgBox("Are you sure you want to _ 
                      quit?", vbYesNo, "Quitting...") 

    If Response = vbYes Then 
        Unload Me 
        End 
    End If 

End Sub 

 

'Code for Solve button 

Private Sub cmdSolve_Click() 
    MORY 'ME
    Dim Base As Double, Height As Double, _ 
                                Hypotenuse As Double 
    'INPUT 
    Height = Val(txtHeight.Text) 
    Base = Val(txtBase.Text) 
    Hypotenuse = Val(txtHypotenuse.Text) 
    ROCESSING and OU  'P TPUT
    If Hypotenuse = 0 Then 
        Hypotenuse = Sqr(Base ^ 2 + Height ^ 2) 
        txtHypotenuse.Text = Str(Hypotenuse) 
    ElseIf Base = 0 Then 
        Base = Sqr(Hypotenuse ^ 2 - Height ^ 2) 
        txtBase.Text = Str(Base) 
    ElseIf Height = 0 Then 
        Height = Sqr(Hypotenuse ^ 2 - Base ^ 2) 
        txtHeight.Text = Str(Height) 
    Else 
        ' Errors in the data entered by the user. 
        MsgBox "You have entered invalid data!", _ 
                 vbExclamation, "There is a problem!" 
    End If 
End Sub 

 

Questions 
1. In the above example, what caused the “Yes” and “No” 

buttons to appear on the message box? 

2. Although MsgBox returns an Integer, why is it helpful to 
declare the variable “Response” as type vbMsgBoxResult? 

More Questions 
1. In the above example, what caused the exclamation mark 

icon to appear on the message box? 

2. How would you obtain the “X” icon in the following 
message box? 

A MsgBox is used this way whenever we want to obtain a 
response from the user. 

In this example, MsgBox is being used as a function.  
Parentheses are used to contain the arguments (“inputs”) of 
the function and the value returned by the function is 
assigned to a variable of type VbMsgBoxResult. 

 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-54 



Another Example 
The message box shown below can be created by using the following code: 

Response = MsgBox("Are you sure you want to quit?", vbYesNo + vbExclamation + vbDefaultButton2, "Quitting...") 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-55 

 

 
Note 

• vbYesNo causes the “Yes” and “No” buttons to appear 

• vbExclamation causes the exclamation mark icon to appear 

• vbDefaultButton2 causes button #2 (“No”) to be the default button (as soon as the message box is displayed, the “No” 
button has the focus → this is a good idea in quitting message boxes because it prevents the user from accidentally quitting 
by pressing ENTER) 

• You may combine up to five different options for the second argument of MsgBox by picking one constant from each group 
in the table shown above and entering the sum of the constants as the second argument. 

Exercise 
Write a VB statement that can be used to generate the message box shown below. 

 



LEARNING NEW PROGRAMMING CONCEPTS BY STUDYING EXAMPLES 
1. Study the code for the “Text Scroller” program to determine the name of each object on the form shown below. 

 
 
'********************************************************************************************************** 
'* PROGRAMMER'S NAME: Nick E. Nolfi                                                                       * 
'* VERSION: Text Scroller V1.0                                                                            * 
'*                                                                                                        * 
'* DESCRIPTION:  This program scrolls a message in a label box.  The speed of the scroll can be controlled* 
'* by a "Slider" control and the direction of the scroll is selected by using an option button.           * 
'*                                                                                                        * 
'* LIMITATIONS (BUGS): There are a few minor bugs.                                                        * 
'*                                                                                                        * 
'* PURPOSE OF THIS PROGRAM: To introduce several new concepts                                             * 
'* -> String manipulation using the "Left" and "Right" intrinsic functions                                * 
'* -> Slider control                                                                                      * 
'* -> Timer control                                                                                       * 
'* -> Using the "Const" keyword to declare constants (constant identifiers)                               * 
'* -> Changing the mouse pointer when "hovering" over an object                                           * 
'* -> Frames                                                                                              * 
'********************************************************************************************************** 
 
Option Explicit 
Const ChangeInInterval = -50, MaxInterval = 700 

' Initialize timer interval and slider setting 

Private Sub Form_Load() 

    sldScrollerSpeed.Value = 5 
    tmrScrollTimer.Interval = ChangeInInterval * sldScrollerSpeed.Value + MaxInterval 

End Sub 

' When the START button is clicked, the message entered by the user is scrolled in the "lblMessage" label box.  
' If the message is less than two characters in length, an error message is displayed. 

