
UNIT 2 – GEOMETRIC AND ALGEBRAIC VECTORS AND THEIR APPLICATIONS 
UNIT 2 – GEOMETRIC AND ALGEBRAIC VECTORS AND THEIR APPLICATIONS ............................................................1 
VECTORS AND SCALARS...................................................................................................................................................................3 

EXAMPLES .............................................................................................................................................................................................3 
Scalars..............................................................................................................................................................................................3 
Vectors..............................................................................................................................................................................................3 
Exercises ..........................................................................................................................................................................................3 

CONCEPTS AND NOTATION ....................................................................................................................................................................3 
Geometric Vector .............................................................................................................................................................................3 

DEFINING VECTOR OPERATIONS ..................................................................................................................................................4 
THE PROCESS OF DEFINING MATHEMATICAL OBJECTS..........................................................................................................................4 
PROBLEMS THAT MOTIVATE THE DEFINITIONS OF VECTOR ADDITION AND MULTIPLICATION OF A VECTOR BY A SCALAR ..................4 

Problem # 1 ......................................................................................................................................................................................4 
Problem # 2 ......................................................................................................................................................................................4 
The Definitions of Vector Addition and Subtraction ........................................................................................................................5 
Multiplying a Vector by a Scalar......................................................................................................................................................6 
Solution to Problem 1.......................................................................................................................................................................6 
Solution to Problem 2.......................................................................................................................................................................6 
Intuitive Understanding of Multiplying a Vector by a Scalar ..........................................................................................................6 

UNIT VECTORS AND THE ZERO VECTOR....................................................................................................................................7 
HOW TO FIND A UNIT VECTOR IN THE DIRECTION OF A GIVEN VECTOR ................................................................................................7 

Example and Exercises.....................................................................................................................................................................7 
Solution ............................................................................................................................................................................................7 

THE ZERO VECTOR ................................................................................................................................................................................7 
APPLICATIONS OF THE ZERO VECTOR....................................................................................................................................................7 

PROPERTIES OF VECTORS ...............................................................................................................................................................8 
INSTRUCTIONS .......................................................................................................................................................................................8 

CHECK YOUR UNDERSTANDING OF BASIC VECTOR CONCEPTS........................................................................................9 
USING VECTORS TO REPRESENT FORCES AND VELOCITIES.............................................................................................10 

FORCE..................................................................................................................................................................................................10 
Note ................................................................................................................................................................................................10 

RELATIVE VELOCITY ...........................................................................................................................................................................10 
ONE-DIMENSIONAL MOTION ...............................................................................................................................................................11 
EXAMPLE INVOLVING ONE-DIMENSIONAL MOTION ............................................................................................................................11 
THE ANGLE BETWEEN TWO VECTORS AND RELATIVE VELOCITIES .....................................................................................................12 
EXAMPLE .............................................................................................................................................................................................12 

Solution ..........................................................................................................................................................................................12 
QUESTIONS ..........................................................................................................................................................................................12 
EXAMPLES ...........................................................................................................................................................................................13 
NEWTON’S LAWS OF MOTION..............................................................................................................................................................13 

REVIEW OF BASIC PROPERTIES OF GEOMETRIC VECTORS..............................................................................................14 
HOMEWORK EXERCISES FOR CHAPTER 4 (GEOMETRIC VECTORS).......................................................................................................15 

ALGEBRAIC VECTORS .....................................................................................................................................................................15 
INTRODUCTION ....................................................................................................................................................................................15 
THREE-DIMENSIONAL CARTESIAN COORDINATE SYSTEM ...................................................................................................................15 
POSITION VECTORS..............................................................................................................................................................................17 
ALGEBRAIC VECTORS..........................................................................................................................................................................17 

Definitions ......................................................................................................................................................................................17 
Note ................................................................................................................................................................................................18 

CALCULATING MAGNITUDE AND DIRECTION OF VECTORS EXPRESSED IN ALGEBRAIC FORM .........................19 
INSTRUCTIONS .....................................................................................................................................................................................19 

Copyright ©, Nick E. Nolfi MGA4U0 Geometric and Algebraic Vectors and their Applications GAVA-1 



