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WHAT IS A PROOF? – INDUCTIVE AND DEDUCTIVE REASONING 
“A demonstration is an argument that will convince a reasonable man.  A proof is an argument that can convince even 
an unreasonable man.”  (Mark Kac, 20th century Polish American mathematician) 

Nolfi’s Intuitive Definition of “Proof” 
A proof is a series or “chain” of inferences (i.e. “if…then” statements, formally known as logical implications or 
conditional statements) that allows us to proceed logically from an initial premise, which is known or assumed to be true, 
to a desired final conclusion. 

 
Hopefully, my definition is somewhat easier to understand than that of a former Prime Minister: 
Jean Chrétien, a former Prime Minister of Canada, was quoted by CBC News as saying, "A proof is a proof.  What kind 
of a proof?  It’s a proof.  A proof is a proof.  And when you have a good proof, it’s because it’s proven." 

Pythagorean Theorem Example 

In any right triangle,  
the square of the hypotenuse is equal to the sum of the squares of the other two sides. 

 

That is, c2 = a2 + b2. 

Proof: 
Begin with right ΔABC and construct the altitude AD. 
Since ΔABC ∼ ΔBDA (AA similarity theorem), 

 ∴
AB BD
BC AB

= . 

Since ΔABC ∼ ΔADC (AA similarity theorem), 

 ∴
AC DC
BC AC

= . 

Therefore, 
 AB·AB=BD·BC and AC·AC=DC·BC 
Summing up, we obtain 
 AB·AB + AC·AC = BD·BC + DC·BC 
    = (BD+DC)·BC 
    = BC·BC 
    = BC2

 ∴AB2 + AC2 = BC2 // 
 

See http://www.cut-the-knot.org/pythagoras/index.shtml for a multitude of proofs of the Pythagorean Theorem. 

Research Exercises 
1. Use the Internet to find James Garfield’s proof of the Pythagorean Theorem.  If you don’t know who James Garfield 

was, look that up too! 

2. Jean Chrétien’s very “colourful” definition of a proof was given to a CBC reporter who asked Prime Minister Chrétien 
a question about the war in Iraq (i.e. George W. Bush’s war in Iraq, not the Gulf War of the late 1980s).  What was the 
question? 

b 

c a 

The initial 
premise 

The final 
conclusion 

A 

B 

C 

D 
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The Meaning of π – An Example of Deductive Reasoning 
The following is an example of a typical conversation between Mr. Nolfi and a student who blindly memorizes formulas: 

Student: Sir, I can’t remember whether the area of a circle is 2rπ  or 2 rπ .  Which one is it? 

Mr. Nolfi: If you remember the meaning of π, you should be able to figure it out. 

Student: How can 3.14 help me make this decision?  It’s only a number! 

Mr. Nolfi: How dare you say something so disrespectful about one of the most revered numbers in the mathematical 
lexicon!  (Just kidding.  I wouldn’t really say that.)  It’s true that the number 3.14 is an approximate value of π.  But I 
asked you for its meaning, not its value. 

Student: I didn’t know that π has a meaning.  I thought that it was just a “magic” number. 

Mr. Nolfi: Leave magic to the magicians.  In mathematics, every term (except for primitive terms) has a very precise 
definition.  Read the following carefully and you’ll never need to ask your original question ever again! 

In any circle, the ratio of the circumference to the diameter is equal to a constant value that we call π.  That is, 
:C d π= . 

 

Alternatively, this may be written as  
C
d

π=  

or in the more familiar form 
C dπ= . 

If we recall that d = 2r, then we finally arrive at the most common form of this relationship, 
2C rπ= . 

 

Mr. Nolfi: So you see, by understanding the meaning of π, you can deduce that 2C rπ= .  Therefore, the formula for the 
area must be 2A rπ= .  Furthermore, it is not possible for the expression 2 rπ  to yield units of area.  The number 2π is 
dimensionless and r is measured in units of distance such as metres.  Therefore, the expression 2 rπ  must result in a value 
measured in units of distance.  On the other hand, the expression 2rπ  must give a value measured in units of area because 

, which involves multiplying a value measured in units of distance by itself.  Therefore, by considering units 
alone, we are drawn to the inescapable conclusion that the area of a circle must be

2 ( )r r r=
2rπ  and not 2 rπ ! 

Examples 
2 2(3.14)(3.6 cm) 22.608 cmrπ =� → This answer cannot possibly measure area because cm is a unit of distance. 

Therefore, 2rπ  must be the correct expression for calculating the area of a circle. 
2 23.14(3.6 cm) 3.14(3.6 cm)(3.6 cm) 40.6944 cmrπ = =� 2

Snip the circle and 
stretch it out into a 

strai

→ Notice that the unit cm2 is appropriate for area. 

ght line. 

d d d 

C 
d 

As you can see, the length of the 
circumference is slightly more than three 

diameters.  The exact length of C, of 
course, is π diameters or πd. 

This is an example of a deductive 
argument.  Each statement follows 

logically from the previous statement. 
That is, the argument takes the form  

“If P is true then Q must also be true” 
or more concisely, “P implies Q.” 
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Tips on becoming a Powerful “Prover” 
1. Do not fear or be intimidated by the word “proof.”  The more fearful you are, the less likely you are to succeed. 
2. Expect to encounter roadblocks and obstacles of all kinds.  This is a normal and natural part of the process!  It is 

extremely unrealistic to expect success on the first attempt every time that you set out to write a proof (or solve a 
problem)!  There is no formula that can be used to generate all proofs.  Proving involves a great deal of educated 
guessing, trial and error and lots of dead ends.  To be successful, you must be perseverant and determined. 

3. Never, ever assume what you are trying to prove!  What you are trying to prove should be the final conclusion of 
your proof!  The given information can/should be used for the initial premise. 

4. For a mathematical statement to be true, it must be true in all cases!  Therefore, proofs must be general, that is, 
they must apply to all cases.  A valid proof must demonstrate that the statement is true in all cases! 

5. Examples cannot be used to prove statements.  They can be used only to check the validity of a conjecture.  If you 
think that a certain statement is true and it works in every example that you try, then it is possible that it is true in 
general.  (If a statement involves only a finite number of cases, then it is possible to prove the statement by listing 
every possible case and proving each one separately.  However, this could prove to be extremely tedious and time 
consuming if the number of possible cases is large.) 

6. To disprove a statement, one counterexample is sufficient.  For instance, many students often blindly assume that 
x y x y+ = + .  Upon closer inspection, however, we can easily find an example that disproves this statement.  If 

we let x = 16 and y = 9, we instantly see that the left-hand-side equals 16 9 25 5+ = = while the right-hand-side 
equals 16 9 4 3 7+ = + = .  This single counterexample proves that the original assumption was wrong!  (In fact, 
very few classes of functions exhibit this very convenient “separability” behaviour.) 

 

7. Think of writing a proof as planning a route from a point of departure to a destination.  It is imperative that you 
understand that you must know both the point of departure and the destination before you plan your route! 

This is wrong! 

 

 

8. Beware of logical fallacies (see Appendix 3). 
9. Keep in mind the process of making a conjecture and testing it.  If all tests are successful, then it may be worthwhile 

trying to prove that the conjecture is true in general. 

Inductive Reasoning 
This is an example of inductive reasoning.  In general, inductive reasoning uses clues or 
data to support possible conclusions.  It must be emphasized, however, that inductive 
reasoning does not lead to an incontrovertible conclusion.  The conclusion of an inductive 
argument is always subject to doubt as it is based on incomplete evidence.  The strength of 
an inductive argument depends on both the quantity and the quality of the data. 

An effective problem solver is much like someone who is good at 
planning travel.  If you were to take a trip by automobile, for instance, 
you would create a plan before embarking on your voyage. 

1. Note the point of departure. 
2. Note the destination. 
3. Consider many different routes for travelling from the point 

of departure to the destination. 
4. Choose the best route. 
5. Finally, pack your bags, get into your car and go! 

You must approach problem solving in much the same way.  
Unfortunately, many of my students solve problems in the same way 
that a confused traveller would plan a trip (step 5 would be carried out 
before the destination is known).  How can one possibly set out for 
an unknown destination? 

Use a series of 
hen” statements 

to proceed logically 
m premise to 

conclusion. 

“if…t

fro

Premise 
Begin with what 

 know. you

End with what you 
want to prove. Conclusion 

If even a single test fails, the 
conjecture must be false. 

Make a 
conjecture. 

Test the 
conjecture. 

If all tests are successful, the 
conjecture might be true.  It 
may be worthwhile trying to 

find a general proof. 
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Example of Inductive Reasoning (The “Conjecture, Test the Conjecture, Try to Prove” Process) 
(See Appendix 2 for more information on inductive reasoning.) 

Conjecture 
All integers ending in 5, when squared, yield a number ending in 25. 
 

Test the Conjecture 
52 = 25, 152 = 225, 252 = 625, 352 = 1225, 452 = 2025, 552 = 3025, 652 = 4225, 752 = 5625, 852 = 7225, 952 = 9025, 1052 = 11025 
We have not found any exceptions to our “rule.”  Therefore, it might be true in general.  Let’s try to prove it. 

Example of Deductive Reasoning – Deductive Proof of the Conjecture 
(See Appendix 1 for more information on deductive reasoning.) 
Proof of Above Conjecture: 
If an integer ends in 5, then it must be of the form 10n + 5, where n ∈  (n is an element of the set of integers). ]

∴(10n + 5)2 = [5(2n + 1)]2

 

= 25(2n + 1)2

= 25(4n2 + 4n + 1) 
= 100n2 + 100n + 25 
= 100(n2 + n) + 25 

∴(10n + 5)2 = 100(n2 + n) + 25 

Deductive Reasoning 
This is an example of deductive reasoning.  Through a series of logical implications 
(i.e. “if…then” or conditional statements), a conclusion can be deduced.  Unlike 
inductive reasoning, an argument that is based on deductive reasoning leads to an 
unassailable, irrefutable conclusion.  That is, the truth of the premise guarantees the 
truth of the conclusion. 

Deduce – To reach a conclusion by reasoning. 

Since 100(n2 + n) is divisible by 100, 100(n2 + n) + 25 must end in 25.  Therefore, any integer ending in 5, when squared, 
must yield an integer ending in 25.  // 

How to Distinguish between a Deductive Argument and an Inductive Argument 

Deductive Reasoning Inductive Reasoning 

Inductive arguments are in a sense the opposite of deductive 
arguments.  An inductive argument generally proceeds in the 
following way: 

Deductive arguments take the following form: 
“If Cause Then Effect” 

or 
“If Premise Then Conclusion” • First we observe the effect. 

• We collect evidence by making observations and taking into 
account our experiences. 

In a deductive argument, we know that a cause (premise) 
produces a certain effect (conclusion).  If we observe the 
cause, we can deduce that the effect must occur.  These 
arguments always produce definitive conclusions. 

• We then use this evidence to speculate about a possible cause.  
Conclusions of inductive arguments are not definitive. 

• Scientific studies involve a great deal of inductive reasoning. 
Examples of Inductive Reasoning from Everyday Life Examples of Deductive Reasoning from Everyday Life 
1. The floor is wet.  It’s possible that a drink was spilled. 1. If I spill my drink on the floor, the floor will get wet. 

2. Mr. Nolfi is angry!  A plausible explanation is that many students 
“forgot” to do their homework. 

2. When students “forget” to do homework, Mr. Nolfi gets 
angry! 

3. If a student is caught cheating, Mr. Nolfi will assign a mark 
of zero to him/her, ridicule the student publicly, turn red in 
the face and yell like a raving madman whose underwear 
are on fire! 

3. Mr. Nolfi assigned a mark of zero to a student, ridiculed him/her 
publicly, turned red in the face and yelled like a raving madman 
whose underwear were on fire!  Maybe the student was caught 
cheating. 

4. Drinking too much alcohol causes drunkenness. 4. A person is behaving in a drunken manner.  It is likely that he/she 
drank too much alcohol. 

Homework 
1. Do the research exercises on page IPEG-4 (not necessary if already discussed in class) 
2. Read section 1.1 in our textbook (pages 3 – 5) 
3. Read section 1.2 in our textbook (pages 7 – 9). 
4. Do the following exercises:  p. 9 #3, p. 10 #4, 6, 10, 11 
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AXIOMATIC SYSTEMS OF REASONING 
The conclusion of every inference (conditional statement or logical implication) must be supported by a premise.  If the 
premise is true, then the conclusion must also be true.  But how do we know that the premise is true?  There are only two 
possible answers to this question.  Either the premise is itself the conclusion of some other inference or the premise is 
assumed to be true.  It is not possible for every premise to be the conclusion of some other inference because this leads to 
the problem of infinite regression.  Therefore, we must accept that every system of reasoning eventually boils down to a 
set of basic assumptions, which are called axioms. 
To understand the idea of infinite regression, consider the example given below (taken from 
http://en.wikipedia.org/wiki/Turtles_all_the_way_down.) 