Private Sub cmdStartScroll_Click() 

    Dim Response As VbMsgBoxResult 

    If Len(txtScrollMessage.Text) >= 2 Then 
        lblScroller.Caption = txtScrollMessage.Text 
        tmrScrollTimer.Enabled = True 
    Else 
        Response = MsgBox("Your message is too short.  Do you understand?", vbYesNo, "There is a problem!") 
        If Response = vbYes Then 
            MsgBox "Great Stuff!  You can count to two!", vbInformation, "Congratulations!" 
        ElseIf Response = vbNo Then 
            MsgBox "Do you know how to count to two?", vbCritical, "Oh brother!" 
        End If 
    End If 

End Sub 
' Disable timer to stop scroll 

Private Sub cmdStopScroll_Click() 

    tmrScrollTimer.Enabled = False 

End Sub 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-56 



Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-57 

' Close program 

Private Sub cmdClose_Click() 

    Unload frmScroller 
    End 

End Sub 

' Change scroller speed 

Private Sub sldScrollerSpeed_Change() 

    tmrScrollTimer.Interval = ChangeInInterval * sldScrollerSpeed.Value + MaxInterval 

End Sub 

' Scroll the message left or right depending on which option button is selected.  This sub procedure is called 
' every time the timer interval elapses (i.e. whenever the Timer event is generated). 

Private Sub tmrScrollTimer_Timer() 

    If optScrollRight.Value = True Then  'Scroll right 
        lblScroller.Caption = Right(lblScroller.Caption, 1) & _ 
                              Left(lblScroller.Caption, Len(lblScroller.Caption) - 1) 
    Else  'Scroll left 
        lblScroller.Caption = Right(lblScroller.Caption, Len(lblScroller.Caption) - 1) & _ 
                              Left(lblScroller.Caption, 1) 
    End If 

End Sub 

2. Before you answer this question, please ensure that you familiarize yourself with the “Text Scroller” program by loading it into 
Visual Basic from I:\Out\Nolfi\Tik2o0.  Run the program and carefully observe what happens when the “Slider” control is used to 
change the scroll speed.  In addition, study the objects on the form and their properties.  Then complete the following table. 

tmrScrollTimer sldScrollerSpeed txtScrollMessage lblScroller frmScroller 
Important 
Properties Values Important 

Properties Values Important 
Properties Values Important 

Properties Values Important 
Properties Values 

 
Enabled 
 
 
Interval 
 

  
LargeChange 
 
Max 
 
Min 
 
MouseIcon 
 
MousePointer 
 
SmallChange 
 
ToolTipText 
 
Value 
 

  
Alignment 
 
MouseIcon 
 
MousePointer
 
ToolTipText 

  
Alignment 
 
MouseIcon 
 
MousePointer
 
ToolTipText 
 
WordWrap 

  
BorderStyle 
 
Caption 
 
MaxButton 
 
MinButton 
 
WindowState 

 

 
3. Now that you have carefully studied the “Text Scroller” program, answer the following questions. 

(a) Why does the mouse pointer change to a “hand shape” when it is moved over the slider control? 
 
 
 
(b) Why does the text “Adjust Scroll Speed” appear when the mouse pointer is paused over the slider control? 
 
 
 
(c) Why does a “happy face” icon appear in the top left hand corner of the frmScroller form? 
 
 
 
(d) Why is it not possible to change the size of the frmScroller form?  Why is the maximize button disabled? 



4. The purpose of this question is to help you understand the formula that is used to change the speed of the “scroller.”  The change in 
speed is based on a simple linear (“straight line”) equation.  Find an equation of the line shown below and then compare your 
equation to the formula used in the program. 
 
Hint: Let T represent the timer interval, let V represent the slider value and use the y = mx + b form of the equation of a straight 
line.  Recall that “m” represents the slope of the line and “b” represents the y-intercept. 

 

5. Study the technical descriptions of the “Left” and “Right” functions given below.  Then explain how these two functions are used in 
the “scroller” program. 

Left Function 
Returns a Variant (String) containing a specified number of 
characters from the left side of a string. 
Syntax 
Left(string, length) 
The Left function syntax has these named arguments: 

Part Description 

string Required.  String expression from which the leftmost 
characters are returned.  If string contains Null, Null 
is returned. 

length Required.  Variant (Long).  Numeric expression 
indicating how many characters to return.  If 0, a 
zero-length string ("") is returned.  If greater than or 
equal to the number of characters in string, the entire 
string is returned. 

 

Right Function 
Returns a Variant (String) containing a specified number of 
characters from the right side of a string. 
Syntax 
Right(string, length) 
The Right function syntax has these named arguments: 

Part Description

string Required.  String expression from which the 
rightmost characters are returned.  If string contains 
Null, Null is returned. 

length Required. Variant (Long).  Numeric expression 
indicating how many characters to return.  If 0, a 
zero-length string ("") is returned.  If greater than or 
equal to the number of characters in string, the 
entire string is returned. 