UNIT VECTORS IN 
2\  AND 

3\ ................................................................................................................................................20 
INTRODUCTION ....................................................................................................................................................................................20 
ORDERED PAIR (TRIPLE) NOTATION OR UNIT VECTOR NOTATION? ....................................................................................................20 
MORE EXAMPLES.................................................................................................................................................................................20 

OPERATIONS WITH VECTORS IN ALGEBRAIC FORM ...........................................................................................................20 
BASIS FOR A VECTOR SPACE................................................................................................................................................................20 
EXAMPLES ...........................................................................................................................................................................................21 

ADDITIONAL VECTOR OPERATIONS – THE DOT PRODUCT AND THE CROSS PRODUCT..........................................21 
INTRODUCTION ....................................................................................................................................................................................21 
DEFINING THE DOT PRODUCT ..............................................................................................................................................................21 

Desired Properties of the Dot Product...........................................................................................................................................21 
Definition of the Dot Product .........................................................................................................................................................22 
Properties of the Dot Product ........................................................................................................................................................23 
Examples ........................................................................................................................................................................................23 

DEFINING THE CROSS PRODUCT IN SUCH A WAY THAT IT MODE S TORQUEL ........................................................................................23 
u vG G
×  should be ..................................................................................24 Using the Idea of Torque to decide what the Direction of 

u vG G
 should be ................................................................................24 ×Using the Idea of Torque to decide what the Magnitude of 

Determining the Components of u v×G G
..........................................................................................................................................25 

Definition of the Cross Product (also known as the Gibbs Vector Product)..................................................................................25 
Example..........................................................................................................................................................................................25 
Solution ..........................................................................................................................................................................................25 
Note ................................................................................................................................................................................................25 
Does our Defi f the Cross Product Accurately Model Torque?nition o ..........................................................................................26 
Calculating u v×G G

........................................................................................................................................................................26 
Summary.........................................................................................................................................................................................27 
Properties of the Cross Product .....................................................................................................................................................27 
Questions........................................................................................................................................................................................27 
An Alternative Method of Remembering how to find the Cross Product of Two Vectors...............................................................28 
Example..........................................................................................................................................................................................28 

APPLICATIONS OF THE DOT PRODUCT AND CROSS PRODUCT.........................................................................................28 
INTRODUCTION ....................................................................................................................................................................................28 
AREA OF A PARALLELOGRAM ..............................................................................................................................................................28 
PROJECTIONS .......................................................................................................................................................................................28 
VOLUME OF A PARALLELEPIPED ..........................................................................................................................................................29 
WORK ..................................................................................................................................................................................................29 

Scientific Meaning of Work (for Motion along a Straight Line).....................................................................................................29 
Scientific Definition of Work (for Motion along a Straight Line)...................................................................................................30 
Unit of Work ...................................................................................................................................................................................30 
Intuitive Understanding of Work (for Motion along a Straight Line and v considerably smaller than light speed) ......................30 

TORQUE REVISITED .............................................................................................................................................................................31 
Example..........................................................................................................................................................................................31 
Power of the Ferrari 360 Modena..................................................................................................................................................31 
Torque of the Ferrari 360 Modena ................................................................................................................................................31 

HOMEWORK EXERCISES FOR CHAPTER 5 (ALGEBRAIC VECTORS) .......................................................................................................33 

Copyright ©, Nick E. Nolfi MGA4U0 Geometric and Algebraic Vectors and their Applications GAVA-2 



VECTORS AND SCALARS 
 Definition 

Quantities having magnitude only are called scalars. 
Quantities having both magnitude and direction are called geometric vectors.  (For the sake of simplicity, we usually 
omit the modifier “geometric” and simply call them vectors.  However, there is an important distinction between 
geometric vectors and algebraic vectors that will be made clear later in this unit.) 

Examples 
Scalars Vectors 

Temperature Wind Velocity 
Energy Position 

Distance Displacement 
Speed Velocity 

Exercises 
1. What is the difference between speed and velocity?  What is the difference between distance and displacement? 

2. Is it possible for speed to increase while velocity decreases? 

3. Geometric vectors can be one-dimensional, two-dimensional, three-dimensional or even of higher dimension (if you are 
imaginative).  Is there any difference between a scalar and a one-dimensional vector? 