“Turtles all the way down” refers to an infinite regression myth about the nature of the universe. 

 

The most widely known version today appears in Stephen Hawking’s 1988 book A Brief History of Time, which 
begins with an anecdote about an encounter between a scientist and an old lady: 
A well-known scientist (some say it was Bertrand Russell) once gave a public lecture on astronomy.  He described how the 
Earth orbits around the sun and how the sun, in turn, orbits around the centre of a vast collection of stars called our galaxy. 

At the end of the lecture, a little old lady at the back of the room got up and said: “What you have told us is rubbish.  The 
world is really a flat plate supported on the back of a giant tortoise.” 

The scientist gave a superior smile before replying, “What is the tortoise standing on?” 

“You're very clever, young man, very clever,” said the old lady.  “But it’s turtles all the way down.” 

This patently ridiculous notion of an infinite tower of tortoises perfectly illustrates the idea of 
infinite regression.  Even if you can believe that the earth is a flat plate supported on the back of a 
giant tortoise, you certainly cannot accept that there could be an infinite number of them.  At some 
point there must be a beginning, that is, there must be a “bottom” tortoise upon which everything 
else stands. 
Any system of reasoning works in exactly the same way.  We can logically deduce “new truths” 
from “old truths” but this cannot be done indefinitely into the “past.”  Therefore, there must be 
some fundamental starting point upon which derived knowledge must rest.  This fundamental starting point consists of a 
set of axioms and primitive or undefined terms.  This is described in more detail below. 
Foundation of Axiomatic System of Reasoning – Primitive (Undefined) Terms and Axioms 

 

For example, an axiom of Euclidean geometry is “parallel lines never intersect.**”  Although this cannot be proved on 
the basis of more elementary concepts, it is a reasonable assumption because no exceptions to this statement have ever 
been found (as long as we confine the lines to flat surfaces). 

Axioms 
An axiom is a statement that is accepted as “true” without proof.  Often, axioms are considered self-evident truths.  
Since axioms cannot be proved, however, we must recognize that they are nothing more than assumptions.  If we hope 
to arrive at knowledge that is meaningful and useful, it is very important that we choose plausible axioms.  Choosing 
highly questionable axioms is likely to lead to nonsense.* 

For example, in Euclidean or plane geometry (geometry of flat surfaces), a point is an undefined term.  It is assumed 
that we understand what is meant by a point, however, it is not possible to give a definition of a point because there are 
no simpler terms or concepts upon which any definition can be based. 

Primitive (Undefined) Terms 
A primitive or undefined term is one for which no definition is given.  Primitive terms are used for concepts that are 
so basic that it is not possible to define them in terms of simpler or more basic concepts.  Since no definition is given 
for primitive terms, it is assumed that the “meaning” of such a term is “understood.” 

*In philosophy there is much debate concerning whether there is any such thing as a “self-evident truth.”  Many philosophers believe 
that assumptions cannot be considered “true” or “false” because they cannot be verified.  We shall intentionally avoid such 
arguments as they can lead to a “paralysis of thought.”  We shall adopt the point of view that as long as we make “reasonable” 
assumptions, we can construct logical arguments that lead to useful results.  For those of you who are interested in such 
philosophical debates, use search phrases such as “self-evident truth” or “axiomatic reasoning” to learn more. 

**This axiom was actually stated in a more roundabout fashion by Euclid (see Postulate 5 on page IPEG-12).  This axiom is known to 
be false in non-Euclidean geometries (geometries of curved surfaces such as hyperbolic geometry or elliptic geometry). 
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Definitions and Propositions in Axiomatic System of Reasoning 

 

For instance, the Pythagorean Theorem is a proposition of Euclidean geometry.  It can be demonstrated to be “true” in 
a variety of different ways. 

Propositions 
A proposition is a statement that affirms or denies something and is either true or false.  The truth or falsity of a 
proposition is established by using primitive terms, definitions, axioms and previously proved propositions. 

Defined Terms (Definitions) 
A defined term is one that can be described in terms of primitive terms and other defined terms. 
For example, in Euclidean geometry, a triangle can be defined in terms of points and line segments.  In addition, a line 
segment can be defined in terms of lines and points. 

Summary 

  

Mathematical Statements 

Axioms Propositions 

Lemmas Corollaries Theorems 

Mathematical Terms 

Undefined 
(Primitive) Terms Defined Terms 

Exercises 
1. Give examples of each of the following. 

 

Concept Example 

undefined term  

defined term  

axiom  

proposition  

2. Find mathematical or scientific definitions of each of the following terms: 
 

postulate, theorem, lemma, corollary, counterexample, converse, contrapositive, inverse, premise, conditional 
statement (logical implication), biconditional statement (logical equivalence), hypothesis, theory, “if and only if,” 
algorithm 

3. Classify the following arguments as deductive or inductive.  In addition, discuss the validity of each argument. 
Deductive or Argument True or False?  Why? Inductive? 

David H. did not bring a coffee for Mr. Nolfi one morning.  In addition, he looked 
very dishevelled, his clothes were torn and he had several bruises on his arms.  It 
looks like he must have been rude to Fiona again, which caused Fiona to beat him 
with a razor-blade-embedded blackboard compass.  In addition, he has probably 
lost his mind because Mr. Nolfi is extremely irritable without his morning coffee! 

  

All organisms have RNA (ribonucleic acid).  Giant clams are deep-ocean seafloor 
organisms found near geothermal vents.  Therefore, giant clams have RNA.   

A comet is a relatively small extraterrestrial body consisting of a frozen mass that 
travels around the sun in a highly elliptical orbit.  Pluto orbits the sun in a highly 
elliptical orbit.  Therefore, Pluto is a comet. 

  

Copyright ©, Nick E. Nolfi MGA4U0 An Introduction to Deductive Geometry and the Nature of Proof IPEG-9



An Example of Deductive Reasoning in Science – Einstein’s Special Theory of Relativity (Enrichment Material) 
Scientific work relies heavily on inductive reasoning.  A typical scientific investigation proceeds as shown below: 
1. Define the question 

 

2. Gather information and resources 
3. Form an hypothesis 
4. Perform experiments and collect data 
5. Analyze the data 
6. Interpret the data and draw conclusions that serve as a starting point for new hypotheses 

Note that steps 3 to 6 may need to be repeated several times 
before step 7 can be completed. 
As with all inductive reasoning, the results are always considered 
tentative, that is, subject to disproof. 

7. Publish results 
In the late nineteenth century and early twentieth century, the field of theoretical physics began to flourish as deductive 
reasoning increasingly found its way into the realm of science.  Foremost among the theoretical physicists of the time was 
the young and brilliant yet still obscure Albert Einstein.  In 1905, he published five groundbreaking papers, three of which 
are said to have been worthy of a Nobel Prize.  In the best known of these papers, Einstein deduced what is now known as 
the “Special Theory of Relativity,” which predicts the measurements made by observers moving at a constant velocity 
relative to each other.  Using only two axioms, Einstein deduced several results, none of which has ever been contradicted 
by experimental evidence.  A brief overview of the special theory of relativity is given below. 

Postulates (Axioms) of Special Relativity 
1. The Principle of Relativity (in the Restricted Sense) 

Suppose that K and K' are inertial frames of reference (co-ordinate systems that obey Galileo’s law of inertia, also 
*.  Then natural phenomena run their course with respect to K' according to exactly the known as Newton’s First Law)

same general laws as with respect to K. 
2. The Propagation of Light in Empty Space – The Invariance of c 

Light is always propagated in empty space in straight lines with a definite (constant) velocity c that is independent of 
the state of motion of the emitting body (i.e. the state of motion of the source of light). 

These two very simple principles are quite reasonable assumptions because no contradictions to them have ever been 
found.  They are, nonetheless, assumptions because there is no way of proving them definitively (although the second 
postulate can be deduced from the first postulate and Maxwell’s equations governing electromagnetic radiation).  If either 
of the two postulates should turn out to be false, then Einstein’s great edifice of special relativity would come crashing to 
the ground!  On the other hand, if both of the postulates are in fact true, then the truth of the theory is guaranteed by the 
deductive argument!  Luckily, every experiment ever performed has confirmed the predictions of special relativity. 

Some Important Results Deduced from the Postulates of Special Relativity 
Suppose that K and K' are inertial frames of reference*.  Suppose that K is considered to be “at rest.”  Then K' is moving 
away from K with a constant velocity v.  The Special Theory of Relativity asserts that measurements made with respect to 
K will differ from measurements made with reference to K' according to the equations given below. 

1. Suppose that a body is at rest relative to K' and that its mass, as measured by an observer at rest with respect to K' is 
given by m0.  Then as measured by an observer at rest with respect to K, the mass of the body is found to be 

      0
2

2

( )
1

mm v
v
c

=

−

. 

That is, the mass of a body increases as its velocity increases. 
2. Suppose that a body is at rest relative to K' and that its length, as measured by an observer at rest with respect to K' is 

given by l0.  Then as measured by an observer at rest with respect to K, the length of the body is found to be 

      
2

0 2( ) 1 vl v l
c

= − . 

That is, the length of a body decreases as its velocity increases.  (This is known as length contraction.) 

* If K and K' are inertial frames of reference (co-ordinate systems that obey the law of inertia) then they are necessarily 
moving with a constant velocity with respect to each other.  From the point of view of an inertial frame, bodies at rest 
remain at rest unless acted upon by some external, unbalanced force.  In addition, bodies in motion will remain in 
motion with a constant velocity (constant speed and in a straight line) unless acted upon by some external, unbalanced 
force. 
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3. Suppose that the time interval between two events as measured by an observer at rest with respect to K' is found to be 
Δt0.  Then as measured by an observer at rest with respect to K, the time interval between the two events is given by  

      0
2

21

tt
v
c

Δ
Δ =

−

. 

That is, moving clocks run slower than those at rest.  (This is known as time dilation.) 

4. For the sake of completeness, the following result is also included.  It is the most famous result of special relativity and 
it shows that mass and energy are “interchangeable” quantities.  That is, by virtue of its mass, a body at rest with 
respect to an inertial frame possesses an intrinsic amount of energy as given by the immortal equation 
 2E mc= . 

A GRAND “THEOREM” THAT OVERTURNS ALL CURRENTLY ACCEPTED MATH? 

“Theorem” 

2 = 1 
“Proof” 

“B.S.” stands for “both sides” 
(among other things) 

Let x = y. 
2x xy∴ =  (B.S. multiplied by x) 

2 2 2x y xy y∴ − = −  (Subtract  from B.S.) 2y

( )( ) ( )x y x y y x y∴ − + = −  (Factor B.S.)  

x y−x y y∴ + =  (Divide B.S. by ) 

y y y∴ + =  (Since x = y) 

2y y∴ =  (Simplify B.S.) 

2 1∴ =  (Divide B.S. by y) // 

Since we have shown that 2=1, it appears that the mathematical pillars upon which all mathematical theory stand are 
about to crumble!  A little careful reflection, however, will reveal that there is something terribly wrong with the argument 
given above.  So it seems that the foundations of math are safe for the time being. 

What is wrong with the given argument? 
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PROOF IN EUCLIDEAN GEOMETRY 
What is Euclidean Geometry? 
Named after the ancient Greek mathematician and teacher Euclid of Alexandria (circa 365 BC – 275 BC), Euclidean 
geometry (also known as plane geometry) deals with the properties, measurement and relationships of points, lines, angles 
and “flat” surfaces.  In his most famous work Elements (consisting of 13 books), Euclid used a small set of definitions, 
axioms and postulates to deduce the properties of geometric objects and natural numbers.  Although many of the results 
presented in Elements originated with earlier mathematicians, Euclid (Eukleides in Greek) was the first to compile and 
present the bulk of the mathematical knowledge of the time in a single, logically coherent framework.  Widely considered 
the most successful textbook ever published, Elements has also been enormously influential in science and philosophy.  
The following diagram should help you appreciate the beautiful and rich deductive structure of Euclid’s Elements.  (See 
Appendix 1 for a more detailed discussion.) 