 

Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-58 



Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-59 

OBJECT NAMING CONVENTIONS 
Objects should be named with a consistent prefix that makes it easy to identify the type of object. Recommended 
conventions for some of the objects supported by Visual Basic are listed below. 
Suggested Prefixes for Controls 

Control Type Prefix Example Control Type Prefix Example 

3D Panel pnl pnlGroup Gauge gau gauStatus 

ADO Data ado adoBiblio Graph gra graRevenue 

Animated button ani aniMailBox Grid grd grdPrices 

Check box chk chkReadOnly Hierarchical flexgrid flex flexOrders 

Combo box 
(drop-down list box) cbo cboEnglish Horizontal scroll bar hsb hsbVolume 

Command button cmd cmdExit Image img imgIcon 

Common dialog  dlg dlgFileOpen Image combo imgcbo imgcboProduct 

Communications  com comFax ImageList ils ilsAllIcons 

Control (used within procedures 
when the specific type is unknown) ctr ctrCurrent Label lbl lblHelpMessage 

Data dat datBiblio Lightweight check box lwchk lwchkArchive 

Data-bound combo box dbcbo dbcboLanguage Lightweight combo box lwcbo lwcboGerman 

Data-bound grid dbgrd dbgrdQueryResult Lightweight command 
button lwcmd lwcmdRemove 

Data-bound list box dblst dblstJobType Lightweight frame lwfra lwfraSaveOptions 

Data combo dbc dbcAuthor Lightweight horizontal 
scroll bar lwhsb lwhsbVolume 

Data grid dgd dgdTitles Lightweight list box lwlst lwlstCostCenters 

Data list dbl dblPublisher Lightweight option button lwopt lwoptIncomeLevel 

Data repeater drp drpLocation Lightweight text box lwtxt lwoptStreet 

Date picker dtp dtpPublished Lightweight vertical scroll 
bar lwvsb lwvsbYear 

Directory list box dir dirSource Line lin linVertical 

Drive list box drv drvTarget List box lst lstPolicyCodes 

File list box fil filSource ListView lvw lvwHeadings 

Flat scroll bar fsb fsbMove MAPI message mpm mpmSentMessage 

Form frm frmEntry MAPI session mps mpsSession

Frame fra fraLanguage MCI mci mciVideo
 



Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-60 

Suggested Prefixes for Controls (Continued from previous page) 

Control Type Prefix Example Control Type Prefix Example 

Menu mnu mnuFileOpen Slider sld sldScale

Month view mvw mvwPeriod Spin spn spnPages

MS Chart ch chSalesbyRegion StatusBar sta staDateTime

MS Flex grid msg msgClients SysInfo sys sysMonitor

OLE container ole oleWorksheet TabStrip tab tabOptions

Option button opt optGender Text box txt txtLastName

Picture box pic picVGA Timer tmr tmrAlarm

Picture clip clp clpToolbar Toolbar tlb tlbActions

ProgressBar prg prgLoadFile TreeView tre treOrganization

Remote Data rd rdTitles UpDown upd updDirection

RichTextBox rtf rtfReport Vertical scroll bar vsb vsbRate

Shape shp shpCircle    

Suggested Prefixes for Data Access Objects (DAO) 
Use the following prefixes to indicate Data Access Objects. 

Control Type Prefix Example Control Type Prefix Example 

Container con conReports Parameter prm prmJobCode

Database db dbAccounts QueryDef qry qrySalesByRegion

DBEngine dbe dbeJet Recordset rec recForecast

Document doc docSalesReport Relation rel relEmployeeDept

Field fld fldAddress TableDef tbd tbdCustomers

Group grp grpFinance User usr usrNew

Index ix idxAge Workspace wsp wspMine

Examples 
Dim dbBiblio As Database 
Dim recPubsInNY As Recordset, strSQLStmt As String 
Const DB_READONLY = 4 
'Open database. 
Set dbBiblio = OpenDatabase("BIBLIO.MDB") 
' Set text for the SQL statement. 
strSQLStmt = "SELECT * FROM Publishers WHERE State = 'NY'" 
' Create the new Recordset object. 
Set recPubsInNY = db.OpenRecordset(strSQLStmt, dbReadOnly) 



Copyright ©, Nick E. Nolfi TIK2OO Software Development using Visual Basic VB-61 

Suggested Prefixes for Menus 
Applications frequently use many menu controls, making it useful to have a unique set of naming conventions for these 
controls.  Menu control prefixes should be extended beyond the initial "mnu" label by adding an additional prefix for 
each level of nesting, with the final menu caption at the end of the name string.  The following table lists some examples. 

Menu caption sequence Menu handler name

File Open mnuFileOpen

File Send Email mnuFileSendEmail

File Send Fax mnuFileSendFax

Format Character mnuFormatCharacter

Help Contents mnuHelpContents

When this naming convention is used, all members of a particular menu group are listed next to each other in Visual 
Basic’s Properties window.  In addition, the menu control names clearly document the menu items to which they are 
attached. 