4. Classify each of the following quantities as scalars or vectors. 
 

acceleration, magnetic field, electric charge, force, mass, area, time, volume, density, pressure of a gas 

Concepts and Notation 
Geometric Vector 
A geometric vector is represented by an arrow pointing in a certain direction.  The length of the arrow is called the 
magnitude of the vector and the direction in which it points is called its direction.  A geometric vector is entirely 
determined by its magnitude and its direction.  Consequently, the position of a vector in space is unimportant.  Such 
vectors are called free vectors. 

PQ
JJJG

The length of the vector is its magnitude.  The magnitude of the vector vG  is denoted 
by vG .  The symbol used for magnitude should remind you of the absolute value 
symbol.  The absolute value of a scalar is its magnitude. 

vG  
vG  

Tail or  
Initial Point 

Head, Tip or 
Terminal Point 

All the vectors shown 
at the left are equal 
because they all have 
the same magnitude 
and the same direction 

We can also use the endpoints of a line segment to name vectors.  The vector  is shown below.  P is the initial point 
and Q is the terminal point.  We can think of the directed line segment PQ, which is fixed in space, as a single copy of the 
vector PQ

JJJG
. 

P 

Q 
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DEFINING VECTOR OPERATIONS 
The Process of Defining Mathematical Objects 
Often, the definition of mathematical objects seems to be confusing and arbitrary.  A classic example of this is the 
definition of powers with zero and negative exponents.  Most students are perplexed and dumbstruck when they are told 

that  = 1 and that 
110

10
n

n
− =010 .  However, if we would like our laws of exponents to hold and we would like 

exponential curves to be smooth and to model natural processes (such as population growth and exponential decay) 
accurately, then we are forced to accept these definitions! 

110
10

n
n

− = ? Why is 
Why is  = 1? 010

x∈\Let . Let . x∈\

nx

x

+10

10
nx

x

1010

10010 10
10

10
x x

x

x
−= =

1

10n10 n− ( )10x x n− + =  =  =  =   = 1 

∴  = 1 010 1

10n
n−∴10  =  

Problems that Motivate the Definitions of Vector Addition and Multiplication of a Vector by a Scalar 
Problem # 1  
Ryanna and Philip need to move a large boulder from the middle of their campsite.  Ryanna pushes due North and Philip 
pushes due West.  If R

JG
P
JG

 represents the force with which Ryanna pushes,  represents the force with which Philip pushes 
and R

JG
R
JG

2 P
JG

2 P
JG

, in which direction will the boulder move?  Note: = =  means that the magnitude of Ryanna’s force is 

twice the magnitude of Philip’s force. 

Problem # 2 
Once Ryanna and Philip finished moving the boulder, Snehjot came along and shrieked, “You should have moved the 
boulder 10° further to the west, you stupid, asinine, mindless, vacuous fools!”  Insulted by Snehjot’s strong language, 
Philip refused to change the way he was pushing the boulder.  Describe how Ryanna would have to adjust the magnitude 
(but not direction) of his/her force to move the boulder 10° further to the West. 
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The Definitions of Vector Addition and Subtraction 
Any solution to problem 1 above requires the concept of adding two vectors: 

Should I use the 
Parallelogram Law or 

the Triangle Law? 
The answer to this 
question is that it 
doesn’t matter!  Both 
laws produce the same 
resultant.  If your 
diagram has two 
vectors arranged tail-
to-tail, then it’s easier 
to use the 
parallelogram law.  If 
the vectors are 
arranged head-to-tail, 
then it’s easier to use 
the triangle law.  In the 
final analysis, however, 
it’s just a matter of 
personal preference. 
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Multiplying a Vector by a Scalar 
To solve problem 2, we require the concept of multiplying a vector by a scalar.  Let’s examine a solution to help us 
understand how this form of multiplication works. 

Solution to Problem 1 Solution to Problem 2 
What kind of answer should we expect?  

tan
R

P
θ =

G

G  

2 P

P
=

G

G  

=2 
Therefore,  

1tan 2 63.4θ −= °�  

The boulder would move N26.6°W. 