 

 

It is important to understand that Euclid did not 
distinguish between undefined (primitive) terms 
and defined terms.  This is a modern conception 
based on the idea that certain central terms are 
so basic that they are not defined in terms of 
simpler concepts. 
A great analogy is to think of the undefined 
terms as atoms and the defined terms as 
molecules. 
Admittedly, the difference between an axiom 
and a postulate is quite subtle.  Both are 
assumptions of some kind.  Nonetheless, it is 
still important to distinguish between postulates 
and axioms.  An axiom is considered a strongly 
self-evident “truth.”  A postulate, on the other 
hand, need not be a claim to “truth.”  It is more 
or less an assertion of choice, as in statements 
of the form “let this be true.” 

The building represents the 
propositions of Euclidean geometry.  

The propositions are deduced 
(derived logically) from the axioms, 

postulates and definitions. 

However, the propositions cannot 
exist without the foundations, that is, 

the axioms, postulates, undefined 
(primitive) terms and the defined 

terms. 

For more information on Euclid’s Elements, see 
http://aleph0.clarku.edu/~djoyce/java/elements/elements.html

Although the building looks majestic and sturdy, it would collapse quickly and crumble if it were not for its solid footings buried 
deep within the ground.  Similarly, the magnificent edifice of Euclidean geometry would collapse onto itself if it were not for its 
footings or underpinnings, the definitions and axioms.  Note that Euclid did not distinguish between undefined (primitive) terms 
and defined terms.  In addition, Euclid separated axioms into “common notions” and “postulates.” 

Axioms Definitions 
Common Notions Postulates 

1. Point 14. Figure 1. A straight line segment can be drawn by 
joining any two points. 

1. Things that are equal to the 
same thing are also equal to 
one another. 

2. Line 15. Circle 
3. Endpoints of a 

Line 
16. Centre of a Circle 

2. A straight line segment can be extended 
indefinitely in a straight line. 

17. Diameter 
2. If equals be added to equals, 

the wholes (sums) are equal. 
4. Straight Line 18. Semicircle 
5. Surface 19. Rectilinear Figure, 

Trilateral, 
Quadrilateral, 
Multilateral 

3. Given a straight line segment, a circle 
can be drawn using the segment as radius 
and one endpoint as centre. 

6. Edges of a 
Surface 3. If equals be subtracted from 

equals, the remainders 
(differences) are equal. 

7. Plane Surface 
4. All right angles are congruent. 8. Plane Angle 20. Equilateral, Isosceles, 

Scalene Triangles 9. Rectilinear 
Angle 

4. Things that coincide with one 
another are equal to one 
another. 

5. If two lines are drawn which intersect a 
third in such a way that the sum of the 
inner angles on one side is less than two 
right angles, then the two lines inevitably 
must intersect each other on that side if 
extended far enough. 

21. Right, Acute, Obtuse 
Triangles 10. Right Angle, 

Perpendicular 22. Square, Oblong, 
Rhombus, Rhomboid, 
Trapezium 

5. The whole is greater than the 
part. 

11. Obtuse Angle 
12. Acute Angle  
13. Boundary 23. Parallel Lines 
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General Approach to Learning Theorems 
Much of this section is a review of what you learned in previous courses.  What is new, however, is that you will be 
learning how to prove some theorems of Euclidean Geometry that until now, you accepted without proof.  It is essential to 
understand that for the purposes of this course, the theorems themselves are more important than their proofs.  
Therefore, for the sake of efficient and effective learning, I suggest the following approach to learning theorems: 

1. First, understand the results.  That is, before you even consider studying the proofs of the theorems, first understand 
the theorems themselves and how to apply them. 

2. Once you have obtained a good general overview of the new theorems, solve as many problems (write as many 
proofs) as you can.  This helps to reinforce your understanding of the new material. 

3. Study the proofs of the theorems but do not memorize them!  It is far more important to understand the techniques and 
ideas used in the proofs than it is to memorize them blindly. 

4. Solve more problems! 

Geometry Theorems you might have (or should have) Learned before taking this Course 
Sketch a diagram to illustrate each theorem or formula. 

Theorem Diagrams 
 

1. Triangle Congruence Theorem 
Two triangles are congruent if and only if at least one of the 
following conditions is satisfied: 
i. Corresponding sides are equal (SSS) 
ii. The hypotenuse and one other side of one right triangle are 

respectively equal to the hypotenuse and one other side of a second 
right triangle (HS)  (Note that “HS” is a corollary of “SSS.”) 

iii. Two sides and the contained angle of one triangle are respectively 
equal to two sides and the contained angle of a second triangle (SAS) 

iv. Two angles and the contained side of one triangle are respectively 
equal to two angles and the contained side of a second triangle (ASA) 

v. Two sides and a non-contained angle of one triangle are respectively 
equal to two sides and a non-contained angle of a second triangle, 
and for each triangle, the given angle is opposite the larger of the two 
given sides (SsA) 
 
*Note: SsA (also known as AsS) only holds if the longer of the two 
given sides is opposite the given angle.  So please do not be an “AsS!”  
Use SsA very carefully.  For more information, consult  
http://www.andrews.edu/~calkins/math/webtexts/geom07.htm#AAA 

2. Angle Sum Triangle Theorem (ASTT) 
In any triangle, the sum of the interior angles is 180° (π rad).  
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3. Isosceles Triangle Theorem (ITT) 
A triangle is isosceles if and only if the base angles are equal.  

4. Opposite Angle Theorem (OAT) 
The opposite angles formed by two intersecting lines are equal.  

5. Convex Polygon Theorem (CPT) (corollary of ASTT) 

 

i. The sum of the interior angles of an n-sided convex polygon is 
(n−2)180° (i.e. (n−2)π rad) 

ii. The sum of the exterior angles of any convex polygon is 360° 
(i.e. 2π rad) 

 

In a non-convex or 
concave polygon, at 

least one interior angle 
is greater than 180° 

In a convex 
polygon, each 

interior angle is 
less than 180° 

6. Angle-Angle Similarity Theorem (AA) 
Two triangles are similar if and only if two angles of one triangle 
are respectively equal to two angles of a second triangle. 

 

7. Exterior Angle Theorem (EAT) (Corollary of ASTT) 
An exterior angle of a triangle is equal to the sum of the two interior 
and opposite angles. 
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Proof of ASTT 
Extend line segment CB to F.  
Construct line segment DE through A such that DE || FC. 

 

Then, 
  ∠ ABC = ∠ DAB = y (PLT “Z”) 
    and 
  ∠ BCA = ∠ EAC = z (PLT“Z”). 
Therefore, 
  x + y + z = 180° (supplementary angles) 
Hence, the sum of the interior angles of any triangle is 180°. // 

Proof of ITT 
 Construct altitude AD. 

In right ΔABD and right ΔACD, 
 AB = AC (given) 
 DA = DA (common) 

Therefore, 
  ΔABD ≅ ΔACD (HS congruence) 
Hence, ∠ABD = ∠ACD.  That is, the base angles are equal. // 
 

Alternative Proof of ITT 
 

Construct AD in such a way that ∠BAC is bisected (i.e. ∠BAD = ∠CAD) 
In ΔABD and ΔACD, 
 AB = AC (given) 
 ∠BAD = ∠CAD (by construction) 
 AD = AD (common) 
Therefore, 
  ΔABD ≅ ΔACD (SAS congruence) 
Hence, ∠ABD = ∠ACD.  That is, the base angles are equal. // 

Proof of OAT 
 

 x + y = 180° (1) (supplementary angles) 
 y + z = 180° (2) (supplementary angles) 
 z + w = 180° (3) (supplementary angles) 
 
 (1) – (2), 
 x– z = 0° 
 Therefore, ∠AEB = ∠CED 
 Similarly, ∠AEC = ∠BED. // 

Homework 
1. Use ASTT and supplementary angles to prove EAT. 
2. Use ASTT to prove the convex polygon theorem. 
3. Read pages 11 – 14 in our textbook. 
4. Do the following exercises:  p. 14 #2, 3, 5,  p. 15 #7, 8, 9 

x y z 

z y 

A D E 

F C B 

B 
D 

C 

A 

B 
D 

C 

A 

x x 

B D 

A C 

E 

x 
y 

z 
w 
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PROOF IN CARTESIAN GEOMETRY 
What is Cartesian Geometry? 
Cartesian geometry, also known as analytic geometry or co-ordinate geometry, is a branch of 
mathematics that was developed by René Descartes (1596-1650).  Descartes was highly talented and 
renowned in many fields including physics, physiology, mathematics and philosophy.  His name is very 
familiar to students of mathematics, but it is as a highly original philosopher that he is most frequently 
read today.  One of his greatest contributions to mathematics was the development of analytic geometry.  
Not only did Descartes show that there is an intimate connection between algebra and geometry, he also 
established a system of co-ordinates that allowed mathematicians to use equations to describe and generate curves. 
Proof in Cartesian Geometry 
Analytic geometry provides us with an extremely powerful tool for proving mathematical statements.  Once we add it to 
our arsenal of problem solving methods, many problems become much easier to solve.  Here are three examples. 

Example 1 
Prove that the diagonals of a parallelogram bisect each other. 
Proof y 

O(0, 0) x 

C(a, b) 

A(c, 0) 

B(a + c, b)Let E represent the midpoint of OB and let F represent the midpoint of AC.  
Then, the co-ordinates of E and F are  
 

0 0, ,
2 2 2
a c b a c b+ + + +⎛ ⎞ ⎛

2
=⎜ ⎟ ⎜

⎝ ⎠ ⎝
⎞
⎟
⎠

 

 and 0, ,
2 2 2 2

a c b a c b+ + +⎛ ⎞= ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟  respectively. 

Since E and F have the same co-ordinates, they must be coincident.  
Therefore, OB and AC have a common midpoint.  Since the point of 
intersection of OB and AC is the only point that lies on both OB and AC, it must be the midpoint of both OB and AC.  
Hence, the diagonals of a parallelogram bisect each other.  // 

Example 2 – A Corollary of the Pythagorean Theorem 
2 2

2 1 2 1( ) (Prove that the distance between the points 1 1( , )x y  and 2 2( , )x y  is )x x y y− + − 2 2( ) ( )x yΔ + Δ= . 

Proof 
See unit 0.// 

The following example shows that it is very important to choose the placement of the co-ordinate axes very carefully. 

Example 3 
Prove that in any triangle, the right bisectors of the sides are concurrent (intersect at a common point). 

Proof 
Let M, N and P represent the midpoints of AB, BC and CA respectively.  

Then, the co-ordinates of M, N and P are ,
2 2
a b⎛ ⎞

⎜ ⎟
⎝ ⎠

, ,
2 2
c b⎛

⎜
⎝ ⎠

⎞
⎟  and ,

2
0a c+⎛ ⎞

⎜ ⎟
⎝ ⎠

y 

x 
C(c, 0) A(a, 0) 

B 0, b( )
l 

respectively.  In addition, the slopes of AB, BC and CA are 

3 

M N 

P 

b
a

−
b
c

−,  and 0 

respectively.  Thus, the slopes of the perpendiculars through M, N and P 

must be 
a
b

c
b

l,  and undefined respectively.  Using this information, it can be 

shown that the following are equations of the lines l

1 
l2 

1, l2, and l3 respectively: 
2 2

2
a b a

y x
b b

−
= +

2 2

2
c b c

y x
b b

−
= +

2
a c

x
+

= .  (Continued on next page.) ,  and 
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2
a c

x
+

=To find the point(s) of intersection of l

 

1, l2, and l3 can substitute  into each of the other two equations.  When we do 

this, we obtain 
2 2 2 2 2

2 2 2
a b a a a c b a ac b

y x
b b b b b

− + −
= + +⎛ ⎞= ⎜ ⎟

⎝ ⎠ 2
+

=  for the first equation and 

2 2 2 2 2

2 2 2
c b c c a c b c ac b

y x
b b b b b

− + −
= + +⎛ ⎞= ⎜ ⎟

⎝ ⎠ 2
+

=  for the second equation.  Thus, l1, l2, and l3 have a common point of 

intersection 
2

,
2 2

a c ac b
b

+ +⎛ ⎞
⎜
⎝ ⎠

⎟ , which means that the perpendicular bisectors of the sides must be concurrent.  // 

Homework 
1.  Read section 1.4 in the textbook. 
2.  Do exercises on pp. 19-20: #2, 4, 6, 7, 8, 9, 11, 12, 13 

Critical Prerequisite Knowledge 
To be able to solve the problems in this section of the course, you must be able to  