Choosing Prefixes for Other Controls 
For controls not listed above, you should try to standardize on a unique two or three character prefix for consistency.  Use 
more than three characters only if needed for clarity.  For derived or modified controls, for example, extend the prefixes 
above so that there is no confusion over which control is really being used.  For third-party controls, a lower-case 
abbreviation for the manufacturer could be added to the prefix.  For example, a control instance created from the Visual 
Basic Professional 3D frame could uses a prefix of fra3d to avoid confusion over which control is really being used. 


	Software Development using Visual Basic – Table of Contents
	Objects in Visual Basic, Object-Oriented Programming and Visual Programming
	What is a Program?  What is a Programming Language?
	What is Objected-Oriented Programming?  (Simplified Description for Programming Novices)
	What is an Event-Driven Programming Language?
	Objects in Visual Basic
	Events Commonly used in Visual Basic
	Questions

	Objects, Properties, Events and Methods in VB:Creating Your First VB Program that Processes Numeric Information
	Instructions to be Read carefully and followed
	Questions

	A Program that processes String (Text) Information
	Extremely Important Questions

	Variables in Microsoft Visual Basic
	Introduction
	Specific Aspects of Variables in Visual Basic
	Rules for Naming Variables in Microsoft Visual Basic
	Summary
	Data Types Used to Store Integer Values (Whole Number Values, Possibly Including a Negative Sign)
	Data Types Used to Store Floating-Point and Fixed-Point Values (Numbers with a Fractional Part i.e., “Decimals”)
	Data Types Used to Store Text
	Miscellaneous Data Types
	Questions

	What is the Difference between an Object and a Variable?
	Variables
	Objects
	Questions

	Review of Essential Concepts in Visual Basic
	Data (Information) – A Partial List of VB Data Types
	A Computer as a Data Processing Machine
	Some Useful Intrinsic (Built-In) Functions

	A Complete List of Visual Basic Data Types
	Data (Information)

	Understanding Visual Basic Programming
	Review: Concepts that you need to Understand before you can Create Good VB Programs

	Writing your own Code: Currency Converter Program
	The Most Important Lesson of the Entire Unit
	Planning and Developing Solutions to Software Development Problems
	Wrong!!!!!(Most Students)
	Right!!!!!!(George Polya)
	How these Steps Apply to Software Development

	Example of a General Problem
	Step 1 – Analysis (Understand the Problem)
	Step 2 – Design (Choose a Strategy)
	Step 3 – Implementation (Carry out the Strategy)
	Step 4 – Validation (Check the Solution)


	Visual Basic Practice Problems: Input, Processing, Output
	VB Review 1- Important Programming Terminology
	VB Review 2- Translating Math Formulas into VB
	Learning about Selection Statements (If Statements) by Studying the Pythagorean Theorem Program
	An Improved Version of the Pythagorean Theorem Program
	Picturing “If” Statements

	Exercises

	The Area Calculator Program - Another Program that Requires “IF” Statements
	Introduction – What you will learn by studying the Area Calculator
	What you need to do
	Questions

	Pizza Program Solutions and Questions
	The Problem
	The Plan

	Sequence, Selection and Repetition: The Underpinnings of Programming
	Sequence
	Selection
	Repetition
	Questions and Programming Exercises

	Selected Solutions to Assigned VB Problems
	Solution 1
	Questions Related to Solution 1
	Solution 2
	Questions Related to Solution 2

	The Evolution of Software Part I: How to Keep Improving your Software
	Case Study – Developing a CRAPS Game in VB
	A Solution to Phase One
	Questions

	Two Different Solutions to Phase Two
	Solution 1 – Craps 1.1a
	Questions
	Solution 2 – Craps 1.1b

	Thinking about Phases Three and Four

	The Evolution of Software Part II:Further Improvements to the Craps Software
	Questions
	Research Assignment
	Questions

	Do You Understand the Craps Program?
	Questions

	The Temperature Converter Program
	Questions to Consider before Writing Code

	Operators in Visual Basic
	Arithmetic Operators
	Mathematical Functions
	Comparison Operators
	Logical Operators
	Truth Tables for the Logical Operators
	Operator Precedence (Order of Operations)
	Infrequently Used Operators
	Type Conversion Functions

	Improving Your Visual Basic Programs
	Rounding Off Values
	Round Function
	Using the KeyPress Event to “Trap” Invalid Characters
	Key Code Constants in Visual Basic

	Using Message Boxes in VB Programs
	Syntax
	Settings
	Return Values
	Examples
	Questions
	More Questions
	Another Example
	Exercise

	Learning New Programming Concepts by Studying Examples
	Left Function
	Right Function

	Object Naming Conventions
	Suggested Prefixes for Controls
	Suggested Prefixes for Data Access Objects (DAO)
	Suggested Prefixes for Menus
	Choosing Prefixes for Other Controls