As with every problem, we should think first about what a reasonable final answer would be.  
It’s clear from the diagram that Ryanna should reduce the force with which he/she pushes.  
Therefore, we should expect the value of a to be less than 1. 
Ali wanted the boulder to move approximately N36.6°W.  Let a represent the scalar by which 

 needs to be multiplied so that the boulder will move in the desired direction.  Therefore, R
G

tan 53.4
aR

P
= °

G

G  

∴
(2 )

tan 53.4
a P

P
= °

G

G  

∴
2

tan53.4
a P

P
= °

G

G  

∴ 2 tan53.4a = °  

∴  0.66a �
Ryanna should push in the same direction, with about two-thirds of the force with which 
he/she pushed initially. 

Intuitive Understanding of Multiplying a Vector by a Scalar 
Multiplying a vector by a scalar “stretches” the vector.  Depending on the value of the scalar, the “stretched” vector can be 
longer or shorter than the original vector and can be in the same direction or the opposite direction of the original vector.  
Complete the following table to ensure that you understand all the possibilities. 

Algebraic 
Expression Diagram Explanation 

, 1u cv c= >
G G

   

,0 1u cv c= < <
G G

   

, 1u cv c= < −
G G

   

, 1 0u cv c= − < <
G G

   

P
G

 

P R+
G G

 
R
G

 

θ 

P
G

 

P aR+
G G

 
aR
G

 

53.4° 
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UNIT VECTORS AND THE ZERO VECTOR 
A unit vector is a vector with a magnitude of one unit.  Despite what some students may believe, unit vectors do not have 
a special status in the world of vectors.  The only thing that sets them apart from all other vectors is that it is particularly 
easy to work with them.  Unit vectors are often used to specify a direction. 

How to find a Unit Vector in the Direction of a Given Vector 
1ˆ vv v
v v

= =
GG

GGiven the vector v , the vector 
G

G  is a unit vector in the direction of vG . 

Any vector  can be expressed in terms of a unit vector in the direction of vG vG : 
      ˆv v v=

G G
 

Example and Exercises 

uG  

vG  

wG  
v̂

For each vector in the diagram, find a unit vector in the direction of the 
given vector.  In addition, use the diagram at the left to sketch the unit 
vector. 

Solution 
Using the Pythagorean Theorem, 

 
2 2 23 7v = +
G

 
2 58v∴ =
G

 

58v∴ =
G

 
1
58

v̂ v∴ =
G

 

The remaining exercises are left up to you. 
 
 
 

The Zero Vector 
Although the zero vector is as simple as a vector can be, it can be a little difficult to understand from a geometric 
perspective.  The zero vector, denoted by 0

G
, has length (magnitude) zero and has indeterminate direction. 

Applications of the Zero Vector 
• If several forces act on an object but it remains stationary, the resultant force on the object is zero.  That is, the net 

force on the object is . 0
G

0
G

• If a journey ends exactly where it began, the displacement is . 
• List as many other applications as you can of the zero vector: 
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PROPERTIES OF VECTORS 
Instructions 
The following table lists many important properties of vectors.  Complete the table with a diagram and an explanation for 
each property. 

Property Diagram Explanation 

u v v u+ = +
G G G G

 
(Commutative Law) 

  

( ) (u v w u v w+ + = + +
G G G G G G)  

(Associative Law) 
  

( ) ( )ab u a bu=
G G

 
(Associative Law) 

  

( )a u v au av+ = +
G G G G

 
(Distributive Law) 

  

0u u+ =
GG G

 
(Existence of Additive Identity) 

  

( ) 0u u+ − =
GG G

 
(Existence of Additive Inverse) 

  

cu c u=
G G

   

u v u v+ ≤ +
G G G G

 

u v u v− ≤ +
G G G G

 
  

u v u v+ ≥ −
G G G G

 

(Triangle Inequalities) 
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CHECK YOUR UNDERSTANDING OF BASIC VECTOR CONCEPTS 
True or Statement Proof or Counterexample False? 

Two vectors are parallel if 
and only if one is a scalar 

multiple of the other.   
(u  iff u  for some 

) 
vG G& kv=

G G

k∈\

PQ QP− =
JJJG JJJG

   

u v u v+ = +
G G G G

 iff 

 for some  
  

u kv=
G G k∈\

u v u v+ < +
G G G G

 iff 

 for any k  
  

u kv≠
G G

∈\

Since for all vectors u  and 
all scalars c, 

G

cu c u=
G G

, it 

must follow that u  and 
 have the same 
direction. 