1. Evaluate the distance between two points. 

2. Evaluate the midpoint of a line segment. 

3. Calculate the slope of a line. 

4. Find an equation of a line given a point and a slope. 

5. Find an equation of a circle given its centre and its radius. 

6. Recognize that two lines are parallel if and only if their slopes are equal. 

7. Recognize that two lines are perpendicular if and only if their slopes are negative reciprocals of each other. 

8. Understand that slope measures the steepness of a line, which means the same thing as the rate of change of a linear 
function.  (In the case of non-linear functions, the slope of the tangent line measures the steepness or rate of change 
of a curve at a given point.) 
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THE INTIMATE CONNECTION BETWEEN ALGEBRA AND GEOMETRY 
Introduction 
Many students have the impression that mathematics is a somewhat mysterious and painful subject that most people fear 
and few people understand.  The main cause of this animosity and anxiety toward mathematics is most likely 
mathematical notation; it can be extremely intimidating.  After all, the language of math is rife with Greek letters, Latin 
letters and all sorts of strange symbols.  What does it all mean? 
To relieve this anxiety toward math, teachers must convey to their students that mathematical notation is the language of 
mathematics.  Like with any other language, an association needs to be made between the symbols and their meanings.  
Only once this is accomplished can a deep understanding be acquired!  Once the teacher helps his/her students realize 
that there is a deep connection between algebra and geometry, that is, that they are two different perspectives of the same 
underlying ideas, then all else falls into place.  Put more simply, students need to understand that it is possible to relate 
most mathematical expressions and equations to diagrams.  Just as the English word “chair” evokes the imagery of a 
chair, so should the mathematical equation  evoke an image of a circle of radius 5 centred at the origin. 2 2 25x y+ =

So why is it that so few people seem to understand the language of mathematics?  There are many possible causes of this 
apparent lack of meaning but the main cause is probably the recipe-oriented method of teaching mathematics.  Students 
are taught algorithms for solving particular kinds of problems.  Just as an inexperienced cook can follow a good recipe 
blindly and produce good results, many students can master mathematical algorithms and produce correct answers without 
having much of an understanding of the underlying ideas. 
An Exercise in the Language of Mathematics 
Complete the table given below.  This kind of exercise will help you to develop the ability to associate mathematical 
symbols, expressions and equations with concrete ideas. 

Expression, Equation 
or Inequation 

Conclusion, Interpretation or Explanation 
(In English, of Course) Diagram 

2 2 25x y+ =    

4 5x − =    

4 5x + =    

3 4x y+ = 5    

 

  In two triangles, corresponding angles are 
equal. 
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Conclusion, Interpretation or Explanation 
(In English, of Course) 

Expression, Equation or 
Inequation Diagram 

2 4 0b ac− <    

2 4 0b ac− >    

2 4 0b ac− =    

25x x+ =    

 

 

 

 

69   

  

y 

O(0, 0) x 

C(a, b) 

A(c, 0) 

B a + c, b( )
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Conclusion, Interpretation or Explanation 
(In English, of Course) 

Expression, Equation or 
Inequation Diagram 

4 5x − = −    

  The base angles of a triangle are equal. 

The sum of the interior angles of a triangle 
is π radians.   

21 3 5 4x x x− + = − + +    

2 2( 3) ( 1) 225x y− + + =    

2 4 5
2

b b ac
a

− ± −
= ±    

Make up some of your own 
exercises here. 
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Another Exercise that helps develop your Mathematical Intuition 
State whether each of the following statements is true or false.  Provide a proof of each of the true statements and a 
counterexample for each of the false statements. 

True or 
False? Statement Proof, Counterexample or Explanation 

a b a b+ = +    

2 2( )a b a b+ = + 2    

Two lines in a diagram look 
parallel.  Therefore, they are 

parallel. 
  

The sum of the exterior 
angles of a concave (non-
convex) polygon is 2π rad. 

  

The slope of the line 
is 3.   3 4 6x y+ − = 0

Make up some of your own here. 

  

   

   

   

   

Review 
1. Review these online notes and examples in your textbook. 
2. “Chapter 1 Test” on p. 22 of the textbook 
3. “Review of Prerequisite Skills” on pp. 24-27 of the textbook 
4. Ask me any questions that you may have. 
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OVERVIEW OF SECOND HALF OF UNIT 1 
General Objectives 
1. Consolidate (strengthen) our knowledge and understanding of mathematical terminology, particularly the language 

associated with propositions and their proofs: 
• premise, conclusion, inference, proof, theorem, proposition, corollary, lemma, property 
• definition, undefined (primitive) term, axiom, postulate, conjecture, counterexample, algorithm 
• statement, conditional statement (logical implication), biconditional statement (logical equivalence), converse, “if 

and only if”, inverse, contrapositive 
• deductive reasoning (deductive proof), inductive reasoning, proof by contradiction (indirect proof) 
• congruence, similarity, bisector, proportionality, ratio, line segment, convex polygon, non-convex polygon, scalene 

triangle, isosceles triangle, equilateral triangle, acute angle, obtuse angle, reflex angle, interior angle, exterior 
angle, parallel, equidistant, midpoint, endpoint 

2. Prove properties of plane figures (including circles) using deductive proof (direct proof), proof by contradiction 
(indirect proof or reductio ad absurdum) and algebraic methods.  (Later in the course we shall expand our repertoire 
by using vector methods to prove properties of plane figures.) 

3. Review theorems of geometry that we have already proved or assumed to be true: 
• Congruence theorems (SSS, SAS, ASA, SsA(AsS)) 
• ASTT, ITT, OAT, Pythagorean Theorem (PT), Convex Polygon Theorem (CPT) 
• Exterior Angle Theorem (EAT, a corollary of ASTT), Properties of Parallelograms (POP) 
• Finding the Area of a Triangle 

®4. Use “Geometer’s Sketchpad ” to discover several properties of plane figures, apply these properties and prove them. 
• Parallelogram Area Property (PAP), Right Bisector Theorem (RBT), Angle Bisector Theorem (ABT), Parallel Line 

Theorem(PLT), Triangle Area Property (TAP), Triangle Proportion Property Theorem (TPPT), Similar Triangle 
Theorem (STT) 

• Chord Right Bisector Property (CRBP), Equal Chords Property (ECP), Angle at Circumference Property (ACP), 
Equal Angles in a Segment Property (EASP), Angles in a Cyclic Quadrilateral Property (ACQP), Tangent Radius 
Property (TRP), Tangent from a Point Property (TPP), Tangent Chord Property (TCP), Intersecting Chords 
Property (ICP), Intersecting Secants Property (ISP) 

5. Understand terminology related to circles: 

 

 

 
Chords Diameter Centre Radius 

α and 360°- α 
are called 

“central angles” 

β is called an 
“angle at the 

circumference” 

α 

β 

Angle in a semi-circle Cyclic Polygon Tangents to a Circle 
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USING GEOMETER’S SKETCHPAD TO DISCOVER THEOREMS IN PLANE GEOMETRY 
Instructions 
Use Geometer’s Sketchpad to perform each of the following geometric constructions.  In each case, state a conjecture 
based on your results.  Do not forget to save your sketchpad files! 

Activity Conjecture 

1. Construct a few triangles to demonstrate that AAA, 
SSA (ASS) and AAS do not guarantee the congruence 
of two triangles.  Are there conditions under which they 
do guarantee congruence? 

 

2. Construct two parallelograms having bases of the same 
length and lying between the same parallel lines.  What 
do you notice about the areas of the parallelograms?  Is 
this true in general?  Investigate by constructing more 
parallelograms. 

 

3. Construct a line segment and its right bisector.  Then 
construct at least three points lying on the right 
bisector.  What do you notice about the lengths of the 
line segments joining the points on the right bisector to 
the endpoints of the original line segment?  Is the 
converse also true? 

 

4. Construct an angle and its bisector.  Then construct at 
least three points lying on the bisector.  From the points 
lying on the bisector, construct line segments extending 
from each point to each arm of the angle in such a way 
that the line segments are perpendicular to the arms.  
What do you notice about the lengths of these line 
segments?  Is the converse also true? 

 

5. Construct three triangles all having the same base but 
different heights.  In addition, construct three triangles 
all having the same height but different bases.  What do 
you notice about the areas of the triangles? 

 

6. Construct any three triangles.  In the interior of each 
triangle, construct a line segment parallel to the base 
and joining the remaining two sides of the triangle.  
What do you notice about the ratios of the 
corresponding sides of the triangles?  Is the converse 
also true? 
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Activity Conjecture 

 

7. Construct at least three equiangular triangles (i.e., they 
satisfy the AAA condition).  What relationship is there 
among the corresponding sides of the triangles?  Is this 
true in general? 

 

8. Construct two triangles in which two pairs of sides are 
proportional and the angles contained by these sides are 
equal.  What can you conclude?  Is this true in general? 

 

9. Construct a circle.  Then construct any chord other than 
the diameter of the circle and its right bisector.  What 
do you notice about the right bisector?  Does it pass 
through a special point?  Is this always true?  Is the 
converse true? 

 

10. Construct a circle and two non-parallel chords.  Then 
construct the right bisector of each chord.  Where do 
the two bisectors intersect?  Is this true in general?  Is 
the converse also true? 

 

11. Construct a circle with two chords of equal length.  
What do you notice about the distance of each chord 
from the centre of the circle?  Is this always true?  Is 
the converse true? 

 
12. Construct a circle and any central angle of the circle 

(except for 180° and 360°).  This divides the circle into 
two arcs, a major arc (the longer arc) and a minor arc 
(the shorter arc).  In each case, the arc is said to 
subtend an angle at the centre of the circle.  If the 
length of the arc is known, how can the measure of the 
subtended central angle be calculated? 
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Activity Conjecture 

 
13. Construct a circle and any central angle ∠AOB, such that O is the centre of 

the circle and ∠AOB <180°.  Then construct ∠ACB at the circumference 
standing on the same minor arc as ∠AOB.  What is the relationship 
between ∠AOB and ∠ACB?  Is this true in general?  (Do not delete this 
diagram.  You will need it for activity 14.) 

 
14. Now continue your construction from activity 13.  Construct another angle 

at the circumference, ∠ADB standing on the same minor arc as ∠AOB.  
What is the relationship between ∠ACB and ∠ADB?  Is this true in 
general?  (The angles ∠ACB and ∠ADB are said to be angles in the same 
segment of a circle.) 

 

15. Construct any angle in a semi-circle.  What do you notice about the 
measure of the angle?  Is this always true?  Is the converse true? 

 

16. Construct at least three triangles.  For each triangle, construct a circle such 
that all three vertices of the triangle lie on the circumference of the circle.  
Can you succeed in every case?  If so, do you think that all triangles have 
this property?  (That is, are all triangles cyclic?) 

 

17. Construct a circle and a cyclic quadrilateral within the circle.  What do you 
notice about the opposite angles?  What do you notice about any exterior 
angle and the interior angle at the opposite vertex?  Is this true in general?  
Is the converse true? 

 

18. Construct a circle and a point P lying outside the circle.  From P, construct 
two tangents to the circle, PA and PB, where A and B lie on the circle.  
What do you notice about the lengths of PA and PB?  Also construct radii 
OA and OB.  What do you notice about ∠PBO and ∠PAO. 

 

19. Construct a circle and two non-parallel chords.  Extend each chord to the 
exterior of the circle until the chords meet at the point P.  You will notice 
that the circumference of the circle cuts the line segments into two parts.  
What do you notice about the products of these parts? 
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IMPORTANT THEOREMS OF PLANE GEOMETRY 
Review of Previously Learned Theorems 
Sketch a diagram to illustrate each theorem or formula. 

Theorem Diagrams 
1. Triangle Congruence Theorem 

Two triangles are congruent if and only if at least one of the 
following conditions is satisfied: 

 

i. Corresponding sides are equal (SSS) 
ii. The hypotenuse and one other side of one right triangle are 

respectively equal to the hypotenuse and one other side of a second 
right triangle (HS) 
(Note that “HS” is a corollary of “SSS.”) 

iii. Two sides and the contained angle of one triangle are respectively 
equal to two sides and the contained angle of a second triangle (SAS) 

iv. Two angles and the contained side of one triangle are respectively 
equal to two angles and the contained side of a second triangle (ASA) 

v. Two sides and a non-contained angle of one triangle are respectively 
equal to two sides and a non-contained angle of a second triangle, 
and for each triangle, the given angle is opposite the larger of the two 
given sides (SsA) 

 

2. Angle Sum Triangle Theorem (ASTT) 
In any triangle, the sum of the interior angles is 180° (π rad). 

 

3. Isosceles Triangle Theorem (ITT) 
A triangle is isosceles if and only if the base angles are equal. 

 

4. Opposite Angle Theorem (OAT) 
The opposite angles formed by two intersecting lines are equal. 

 5. Convex Polygon Theorem (CPT) 
i. The sum of the interior angles of an n-sided convex polygon is 

(n−2)180° (i.e. (n−2) π rad) 
ii. The sum of the exterior angles of any convex polygon is 360° 

(i.e. 2π rad) 

 
6. Angle-Angle Similarity Theorem (AA) 

Two triangles are similar if and only if two angles of one triangle 
are respectively equal to two angles of a second triangle. 