G   

cuG
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USING VECTORS TO REPRESENT FORCES AND VELOCITIES 

If a vector is used to represent a force,  Force 
1. The direction of the vector represents the direction in which the force is applied.  This is 

usually measured in radians, degrees or by using the compass directions. 

 
2. The magnitude of the vector represents the “strength” of the force, which is usually 

measured in Newtons (N = kg⋅m/s2).  One Newton (1 N) is the resultant force that will 
give a 1 kg mass an acceleration of 1 m/s2, that is, 1 (m/s)/s. 

F  

Velocity If a vector is used to represent a velocity,  

 

1. The direction of the vector represents the direction of movement.  This is usually 
measured in radians, degrees or by using the compass directions. 

2. The magnitude of the vector represents the speed of the moving object, which is usually 
measured in m/s or km/h. 

vG  

Note 
1. If several forces act on an object and their lines of action all pass through a common point (such forces are called 

concurrent), the resultant force vector (sum of all the force vectors) represents the combined effect of all the forces. 

 

2. In the above diagram, 1 2 3F F F+ +
JJG JJG JJG

is called the resultant force.  

3. In the above diagram, 1 2 3( )F F F− + +
JJG JJG JJG

 is called the equilibrant force (the force that exactly counterbalances the 
resultant). 

Relative Velocity 
Velocity is always relative to the frame of reference of the observer.  This means that different observers in different 
frames of reference will measure different velocities!  The example on the next page uses one-dimensional motion 
(motion along a straight line) to illustrate clearly the relativity of motion. 

2F
JJG

 

1F
JJG

 
2F
JJG

 

3F
JJG

 

1 2 3F F F+ +
JJG JJG JJG

 

3F
JJG
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One-Dimensional Motion 
In one-dimensional motion, only two directions are possible.  For the sake of convenience, one of these directions is 
called the positive direction and the other direction is called the negative direction.  The chart shown below summarizes 
some common interpretations of these two directions. 

Negative Direction Positive Direction 

Left Right 

Down Up 

South North 

West East 

N45°W S45°E 

While the above table summarizes some common ways of interpreting the positive direction and the negative direction, it 
is by no means exhaustive.  In fact, there are an infinite number of possible interpretations because all that is required is 
that the two directions be opposite each other. 

In one-dimensional motion, velocities are specified by using a real number.  For instance, a velocity of −100 km/h means 
that the speed (the magnitude) is 100 km/h and the direction is the negative direction. 

Example Involving One-Dimensional Motion 

Now complete the following table.  (The abbreviation “wrt” stands for “with respect to,” which means the same thing as 
“relative to.”)  Can you draw any general conclusions about relative velocities? 

Velocity 
of 

Relative 
to (wrt) 

Relative 
Velocity 
(km/h) 

Velocity 
of 

Relative 
to (wrt) 

Relative 
Velocity 
(km/h) 

Velocity 
of 

Relative 
to (wrt) 

Relative 
Velocity 
(km/h) 

Velocity 
of 

Relative 
to (wrt) 

Relative 
Velocity 
(km/h) 

Velocity 
of 

Relative 
to (wrt) 

Relative 
Velocity 
(km/h) 

A A 0 B A  C A  D A  E A  

A B −200 B B  C B  D B  E B  

A C −280 B C  C C  D C  E C  

A D −340 B D  C D  D D  E D  

A E 100 B E  C E  D E  E E  

Note: The method that you are using to calculate relative velocities is based on what are known as the Galilean transformations.  
These transformations work very well for velocities much smaller than the speed of light (c = 3×108 m/s).  For velocities approaching 
c, however, the Galilean transformations break down and must be replaced by the Lorentz transformations, which form the foundation 
of Einstein’s Special Theory of Relativity. 

+ − 

80 km/h

C 

0 km/h

B A 

200 km/h 

 

E 
 

300 km/h 

D 

140 km/h
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The Angle between Two Vectors and Relative Velocities 
The angle between two vectors is the non-reflex angle θ (i.e. 0 180θ° ≤ ≤ ° ) obtained when they are arranged tail-to-tail. 

vG  

uG  

θ 

Example 
A Boeing 747 travels due east in still air (no wind) at a speed of 900 km/h.  It suddenly encounters a 100 km/h SW wind 
(i.e. blowing from the SW, which means the wind is moving NE).  How should the pilot adjust the heading of the aircraft 
to ensure that it continues to move due east at 900 km/h? 

Solution 
We want the resultant velocity to be 900 km/h, due east.  This means that the combined effect of the wind and the 
direction in which the pilot steers should cause the aircraft to move due east 
with a speed of 900 km/h.  If we let PGv  represent the velocity of the plane 

relative to the ground, 

G

PGvG  

AGvG  
PAvG  

45° 

900 

100 
α PAvG  represent the velocity of the plane relative to the 

air and let  represent the velocity of the air relative to the ground (i.e. 
wind velocity).  Then, we require that 

AGvG

PG PA Av v v= +
G G G

PA PG Av v v= −
G G G

G  or G . 

By the law of cosines, 

PGvGAGvG2 2 2
2 cPA AG PG AG PGv v v v v osθ+ −=G G G G G , where θ is the angle between  and . 

2 2 2100 900 2(100)(900) cos 45PAv∴ = + −
G

°  

832PAv∴
G �  

By the law of sines, 
sin sin

PG PAv v
α θ
=G G  

sin sin 45
900 832
α °

∴ �  

900sin 45sin
832

α °
∴ �  

1 900sin 45sin
832

α − °⎛ ⎞∴ ⎜ ⎟
⎝ ⎠

�  

1 900sin 45sin
832

α − °⎛ ⎞∴ ⎜ ⎟
⎝ ⎠

�  

50α °�  or 130α °�  
 
To continue along the desired course, the pilot must head S85°E with an air speed of about 832 km/h. 

Questions 
1. Explain why α must have a value of 130° and not 50°. 
2. How is it possible for the pilot to reduce the air speed from 900 km/h to 832 km/h and still maintain a ground speed of 

900 km/h? 
3. Explain how the direction S85°E was obtained.  Use the given diagram and relevant theorems of geometry. 

45° 

130° 45° 
W E

N

S

Beware!  This is the ambiguous case of the sine law.  The sine of an 
angle is positive in both the first quadrant and the second quadrant.  
Therefore, we must choose our answer carefully! 
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Examples 
1. Describe the forces acting on an aircraft flying at a constant speed at a constant altitude. 
2. Describe the forces acting on a submarine cruising at a constant speed at a constant depth. 
3. Describe the forces acting on an automobile moving at a constant speed on a flat horizontal road. 
4. A force of 200 N is being applied to a rope to pull a toboggan along a horizontal, frictionless surface.  If the rope 

forms an angle of 60° to the horizontal, find the horizontal and vertical components of the force (this is called 
resolving the vector).  Which of the components does all the work, the vertical or the horizontal?  What does this tell 
you about the angle at which the rope should be pulled?  Should the angle be as close to 90° as possible or as close to 
0° as possible? 

5. A 100 kg object rests on a ramp inclined at a certain angle θ to the horizontal.  Calculate the components of the force 
of gravity on the object that are parallel and perpendicular to the ramp.  Express your answers in terms of θ. 

6. Suppose now that the angle θ (in question 5) is increased slowly until a critical angle θc is reached and the object 
begins to slide down the ramp.  What can you conclude about the force of friction on the object when this critical 
angle is reached? 

7. Two draft horses pull a load.  The chains between the horses and the load are at an angle of 60° to each other.  One 
horse pulls with a force of 230 N and the other pulls with a force of 340 N.  What is the resultant force on the load?  
What is the equilibrant force on the load?  (State both magnitude and direction.) 

8. A traffic sign with a mass of 5 kg is suspended above a street by two cables.  One cable forms an angle of 45° to the 
street and the other forms an angle of 60°.  Find the tension of each wire. 

9. An airplane is steering at N45°E with an air speed (speed in still air) of 525 km/h.  The wind is from N60°W at 98 
km/h.  Find the groundspeed and track (course) of the airplane. 

10. A ship is steering east at 15 knots (nautical miles per hour).  A tugboat 2 nautical miles (M) to the south is steering 
N45°E at 20 knots.  Find the velocity of the ship relative to the tug.  Will the ship pass in front of or behind the tug? 

To solve problems like the ones given above, it is critical that you have a good understanding of 
the underlying physical principles!  Formulas are not enough! 