 
7. Exterior Angle Theorem (EAT) (Corollary of ASTT) 

An exterior angle of a triangle is equal to the sum of the two interior 
and opposite angles. 
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New Geometry Theorems 
Sketch a diagram to illustrate each theorem. 

Theorem Diagrams 

 1. Parallelogram Area Property (PAP) 
Two parallelograms have the same area if their bases 
are of equal length and they lie between the same 
parallel lines. 
 
Note: The converse of this statement is not true!  Why?

 

2. Right Bisector Theorem (RBT) 
A point lies on the right bisector of a line if and only if 
it is equidistant from the endpoints of the line segment. 

 

3. Angle Bisector Theorem (ABT) 
A point lies on the bisector of an angle if and only if it 
is equidistant from the arms of the angle. 

 
4. Parallel Line Theorem (PLT) 

Two straight lines are parallel if and only if  
i. alternate angles are equal, or 
ii. corresponding angles are equal, or 
iii. interior angles are supplementary 

 
5. Triangle Area Property (TAP) 

If triangles have equal heights, their areas are 
proportional to their bases.  If triangles have equal 
bases, their areas are proportional to their heights. 

 

6. Triangle Proportion Property Theorem (TPPT) 
A line in a triangle is parallel to a side of the triangle if 
and only if it divides the other sides in the same 
proportion. 

 

7. Similar Triangle Theorem (STT) 
Two triangles are similar if and only if  
i. they are equiangular, or 
ii. their sides are proportional, or 
iii. two pairs of sides are proportional and the angles 

contained by these sides are equal. 
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Theorem Diagrams 

8. Chord Right Bisector Property (CRBP) 
i. The right bisector of a chord passes through the centre of 

the circle. 
ii. The perpendicular from the centre of a circle to a chord 

bisects the chord.  
iii. The line joining the centre of a circle to the midpoint of a 

chord is perpendicular to the chord. 
iv. The centre of a circle is the point of intersection of the 

right bisectors of any two non-parallel chords. 

9. Equal Chords Property (ECP) 
Chords are equidistant from the centre of a circle if and 
only if the chords are of equal length. 

 

10. Angle at the Circumference Property (ACP) 
An angle at the centre of a circle is twice the angle at the 
circumference standing on the same arc. 

 

11. Equal Angles in a Segment Property (EASP) 
Angles in the same segment of a circle are equal.  

12. Angle in a Semicircle Property (ASP) 
Any angle in a semicircle is a right angle.  

13. Angles in a Cyclic Quadrilateral Property (ACQP) 
i. A quadrilateral is cyclic if and only if its opposite angles 

are supplementary (incorrect in text, p. 91) 
ii. A quadrilateral is cyclic if and only if the exterior angle 

at any vertex is equal to the interior angle at the opposite 
vertex. 

 

iii. A quadrilateral is cyclic if and only if one side subtends 
equal angles at the remaining vertices. 
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Theorem Diagrams 

 14. Tangent Radius Property (TRP) 
For a given circle, 
i. a tangent is perpendicular to the radius at 

the point of tangency; 
ii. a line at right angles to a radius at the 

circumference is a tangent; 
iii. a perpendicular to a tangent at the point of 

contact passes through the centre. 

15. Tangent Chord Property (TCP) 
The angle formed by a tangent and a chord 
is equal to the angle subtended by the chord 
in the segment on the other side of the chord.

 

16. Tangent from a Point Property (TPP) 
Tangent segments from an external point to 
a circle are equal. 

 

17. Intersecting Chords Property (ICP) 
If two chords intersect, the product of the 
two parts of one is equal to the product of 
the two parts of the other. 

 

18. Intersecting Secants Property (ISP) 
If two secants AB and CD intersect at point 
P, then PA•PB = PC•PD. 

 

19. Corollary of ICP and ISP 
If a tangent PT is drawn from a point on a 
secant AB, then PA•PB = PT

 
2. 
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MORE FACTS THAT YOU CANNOT AFFORD NOT TO KNOW! 
Fact Diagram and Explanation 

1. The area of a rectangle is A lw=   

2. The area of a parallelogram is A bh= .  

1
2 2

bh
A bh= =3. The area of a triangle is .  

4. The area of a trapezoid is 

1
2

( )
( )

2 2
h a b a b

A h a b h
+ +

= = + = ⎛ ⎞
⎜ ⎟
⎝ ⎠

  

2A rπ=5. The area of a circle is .  The 
circumference of a circle is  2C rπ= . 

6. Every triangle is cyclic.  (Points lying on 
a circle are called concyclic.)  

7. The midpoint of a line segment.  (You 
supply the formula.)  

8. The distance between two points.  (You 
supply the formula.)  
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USING DEDUCTIVE LOGIC TERMINOLOGY CORRECTLY 
Important Terminology 
For the exercise given below, it is imperative that you understand the following terms: 

statement, converse, inverse, contrapositive, negation, conditional (logical implication), biconditional (logical equivalence) 
If any of these terms are unclear, consult Appendix 1 (or any other authoritative sources of information) 

1. For each of the following statements, write the converse, the inverse and the contrapositive. 

Statement Converse Inverse Contrapositive Statement in 

 

( ) P Q→ “If…then” form ( Q P ) → ( ) P Q→∼ ∼ ( ) Q P→∼ ∼

If P is true then Q is 
true. 

If Q is true then P is 
true. 

If P is not true then Q 
is not true. 

If Q is not true then P 
is not true. P implies Q 

All humans are 
mortal.     

A German 
Shepherd is a 

large dog 
    

Math is fun!     

An integer is a 
number.     

A prime number 
has exactly two 
factors, 1 and 

itself 

    

Students always 
do their 

homework. 
    

Students always 
tell the truth     

Students never 
cheat     

Students always 
study for tests 

and exams 
    

2. For each of the statements in question 1, state whether 
(a) the statement is true or false 
(b) the converse is true or false 
(c) the statement and its converse form a true biconditional statement (i.e. a logical equivalence, ) P Q↔
(d) the inverse is true or false 
(e) the contrapositive is true or false 
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PROOF BY CONTRADICTION (INDIRECT PROOF, REDUCTIO AD ABSURDUM) 

2Introductory Problem – The Irrationality of  

2Prove that  is irrational. 

Are Irrational Numbers Crazy? 
Before tackling this problem, we must ensure that we understand the meaning of the term “irrational.”  Below is a list of 
the sets of numbers most commonly used in secondary school mathematics courses.  A detailed examination of these sets 
will help you recall what is meant by an irrational number. 

□  is the set of natural numbers or counting numbers {1,2,3, }=` …

{ }0,1, 2,3,W = …  is the set of whole numbers □ 

□  is the set of integers { , 2, 1,0,1,2 }= − −] … …

, , , 0
n

q q n m m
m

= ∈ = ∈ ∈ ≠
⎧ ⎫
⎨

⎭⎩
_ \ ] ]

 

□ ⎬  is the set of rational numbers (i.e. all fractions including negative fractions) 

The decimal expansions of rational numbers are either terminating or repeating (e.g. 9.7, 1.333… = ) 1.3

}{q q= ∈ ∉_ \ _ 2□  is the set of irrational numbers, that is, real numbers that are not fractions (e.g. , 3 , π, e) 

The decimal expansions of irrational numbers are non-terminating and non-repeating 

= ∪\ _ _  is the set of real numbers □ 

This Venn Diagram shows how the above sets are related.  The set of real 
numbers is the universal set that includes all of the others.  It is divided into 
two mutually exclusive sets, the rational numbers and the irrational numbers. 

`  

W  

_  

]  _

\

The set of rational numbers contains the set of integers, which contains the 
set of whole numbers, which in turn contains the set of natural numbers.  In 
the language of set theory, this is expressed as  or 

. 
W⊃ ⊃ ⊃_ ] `

W⊂ ⊂ ⊂` ] _
The set of irrational numbers can be subdivided further into two mutually 
exclusive (disjoint) sets, the algebraic numbers and the transcendental 
numbers.  The set of algebraic numbers consists of numbers such as 2 , 

5 1
1.618

2
φ

+
= �4 3  and  (the golden ratio), which are not rational but can 

be obtained as roots of polynomial equations with rational coefficients (e.g. 
4 3  is a root of  and 4 3 0x − = 2  is a root of ).  Transcendental 
numbers, on the other hand, are much “worse” than algebraic numbers.  They 
are more numerous than algebraic numbers but are extremely difficult to 
generate (see 

2 2 0x − =

 http://en.wikipedia.org/wiki/Transcendental_numbers).  
Transcendental numbers include 3.14159π �  and .  (Also, see Unit 4 
of this course for a discussion of countable and uncountable sets.) 

2.718e �

2Back to the Irrationality of  

2Consider trying to develop a deductive (direct) proof of the irrationality of .  Where would you begin?  What could 
you use as an initial premise? 

When mathematicians attempt to develop a deductive (direct) proof but make little or no progress, they turn to a 
technique known as proof by contradiction or (also known as indirect proof or reductio ad absurdum).  This method uses 
a form of logic embodied by the Sir Arthur Conan Doyle character Sherlock Holmes.  Sherlock was famous for 
remarking that after we have eliminated the impossible, whatever remains, however improbable, must be the truth. 
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This line of reasoning is applied in many different fields: 

□ Doctors often diagnose illnesses by ruling out possibilities. 

□ Mechanics often diagnose problems with automobiles by ruling out possibilities. 

□ List an example of your own here: 

The Logic of Contradiction 
Suppose that you would like to prove that P is true but you are having difficulties finding a direct proof.  In this case it is 
often helpful to try an indirect method.  The method of proof by contradiction involves investigating what would happen 
if we assumed the opposite of what we are trying to prove.  That is, if we are certain that P is true, what would happen if 
we assumed that P is not true?  The process is shown below in pictorial fashion. 

 

You try to prove “P is true” using a deductive 
(direct) proof but all attempts fail! 

Try proof by contradiction (indirect proof). 

Assume “P is not true” to see what happens. 

Using “P is not true” as an initial premise, derive 
conclusions.

Keep deriving conclusions until a conclusion 
known to be false is obtained.  Once we obtain a 
false conclusion, we can only conclude that the 
original assumption was false.  Therefore, the 

original assumption “P is not true” must be false.  
This can only happen if “P is true” is true! 

Once we derive a 
conclusion that is 
known to be false, 

we say that we 
have found a 

contradiction of 
the original 
assumption. 

2Finally we can prove that  is irrational! 

2  were rational.  (Assume the opposite of what we are trying to prove to see what happens.) Suppose that 

2 , , ,
a

a b b
b

= ∈ ∈ ≠] ] 20 gcd( , ) 1a b = and (i.e.  can be expressed as a fraction in lowest terms). Then 

Therefore, 
But this contradicts the 
premise that gcd(

2 24 2bk =∴( )
2

2
2

a
b

= ⎛ ⎞∴ ⎜ ⎟
⎝ ⎠

 

 

 

2

22 a
b

=∴  

2 22a b=∴  
2a∴  is even 

∴a is even (Why?) 
∴a = 2k for some  k ∈]

( )2 22 2k b=∴  

2 22b k=∴  
2b∴  is even 

∴b is even 

Summarizing, we have shown that  
a and b are both even. 

gcd( , ) 2a b∴ ≥

, ) 1a b = . 

Therefore, the original 
assumption (i.e. that 2  is 
rational) must be false! 

2Therefore,  cannot be 
rational, which means that it 
must be irrational.  // 

 

 
Copyright ©, Nick E. Nolfi MGA4U0 An Introduction to Deductive Geometry and the Nature of Proof IPEG-33



 

Another Proof by Contradiction – Proposition 20 in Book IX of Euclid’s Elements 
There are infinitely many prime numbers. 