Newton’s Laws of Motion 

Newton’s First Law (Galileo’s Law of Inertia) 
Every body in a state of uniform motion tends to remain in that state of motion unless an external force is 
applied to it.  In other words, unless an external force is applied to a body, if it is at rest, it will remain at rest, 
and if it is moving with a constant velocity, it will continue to move with a constant velocity.  (The mass of a 
body is a measure of its inertia, that is, a body’s resistance to acceleration.) 

Newton’s Second Law 
In the presence of a net (resultant) force, a body experiences an acceleration that is directly proportional to the 
net force and inversely proportional to the mass.  This law can be summarized using the equation 

Fa
m

=
G

G dp
F

dt
=
GG

 or .  (Newton originally expressed this law using calculus: F ma=
G G

p
G

, where  represents the momentum of the body.) 

When a body is acted upon by a gravitational field, it experiences an acceleration called the acceleration due to gravity or 
gravitational acceleration.  Close to the surface of the Earth, this acceleration is roughly constant and is equal to 
approximately 9.8 m/s2.  The symbol g is used to represent acceleration due to gravity.  Newton’s second law informs us 
in this case that , where F represents the magnitude of the gravitational force exerted on a body of mass m.  Note F mg=
that gravitational forces are always directed toward the centre of a body (e.g. the centre of the Earth).  See 
http://en.wikipedia.org/wiki/Standard_gravity for more information. 

Newton’s Third Law (Law of Action and Reaction) 
For every action, there is an equal but opposite reaction.  That is, matter interacts with matter.  For each force 
exerted on one body, there is an equal but oppositely directed force on some other body interacting with it. 
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REVIEW OF BASIC PROPERTIES OF GEOMETRIC VECTORS REVIEW OF BASIC PROPERTIES OF GEOMETRIC VECTORS 
  Vector Subtraction 

 

uG  

vG  

u v−G G
 

v−G  

( )u vu v = + −−
G GG G

 
( )vv uu −+ =

GG G G

Multiplying a Vector by a 
Scalar 

uG  

,  1cu c >G
 

cu c u=
G G

 

,  1cu c < −G
 

,  0 1cu c< <
G

 

,  1 0cu c− < <
G

 

Vector Addition and Subtraction 
The vectors  and  are 
the diagonals of a parallelogram 
formed by the vectors  and v .  and v . 

u v+G G
u v−G G

uG GG

Law of Cosines 

Cabbac cos2222 −+=   
The law of cosines is a generalization of the Pythagorean 
Theorem. 

Law of Sines 

c
C

b
B

a
A sinsinsin

==

 

 Beware of the ambiguous case. 

  

 
? 

? 
? 

?  

 
? 

 
? 

a 

b c 

C 

A 

B 

 ?

 
? 

? 

? 
 

? 
? 

A geometric vector is a mathematical representation of any 
quantity that has both magnitude and direction. 

Applications of Geometric Vectors 

Forces 
• The vector sum of all forces 

acting on a body is called the 
resultant or net force. 

• With respect to a given frame 
of reference, if a body is 
stationary or it is moving 
uniformly (i.e. with a constant 
velocity), the vector sum of all 
forces acting on the body must 
be the zero vector. 

• When using vectors to solve 
problems involving forces, it is 
useful to understand Newton’s 
Laws of Motion. 

Relative Velocity 
• As measured in a frame of reference attached to object B, the velocity of object A 

relative to (with respect to) object B is AB AF BFv v v= −
G G G

, where  and vAFvG BF
G

 are the 
velocities of A and B respectively as measured in some other frame of reference F 

• Keep in mind that measurements are relative to the frame of reference of an observer.  
Different observers in different frames of reference may not agree on their 
measurements of the same quantity.  This is true of position, displacement, distance 
(length), velocity, mass, time and many other quantities. 

• If we apply the above to objects in motion in the Earth’s atmosphere (e.g. aircraft), then 
 or v vOA OG AGv v v= −

G G G
OG OA AGv= +
G G G

.  Here OGvG  represents velocity of the object 

relative to the ground, OAvG  represents the velocity of the object relative to the air 

(atmosphere) and AGvG  represents the velocity of the air (i.e. the wind velocity) with 
respect to the ground. 