Proof: 
1 2, , , np p p…Suppose that there were only a finite number of primes.  Let them be represented by . 

Now consider the number obtained by adding 1 to the product of all these primes, that is, 
1 2 1nN p p p= +" . 

1 2, , , np p … pFirst, N is not equal to any of the primes  as it is clearly larger than any of them. 

1 2, , , np p … p ip

 

Moreover, N is not divisible by any of the primes  because dividing N by  for any  will 
always yield a remainder of 1: 

1,2, ,i n= …

1 2 1 1

1 2 1 1

1 2 1 1

1

1

1

i i i n

i

i i i n

i i

i i n
i

p p p p p p
p

p p p p p p
p p

p p p p p
p

− +

− +

− +

+

= +

= +

" "

" "

" "

 

But the only way that this can occur is if N itself is prime. 

1 2, , , np p … pThis contradicts the original assumption that set of numbers  consists of all the primes. 

Therefore, there must be an infinite number of primes.  // 

The following theorem of Euclidean geometry requires proof by contradiction.  Trying to prove it using a direct method 
leads to nothing but frustration. 

Triangle Proportion Property Theorem (TPPT) 
A line in a triangle is parallel to a side of the triangle if and only if it divides the other sides in the same proportion. 

Proof: 
Part 1 – If a line is parallel to a side of a triangle, it divides the other sides in the same proportion. 
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Part 2 – If a line divides two sides of a triangle in the same proportion, it is parallel to the third side. 

// 

Note 
See section 2.4 of the textbook (pages 48 – 52) to see how proof by contradiction is used to prove the Parallel Line 
Theorem (PLT). 
 
Proof by Contradiction Exercises 

1. Prove that 3  is irrational. 

2. A Diophantine equation is an equation for which you seek integer solutions.  For example, the so-called Pythagorean 
triples (x, y, z) are positive integer solutions to the equation 2 2 2x y z+ = .  Prove that there are no positive integer 
solutions to the Diophantine equation . 2 2 1x y− =

3 1 0x x+ + =3. Prove that there are no rational solutions to the cubic polynomial equation . 

4. Prove the converse of the Pythagorean Theorem. 

5. Prove that if a is a rational number and b is an irrational number then a + b is an irrational number. 
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APPLYING THE THEOREMS WE HAVE LEARNED 
General Approach to Applying our Theorems 
Very often, students make the grave error of taking a strictly sequential approach to learning.  For instance, some 
students have the misguided notion that they must complete all problems in one section of a textbook before proceeding 
to the next.  This method often results in a host of problems such as losing the overall perspective of a subject, getting lost 
in unimportant details and the compartmentalization of knowledge.  Quite frankly, I am tired of all the students who say 
something to the effect of, “You shouldn’t ask us about that!  We learned that in the last unit!” 

For the sake of making new topics easier to learn, curriculum is usually delivered in tidy, self-contained packages called 
“units.”  Unfortunately, this approach can lead students to believe that the topics in one unit have little or nothing to do 
with those of any other unit.  This is particularly likely in abstract subjects like mathematics.  I can’t imagine a 
woodworking student telling a teacher not to talk about hammers because they were the subject of a previous unit!  Even 
when using advanced woodworking tools and techniques, knowing how to use a hammer is still important!  Similarly in 
mathematics, it is still important to know how to add, subtract, multiply, divide, simplify and factor, even when studying 
far more advanced topics. 

To help remedy this situation, I am suggesting that the homework exercises for this unit be done in a somewhat 
unconventional order.  The diagram below will help you understand the reasoning behind this approach. 

Introduce proof by 
contradiction and more 

properties of circles 

Solve easy problems from 
sections 2.1, 2.2, 2.3, 2.5, 

3.1, 3.2, 3.3, 3.4 

Solve problems of intermediate 
difficulty from 2.1, 2.2, 2.3, 

2.5, 3.1, 3.2, 3.3, 3.4 

Solve more challenging problems 
from 2.1, 2.2, 2.3, 2.4, 2.5, 3.1, 3.2, 

3.3, 3.4, 3.5 

Solve easy and intermediate 
problems from 2.4 and 3.5 

 

Homework Exercises 

Homework Set 3 Homework Set 4 Homework Set 2 Homework Set 1 
p.51 #1, 2, 3, 4, 5, 6 p.34 #14, 15, 16 p.33 #7, 8, 9,10, 12 p.32 #3, 4, 5, 6 
 p.40 #16, 17, 18 p.39 #7, 8, 9, 10, 13, 15 pp.38-39 #1, 2, 5, 6 
 p.47 #13, 14, 15, 16 p.46 #6, 7, 8, 9, 12 p.45 #1, 2, 3, 4, 5 
 pp.51-52 #7, 8, 9, 10, 11 p.57 #3, 4, 5, 6, 7, 8 pp.56-57 #1, 2 
p. 105 #1, 2, 3, 4, 5 p.58 #9, 11, 12, 13, 14 p.64 #4, 5, 7, 8, 9, 11 p.63 #1, 2 

p.65 #14, 15, 16 p.82 #5, 6, 7, 8 p.82 #1, 2 
p.83 #9, 10, 12, 13, 14 p.88 #3, 4, 6, 8 p.87 #1 
p.89 #9, 11, 12, 13 p.94 #3, 4, 5 p.94 #1, 2 

p.99 #1, 2 p.95 #8, 9, 11, 12, 13 p.100 #3, 4, 5, 6, 8 
p.101 #9, 10, 11, 12 
p.106 #7, 8, 9, 10 

A Word of Warning to the Wary 
I have learned through many years of teaching experience that many students simply do not do homework.  If you are 
such a student, do not expect very good results!  In fact, you probably will not pass this course!  As unpleasant as you 
may believe homework to be, it is the most important aspect of your learning.  It is what separates the best students from 
all the others.  You need to realize that without a significant amount of practice, you simply will not develop the skills 
needed for a high level of achievement!  Furthermore, if you intend to go to university, you have no choice but to become 
accustomed to large volumes of schoolwork.  The alternative is failure and disappointment! 
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PROOFS OF THE THEOREMS 
Suggested Approach 
Now that you have had a great deal of practice applying all the theorems, it is time to prove them all.  Instead of learning 
the proofs in the textbook blindly, consider the following approach: 

1. Following the order in which the theorems are listed on pages IPEG-26

 

 to IPEG-30, try to write your own proof of each 
theorem.  Remember that to prove any given theorem you can only use results that have already been proved.  For 
instance, it would not make sense to use EASP (Equal Angles in a Segment Property) to prove ACP (Angle at the 
Circumference Property) unless you had first proved EASP.  Furthermore, it’s easier to prove ACP first because EASP 
is an easy corollary of ACP. 

2. Only once you have made a good effort to prove a theorem should you consult the textbook or other sources.  If you 
succeed in creating your own proof, you should compare it to the one given in the textbook.  If you do not succeed, you 
should get some ideas from the textbook or other sources. 

3. Keep in mind that it is not necessary to memorize any of the proofs.  It is far more important to understand them and to 
learn certain useful mathematical techniques from them. 
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APPENDIX 1 – HISTORICAL BACKGROUND AND DEDUCTIVE LOGIC 
The following is an edited version of http://math.nsu.edu/math/courses/500l/Logic&Proof.htm (a page from the Norfolk State 
University Mathematics Department Web site). 

Geometry – An Historical Background 
Geometry was the first mathematical discipline to be developed to an advanced level by the classical Greeks.  Before this 
happened, practical geometry had existed for at least one thousand years.  Evidence for this is clear.  For instance, the 
surveyors of ancient Egypt, who divided their agricultural lands after each annual flood of the Nile, were skilled at the 
tasks of geometry or measuring the earth.  Equally evident is the high level of geometric skills possessed by the Egyptian 
builders of the pyramids and the ancient astronomers of Babylon.  Through eons of observation and practical experience, 
these geometers had discovered much about geometric construction, properties of geometric figures, and particularly 
useful topics like the relation among the sides of a right triangle (now known as the Pythagorean Theorem). 

However, around 600 BC, a new development became evident.  A small prosperous civilization in the eastern 
Mediterranean emerged from the dark ages that had followed the heroic age of Greece that was described by Homer in 
The Iliad and The Odyssey and, for reasons that we can only guess, a few individuals in this culture began to view 
geometry and logic from a brand new viewpoint.  They became far more critical in their pursuit of valid reasoning.  In 
politics, philosophy, and mathematics they began to insist on logical reasoning, and in mathematics they began the 
deductive development that is familiar today. 

The first of these individuals that is recorded in our histories was Thales of Miletus.  Thales is often referred to as the 
father of both philosophy and geometry.  Thales travelled widely and is said to have predicted an eclipse of the sun in  
585 BC and to have made a fortune on olive oil futures.  He was clearly a practical man, but he was also driven by a quest 
for certainty and logic.  This quest for truth was shared by others including Thales’ student Pythagoras, who founded a 
school that blended mathematics, philosophy and religion.  Ultimately, after 300 years, this obsession for truth by Thales 
and his followers led, among other things, to the subject that we call Euclidean geometry.  The same period that saw the 
development of geometry saw the development of its sister science of logic, and in the Greek’s view, these subjects were 
inextricably linked.  We illustrate the historical beginning of this process by presenting a theorem and proof attributed to 
Thales. 

An Example: A Theorem of Thales 
Thales did not begin with the fully developed system of axioms and procedures that we associate with geometry and then 
proceed to deduce the theorems of geometry.  He must simply have begun asking “why” in a most persistent manner.  In 
the manner of a persistent and curious child, he must have constantly asked, “But why is it really true?”   
One of the geometric results that is attributed to Thales provides a good illustration of how he must have proceeded. 

 

 

Theorem of Thales 
Each diameter of a circle bisects the circle into two congruent parts. 

Anyone who has ever drawn a circle with a diameter will know in their bones that this is true.  In fact, this is visually 
obvious to us.  We can just look at the circle and be convinced that it is true.  But Thales wanted a verbal explanation, one 
that a blind man could understand, even an unreasonable blind man. 

He found one, and reading his argument, we can almost picture his effort and his approach.  It went as follows.  First he 
must have struggled finding a place to begin and eventually he might have asked himself, “What is a circle?” and “What 
is a diameter of a circle?”  When he made this precise, he would have had two workable definitions. 

 

A circle is determined by its center C and the length r of its radius.  
The circle consists of all points that are a distance r from C. 

Before we can embark on a mission to 
prove any statement, we must agree on the 
meanings of the terms that we use.  This is 
the process of writing definitions. 

A diameter is the part of a line passing through the center C that lies 
inside the circle. 

Now Thales had an idea.  Imagine the circle as made from paper.  Fold along the diameter.  If the two parts of the circle 
coincide then they will be congruent, and if they don't coincide they cannot be congruent.  And they appear to coincide! 
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But how can we be sure?  Well suppose they don't match up exactly.  Then there must be two radii of the circle that fall on 
top of each other and for which one radius is longer.  The point P at the end of this radius must be a distance from C that 
is greater than a distance r, since it is further from C than is the end of the radius lying below it.  But the distance from C  
to P is r so this is impossible.  From this, Thales concluded first that something is wrong, and second that this point P can 
not exist.  If it does not exist, the two radii coincide and the two semicircles are congruent. 

Not only had he found a proof, but he might also have invented proof by contradiction (also known as indirect proof or 
reductio ad absurdum), that is, proofs that begin by assuming the opposite of that which we desire to prove, and then 
arguing that this assumption leads to nonsense.  If we believe, as Thales did, that logic is consistent, then a hypothesis 
leading to nonsense must be abandoned and its negation must be true. 

Euclid's Elements  
From these beginnings of early Greek mathematics, the subject evolved continuously for the next 300 years.  During this 
time, an immense body of knowledge was developed, most of it dealing with what we now call geometry.  Around 300 
BC, a teacher named Euclid wrote a treatise that started at ground level and systematically developed most of the 
geometry and number theory known at the time.  Euclid's book, The Elements, became a best-seller and remained in print 
for most of the last 23 centuries.  It set the standard for the future development of mathematics. 

The Elements were remarkably systematic.  They began with some definitions, axioms (called “common notions” by 
Euclid) and a set of postulates.  These were combined with a valid system of deductive reasoning that included the rules 
of logic and the geometric constructions that are possible with compass and straightedge.  Everything else was 
systematically deduced, step by step, from the assumptions using only deductive logic and compass and straightedge 
constructions.  This was an attempt to build an “air tight” structure where nothing was left in doubt.  The only 
assumptions in this structure were at the beginning and were so simple that it was felt no one could question them.  These 
simple pieces were bound together with logic, and the resulting structure should last forever!  This goal proved to be over 
optimistic.  Logical gaps were found by others and some questioned the initial postulates, but, in fact, the monument is 
still largely standing with few changes.  In addition, and this is most important, Euclid had presented geometry as a 
systematic science.  It was no longer a collection of individual results, but it had become a coherent discipline.  This 
accomplishment was impressive. 

Euclid's achievement was great.  His work had a tremendous influence on the subsequent development of geometry.  But, 
from the viewpoint of a teacher, the vision of geometry that is found in Elements is not complete.  First, Euclid wrote for 
an advanced adult audience; an audience that had reached a high level of geometric and logical understanding.  Euclid did 
not address the questions: “Will this be on the test?” and “When will I ever use this?”  He did not discuss how students 
might reach the prerequisite level of understanding demanded for success in his geometry, and he did not treat any of the 
more practical informal applications of geometry.  In short, he wrote an advanced text on geometry and throughout, he 
maintained a very narrow focus and concentrated on a narrow audience. 

Secondly, Euclid’s Elements could easily be and often was misinterpreted as presenting geometry as a completed subject, 
one where the results and proofs were both known.  This misinterpretation can easily be used to remove discovery and 
questioning from geometry courses leaving only the series of definitions, theorems and proofs to be learned and 
memorized. 

Deductive Logic - First Steps and Vocabulary  
How can we ever know that we are right?  If we base our reasoning on facts that are known to be true and if we correctly 
follow the rules of valid reasoning, we can always be certain.  Unfortunately, it is usually very difficult to be certain that 
our assumptions are correct, but the rules of deductive logic provide tools for valid reasoning.  Induction, or inductive 
logic, is the logic of everyday life.  Whether at home, in the courtrooms, in detective work, in science or diagnostic 
medicine, we constantly seek plausible explanations to fit the known observations and facts.  By nature, this type of 
reasoning occurs with incomplete and imperfect information.  Based on biased and incomplete data, it will usually be 
impossible to obtain certainty.  In this section we introduce the elements of the vocabulary of logic and the first two forms 
of valid reasoning. 

Occasionally this is not the case and we have, or think we have, complete and reliable information.  In these 
circumstances, we may be able to reach a completely valid explanation with certainty.  The process of extracting reliable 
conclusions from given assumptions is called deductive logic or deduction.  This is the logic of mathematical proof and is 
a central part of mathematics.  One point needs emphasis.  Deduction is rarely concerned with the validity of the 
assumptions made.  Rather it focuses on the validity of the process for drawing valid conclusions. 
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An Example of Induction: Vertical (Opposite) Angles 
Two segments that cross produce two pairs of vertical angles. 

In this picture A and C are vertical (opposite) angles.  A proposition from 
Euclid asserts that vertical angles have equal measure, that is, are congruent.  
Here are four different arguments that reach this conclusion and all of which 
you will likely have seen before. 
a. It is obvious. 
b. I measured them both and they both measure 55°. 
c. I folded the paper and found that A exactly covers B. 
d. Together A and B make a half turn or 180°.  Also B and C together make 

180°.  The measure of A must satisfy 
180m A m B∠ = − ∠D  
180m C m B∠ = − ∠D  

m A m C∴ ∠ = ∠  
∴angles A and C are congruent 

These four arguments may be described as follows: 

a. This is a naive empirical induction. 
b. This is an empirical induction based on more complete observation than in a.  Actually the angles measure 56°.  
c. This is also an empirical induction, but contains the germ of an idea that can be made into a deduction.  
d. This is essentially a complete deduction. 

Logic treats statements that are either true or false.  An argument consists of a set of statements called premises and a 
statement called the conclusion.  The premises are the assumptions that are made.  To illustrate one form of a valid 
argument, suppose that P and Q are abbreviations for statements and consider the following argument: 

“If statement P is true then statement Q is also true.” 
(This is called an inference, a logical implication or a conditional statement.) 

The argument might also be summarized symbolically: 

“If P then Q,” or as “ .” P Q→

This last form is usually read as “P implies Q.”  One must not forget that this is just a shorthand.  It is used only because it 
is easier to write and manipulate “ ” than it is to write and manipulate the statement, “If statement P is true then 
statement Q is also true.” 

P Q→

To see how this is used consider the following argument: 

P represents the statement “angles A and C are vertical angles.” 
Q represents the statement “angles A and C are congruent angles.” 
Then  is shorthand for, “If angles A and C are vertical angles, then they are congruent.” P Q→

Exercise 
Find symbolic translations for the following two statements: 
1. If ABCD is a rectangle, then its diagonals are congruent. 
2. If A, B and C are the lengths of the sides of a triangle then A + B > C. 

The Rules of Logic – Valid Reasoning 
Statements of this type  are called conditional statements or logical implications.  Conditional statements may be 
either true or false, but the question of their being true or false is only an issue when the premise P is known to be true.  
For example, the statement “If angles A and C are vertical angles then they are congruent” does not tell us anything when 
angles A and C are not vertical. 

P Q→
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This type of argument will be our first form of valid reasoning.  It is called modus pones.  

Modus Pones 
If you accept that “P is true” and that “If P is true then Q is true,” then you must accept that Q is also true. 

The negation of a statement is made by placing the word “not” into the sentence appropriately.  The negation of “Jim is 
rich” is “Jim is not rich,” “Jim is poor” or “It is not the case that Jim is rich.”  Double negation, as in “It is not true that 
Jim is not rich” goes full circle and is equivalent to the original statement “Jim is rich.”  Now suppose that you believe 
that “If angles A and C are vertical angles then they are congruent” is true, but you know that A and C are not congruent.  
What can be concluded now?  The answer is that angles A and C are not vertical angles! 

If Q is negated then P must also be negated.  The negation of P is denoted with ~P.  
Thus  implies , and doing the same thing again for a double negation gives  implies 

which is the same as .  We have now gone full circle: 
P Q→ Q →∼ ∼ P P

)P

)

Q →∼ ∼
( ) (Q →∼ ∼ ∼ ∼ P Q→

( ) ( ) (P Q Q P P Q→ → → → →∼ ∼  

This situation where two statements imply each other has a name.  The statements are called logically equivalent or 
biconditional and we write 

R S↔ R S→

 

 if and only if  and . S R→
From above we see that 

( ) (P Q Q P→ ↔ →∼ ∼ ) . 

This type argument is our second form of valid reasoning.  It is called modus tollens. 

Modus Tollens 
If you accept that P implies Q and if you accept that not Q is true, then you must accept that not P is true. 

In the next section we will treat two additional forms of valid reasoning.  

More Rules of the Logical “Game” 
The basic language of logic has been introduced along with two recognized forms of valid reasoning: 

Modus Pones: If you accept that P is true and that “If P is true then Q is true,” then you must accept that Q is also true. 
Modus Tollens: If you accept that P implies Q and if you accept that not Q is true, then you must accept that not P is true. 

The primary remaining tasks concern various rules for combining statements in the valid forms of reasoning.  The first 
concerns combining two conditional statements.  For example, suppose that you accept as true both of the following 
statements: 

If you study well, you will do well on tomorrow’s examination. 
If you do well on tomorrow’s examination you will get to go to the movies. 

It is then a valid conclusion that if you study well, you will get to go to a movie.  Of course, this form of back-to-back 
reasoning has a name. 

The Law of Syllogism 
If you accept “If P then Q” and if you accept “If Q then R,” then you must also accept “If P then R.” 

The next form of reasoning concerns manipulating conditional statements.  Consider the statement . P Q→
Here are three related conditional statements and their names.  Note that the truth of  does not necessarily imply 
the truth of the converse or the inverse.  It does, however, imply the truth of the contrapositive. 

P Q→

Converse:  Q P→

Inverse:  P Q→∼ ∼
Contrapositive:  Q P→∼ ∼
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Geometric Example 
Statement : “Squares have 4 sides” or equivalently, “If a figure is a square then it is a quadrilateral.” 
Converse: If a figure is a quadrilateral then it is a square. 
Inverse: If a figure is not a square then it is not a quadrilateral. 
Contrapositive: If a figure is not a quadrilateral then it is not a square. 

Since there are quadrilaterals that are not squares, the converse and the inverse do not follow from the given statement.  
The contrapositive, however, is true, and in fact is equivalent to the statement. 

The Law of the Contrapositive 
If a conditional statement is true, then its contrapositive is also true.  Conversely, if the contrapositive is true, then the 
original statement is true 

Logical Systems and Proofs – Direct and Indirect  
It is sometimes the case that we argue in relative isolation where one or more statements or premises have been accepted 
and we wish to reason deductively and establish a new statement from these accepted statements.  However, in 
mathematics, especially in axiomatic mathematics, the reasoning process is more often systematic and cumulative.  In this 
situation, an initial set of statements are made and accepted as the basic hypotheses.  These statements are taken as having 
been established for the objects under study.  A new structure of proven results is then built on top of the original 
assumptions.  In this case, the new structure becomes cumulative.  In this context, a theorem is a statement that is proved 
by deductive reasoning from the original set of premises and from statements that were previously established or proven.  
In other words, theorems are valid conclusions of deductive arguments. 

To illustrate this with Euclid’s Elements, Book 1 begins with 23 definitions, 5 postulates and 5 “common notions” (now 
called axioms).  Taken together these form the basis for performing geometric constructions with a compass and 
straightedge and drawing conclusions.  For example, Definition 10 defines a right angle as one that is formed by the 
intersection of two perpendicular lines, while Postulate 4 asserts that all right angles are congruent to one another.  After 
these preliminaries are all stated, Book 1 contains a sequence of 48 propositions and proofs.  These are Euclid's theorems.   
To illustrate, consider Proposition 1 of Book 1. 

Proposition 1 asserts that given any segment AB, it is possible to construct an equilateral triangle having AB as base. 

Proof: The proof is in the picture. 

First, the two circles with centers A and B and radius AB are drawn.  We 
know this is possible by Postulate 3. 

Then the point C is constructed where the circles intersect. 

Then AC and AB have the same length because they are both radii of the 
same circle.  This follows from Definition 10, which is the definition of a 
circle. 

Similarly, BC and BA have the same length because they are both radii of 
the same circle.  Thus, the lengths of AB, AC and BC are equal.  This is 
done by Common Notion 1, which asserts that two things equal to a third 
are equal to each other.  Hence that the three sides of ABC are all 
congruent, so ABC is equilateral.  // 

This proof is an example of a direct proof.  In a direct proof, the chain of reasoning always follows the form of linking 
several premises that may come either as direct statements or as conclusions of conditional statements. 

Once Proposition 1 is proven, it is permissible to use it as known in all further deductions.  It was in this way that Euclid 
developed a systematic science of geometry that was as certain and reliable as were the basic postulates assumed and the 
care in the care of the arguments. 
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It is interesting to note that there is a logical gap in this first theorem of Euclid.  Namely, Euclid did not postulate an 
assumption that would guarantee that there is a point C where the two circles intersect.  We mention this to illustrate that 
truly complete logical arguments are challenging both for students and the masters like Euclid.  However, it is important 
here to observe further that while Euclid would understand the nature of this logical gap, beginning students might not be 
able to grasp this rather subtle point. 

Direct proofs contrast with indirect proofs.  In an indirect proof, an assumption is made at the beginning to the effect that 
the desired conclusion is false, and which it is shown leads to a contradiction.  This indicates the assumption is false and 
the conclusion is true. 

2A theorem attributed to Pythagoras, that  is not rational, also appears in Elements and provides a wonderful example 
of an indirect proof.  (See the proof on page IDGNP-33). 

Exercises 

31. Show that  is not a rational number. 
2. Try to express the method of indirect proof in symbolic form. 

The Deductive System of Geometry 
Although Euclid provided an axiomatic system for geometry, it was eventually found to be incomplete in the sense that 
not all of the proofs in Elements could be justified on the basis of Euclid’s axioms.  In addition, it was ultimately 
discovered that there are axiomatic systems for geometry in curved spaces and surfaces that are very closely related to 
Euclid’s geometry, but that are essentially different in very important ways.  In particular, in these non-Euclidean 
geometries, Euclid’s 5th Postulate is not satisfied. 

These discoveries of non-Euclidean geometry were among the great achievements of 19th century mathematics and while 
many contributed, the credit is usually attributed to Janos Bolyai (1802-1860), Carl F. Gauss (1777-1855) and Nicolai I. 
Lobachevskii (1793-1856).  Today we understand the essential issues very well and it is not difficult to understand how 
non-Euclidean geometries occur, but before the work of these three men and that of their predecessors, it was widely 
believed that Euclidean geometry gave the only conceivable description of space, that is, that our universe was of 
necessity, the world of Euclid.  Today we know this is not the case, but this discovery was an immense achievement. 

A second important development in nineteenth century mathematics was a new focus on rigor.  This ultimately led to a 
very careful and complete axiomatization of Euclidean geometry.  David Hilbert (1862-1943) is usually attributed to 
providing the first complete system.  Two important observations followed.  Hilbert’s axioms did not closely resemble 
those of Euclid and there were many other possible sets of axioms.  Together, these results liberated geometry in a totally 
unanticipated manner.  Today, even writers of textbooks are not constrained to use the same (or even approximately the 
same) set of axioms or to develop the subject in the same fashion. 
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APPENDIX 2 – INDUCTIVE REASONING AND ITS FALLACIES 
The following is an edited version of http://webpages.shepherd.edu/maustin/rhetoric/inductiv.htm. 

Characteristics of Inductive Reasoning 
Unlike deductive reasoning, inductive reasoning is not designed to produce mathematical certainty.  Induction occurs 
when we gather bits of specific information together and use our own knowledge and experience in order to make an 
observation about what is likely to be true.  Inductive reasoning does not use syllogisms, but series of observations, in 
order to reach a conclusion.  Consider the following chains of observations: 

Observation: John came to class late this morning. 
Observation: John’s hair was uncombed. 
Prior experience: John is very fussy about his hair. 
Conclusion: John overslept 

The reasoning process here is directly opposite to that used in deductive syllogisms.  Rather than beginning with a general 
principle (people who comb their hair wake up on time), the chain of evidence begins with an observation and then 
combines it with the strength of previous observations in order to arrive at a conclusion. 

Generalization 
The most basic kind of inductive reasoning is called induction by enumeration, or more commonly, generalization.  You 
generalize whenever you make a general statement (all salesmen are pushy) based on observations with specific members 
of that group (the last three salesmen who came to my door were pushy).  You also generalize when you make an 
observation about a specific thing based on other specific things that belong to the same group (my girlfriend’s cousin Ed 
is a salesman, so he will probably be pushy).  When you use specific observations as the basis of a general conclusion, 
you are said to be making an inductive leap. 

Fallacy #1: Hasty Generalization  
Unlike deductive fallacies, which are easy to point out, inductive fallacies tend to be judgement calls.  Different people 
have different opinions about the line between correct and incorrect induction.  The fallacy most often associated with 
generalization is hasty generalization, which you commit when you make an inductive leap that is not based on sufficient 
information.  Look at the following five statements and try to determine when the line is crossed. 
1) Microserf is a sexist company.  They have over 5,000 employees and not a single one of them is female. 
2) Microserf is a sexist company.  I know twenty people who applied for jobs there--ten men and ten women.  

Though all of them were equally qualified, all of the men got jobs there and none of the women did. 
3) Microserf is a sexist company.  I have five female friends who have applied for jobs there, and all of them lost 

out to less qualified men. 
4) Microserf is a sexist company.  My friend Jane, who has a degree in computer science, applied for a job and 

they gave it to a man who majored in history. 
5) Microserf is a sexist company.  My friend Jane applied there, and she didn’t get the job. 

Generally speaking, the amount of support needed to justify an inductive link is inversely related to two other factors: the 
plausibility of the generalization and the risk factor involved in rejecting a generalization. 

Implausible inductive leaps require more evidence than plausible ones do.  It requires more evidence to support the 
notion that a strange light in the sky is an invading force from the planet Xacron than the notion that it is a low-flying 
plane.  The evidentiary requirements are greater for the first assumption simply because induction requires us to 
combine what we observe with what we already know, and most of us know more about low-flying planes than extra-
terrestrial invaders. 

Generalizations require less support when there are tremendous negative costs involved with rejecting them.  
Consider the following two arguments: 

1) I drank milk last night and got a minor stomach-ache.  I can probably conclude that the milk was a little bit 
sour. 

2) I ate a mushroom out of my backyard last night and I went into violent fits of projectile vomiting and had to be 
rushed to the hospital to have my stomach pumped.  I can probably conclude that the mushrooms were poison. 

Technically, the amount of evidence for these two arguments is the same.  However, most people would take the second 
argument much more seriously, simply because the consequences for not doing so are so disastrous. 
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Fallacy #2: Exclusion 
A second fallacy that is often associated with generalization is the fallacy of exclusion.  Put in simple terms, “exclusion” 
occurs when you exclude an important piece of evidence from the inductive chain used as the basis for the conclusion.  If 
I generalize that my milk is bad based on a minor stomach-ache, I should probably take into account the seven 
hamburgers that I ate after drinking the milk.  Otherwise, I will very possibly be making an invalid induction. 

Analogy 
To make an induction based on an analogy is to draw a conclusion about one thing based on its similarities to another 
thing.  Consider, for example, the following argument against a hypothetical military action in the Philippines. 
In the 1960's, America was drawn into a war in an Asian country, with a terrain largely comprised of jungles, 
against enemies that we could not recognize and friends that we could not count on.  That war began slowly, by 
sending a few “advisors” to help survey the situation and offer military advice, and it became the greatest military 
disgrace that our country has ever known.  We all know what happened in Vietnam.  Do we really want a repeat 
performance in the Philippines? 

Fallacy #3 False Analogy 
This argument enumerates the similarities between one event and another event and argues that these similarities will 
produce a similar result.  While arguments by analogy tend to be very persuasive, they can very easily fall into the trap of 
the false analogy, which is the major fallacy associated with this kind of reasoning.  Both valid and false analogies 
compare similar things; false analogies, however, use hasty generalizations as the grounds for comparison.  Consider the 
following pair of statements. 
1) A war in the Philippines would be disastrous.  Our soldiers had a terrible time fighting in the jungles of 

Vietnam, and the terrain around Manila is even worse. 
2) If we decide to attack the Philippines, we should probably do it in January.  We attacked Iraq in January, and 

look how well that turned out. 
The first of these statements is a valid analogy in that the comparison meets the test of inductive validity: it takes an 
observation (we had a hard time fighting in the jungles of Vietnam), makes a generalization (it is hard to fight modern 
warfare in a jungle terrain) and then applies it to another instance (we would have a hard time fighting in the jungles of the 
Philippines).  The second statement, on the other hand, is a false analogy because, although it goes through the same 
process, the inductive leap it makes (we win wars because we fight them in January) is a hasty generalization. 

Statistical Inference 
A third variety of inductive reasoning is statistical inference.  We make statistical inferences whenever we assume that 
something is true of a population as a whole because it is true of a certain portion of the population.  Politicians and 
corporations spend millions of dollars per year gathering opinions from relatively small groups of people to use as the 
basis for statistical inferences upon which they base most of their major decisions.  Inductions based on statistics have 
proven to be extremely accurate as long as the sample sizes are large enough to avoid huge margins of error.  However, 
when amateurs attempt to use statistics as the basis for inductive leaps (and as evidence for arguments), they often end up 
committing the fallacy of unrepresentative sample. 

Fallacy #4: Unrepresentative Sample 
An unrepresentative sample is a statistical group that does not adequately represent the larger group that it is considered a 
part of.  Any sample of opinions in America must take into account the differences in race, age, gender, religion and 
geographic location that exist in this country.  Thus, a sample of 1000 people chosen to represent all of these factors 
would tell us a great deal about the opinions of the electorate.  A sample of 1000 white, thirty-year-old Lutheran women 
from Nebraska would tell us nothing at all.  Because samples must be representative in order to be accurate, it is a fallacy 
to rely on straw polls, informal surveys and self-selecting questionnaires in order to gather statistical evidence.  
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APPENDIX 3 - BEWARE OF DEDUCTIVE AND INDUCTIVE LOGICAL FALLACIES 
Note 
The following is taken from http://www.intrepidsoftware.com/fallacy/toc.php

Fallacies of Distraction 
• False Dilemma: two choices are given when in fact there are three or more options 
• From Ignorance: because something is not known to be true, it is assumed to be false 
• Slippery Slope: a series of increasingly unacceptable consequences is drawn 
• Complex Question: two unrelated points are conjoined as a single proposition 

Appeals to Motives in Place of Support 
• Appeal to Force: the reader is persuaded to agree by force 
• Appeal to Pity: the reader is persuaded to agree by sympathy 
• Consequences: the reader is warned of unacceptable consequences 
• Prejudicial Language: value or moral goodness is attached to believing the author 
• Popularity: a proposition is argued to be true because it is widely held to be true 

Changing the Subject 
• Attacking the Person: 

1. the person's charac ter is attacked 
2. the person's circumstances are not ed 
3. the person does not practise what is preached 
Appeal to Authority: • 
1. the authority is not an expert in the field 
2. experts in the field disagree 
3. the authority was joking, drunk, or in some other way not being serious 
Anonymous Authority: the authority in question is not named (“They say tha• t …”) 

• Style Over Substance: the manner in which an argument (or arguer) is presented is felt to affect the truth of the 

Inductive Fallacies 
tion: the sample is too small to support an inductive generalization about a population 

the evidence to the contrary 

Fallacies Involving Statistical Syllogisms 
en circumstances suggest that there should be an exception 

use one thing follows another, it is held to cause the other 
he joint effects of an underlying cause 

 of the effect 

conclusion 

• Hasty Generaliza
• Unrepresentative Sample: the sample is unrepresentative of the sample as a whole 
• False Analogy: the two objects or events being compared are relevantly dissimilar 
• Slothful Induction: the conclusion of a strong inductive argument is denied despite 
• Fallacy of Exclusion: evidence which would change the outcome of an inductive argument is excluded from 

consideration 

• Accident: a generalization is applied wh
• Converse Accident : an exception is applied in circumstances where a generalization should apply 

Causal Fallacies 
• Post Hoc: beca
• Joint effect: one thing is held to cause another when in fact they are both t
• Insignificant: one thing is held to cause another, but it is insignificant compared to other causes of the effect 
• Wrong Direction: the direction between cause and effect is reversed 
• Complex Cause: the cause identified is only a part of the entire cause
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Missing the Point 
• Begging the Question: the truth of the conclusion is assumed by the premises 
• Irrelevant Conclusion: an argument in defence of one conclusion instead proves a different conclusion 
• Straw Man: the author attacks an argument different from (and weaker than) the opposition's best argument 

Fallacies of Ambiguity 
• Equivocation: the same term is used with two different meanings 
• Amphiboly: the structure of a sentence allows two different interpretations 
• Accent: the emphasis on a word or phrase suggests a meaning contrary to what the sentence actually says 

Category Errors 
• Composition: because the attributes of the parts of a whole have a certain property, it is argued that the whole has that 

property 
• Division: because the whole has a certain property, it is argued that the parts have that property 

Non Sequitur 
• Affirming the Consequent: any argument of the form: If A then B, B, therefore A 
• Denying the Antecedent: any argument of the form: If A then B, Not A, thus Not B 
• Inconsistency: asserting that contrary or contradictory statements are both true 

Syllogistic Errors 
• Fallacy of Four

 

aid to be connected because they share a common property 
ases of 

• f the conclusion talks about all of something, but the premises only mention some cases of 

• emises: a syllogism has two negative premises 
e: as the name implies 

Fallacies of Explanation 
nomenon being explained doesn’t exist 

d 

only explain one thing 

l
ition includes items that should not be included 

be included 
 concept being defined 

 Terms: a syllogism has four terms 
• Undistributed Middle: two separate categories are s
• Illicit Major: the predicate of the conclusion talks about all of something, but the premises only mention some c

the term in the predicate 
Illicit Minor: the subject o
the term in the subject 
Fallacy of Exclusive Pr

• Fallacy of Drawing an Affirmative Conclusion From a Negative Premis
• Existential Fallacy: a particular conclusion is drawn from universal premises 

• Subverted Support: the phe
• Non-support: evidence for the phenomenon being explained is biase
• Untestability: the hypothesis cannot be tested 
• Limited Scope: the theory which explains can 
• Limited Depth: the theory which explains does not appeal to underlying causes 

Fa lacies of Definition 
• Too Broad: the defin
• Too Narrow: the definition does not include all the items that should 
• Failure to Elucidate: the definition is more difficult to understand than the word or
• Circular Definition: the definition includes the term being defined as a part of the definition 
• Conflicting Conditions: the definition is self-contradictory 
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