 

 Triangle Inequalities 

u v u v+ ≤ +
G G G G

 

u v u v− ≤ +
G G G G

 

u v u v+ ≥ −
G G G G

 

uG  

vG  u v+G G
 

uG  

vG  
u v−G G  
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Homework Exercises for Chapter 4 (Geometric Vectors) 
We have reached the halfway point of the third unit.  Now it is time to put into practice what we have learned.  You 
should now be ready to do the following: 

1. Read all of chapter four once again.  Pay attention to the examples in the textbook, especially those that are different 
from the examples found in these notes or those given in class. 

2. Read these notes once again.  Ensure that you understand all examples and that you have answered all questions. 
3. Do the following homework sets.  Whenever necessary consult your textbook, these notes or any other resources. 

Homework Set 1 Homework Set 2 Homework Set 3 Homework Set 4 

p.127 
#1, 2, 4, 5, 6 

p.128 
#7, 8, 9, 10, 11 

p.128 
#12, 13, 14 

p.144 
#23, 24, 25 

p.133  
#1, 2, 3, 4, 5, 6 

p.133 
#7, 8, 9, 11, 13, 15, 16 

p.133 
#17, 19, 20, 21 

p.150 
#11, 12, 13, 14 

p.141 
#1, 2, 3 

p.142 
#5, 6a, 7a, 8, 9, 10, 12, 13 

p.143 
#15, 16, 17, 20, 21, 22 

p.149 
#1, 2, 3 

p.149 
#3, 4, 5, 6 

p.150 
#7, 8, 9, 10 

ALGEBRAIC VECTORS 
Introduction 
As you should recall from unit 1, Descartes bridged the gap between algebra and geometry with his system of coordinates.  
This mathematical breakthrough also allows us to take geometric vectors into the realm of algebra.  Since you are already 
all-too-familiar with a two-dimensional Cartesian (rectangular) coordinate system, we shall begin our discussion with its 
three-dimensional analogue. 

Three-Dimensional Cartesian Coordinate System 
To extend the reach of the two-dimensional rectangular coordinate 
system, a third axis (the z-axis) is added.  The z-axis passes through the 
origin and is perpendicular to the plane formed by the x-axis and the y-
axis.  In the diagram shown at the right, the x and y axes are shown as 
they would appear to us in the two-dimensional case, with the positive x-
axis pointing to the right and the positive y-axis pointing “up.” 

However, to give the appearance that the positive axes are facing us, we 
rotate the axes (in the diagram shown at the right) clockwise about the z-
axis to obtain the more familiar view shown below (see next page). 
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The following diagrams show how we usually sketch the co-ordinate axes: 

 

z 

y 

x x 

y 

z 

 

  

Note that for the purposes of these diagrams, the planes are shown as rectangles.  You must keep in mind, however, that a 
plane is a flat surface that extends infinitely in all directions. 

Here is another view that may help you visualize the xy-plane, the xz-plane and the yz-plane  
(collectively called the co-ordinate planes). 

 

x 

y 

z 

xz-plane 

xy-plane 

yz-plane 

x 

y 

z 
yz-plane 

xy-plane 

xz-plane 

Copyright ©, Nick E. Nolfi MGA4U0 Geometric and Algebraic Vectors and their Applications GAVA-16 



Position Vectors 
Up to this point, we have treated all vectors as free vectors.  As you should recall, a free vector’s position in space is 
unimportant because it is completely determined by its magnitude and direction.  Now we shall introduce the concept of a 
position vector, a vector that always has its tail at the origin.  Position vectors are useful because they provide us with a 
convenient method of locating points.  Conversely, we can use the coordinates of a point to locate a position vector!  A 
simple example will help to clarify these ideas. 

uG vG The vectors  and  are free geometric vectors.  They can be placed 
anywhere in space as long as their magnitudes and directions remain 
unchanged.  If we place the tails of u

x 

y 

O 

P(5, 3) 

Q(−3, −5) 

G
 and vG  at the origin of a Cartesian 

coordinate system, then they become position vectors. uG  

• The position vector u OP=
JJJGG

 locates the point P(5, 3) 

vG  v OQ=
JJJGG

• The position vector  locates the point Q(−3, −5) 

A great advantage of this idea is that the coordinates of a given point quely determine a position vector!  For example, 
we can use the coordinates (5, 3) to uniquely identify the vector u

uni
OP=
JJJGG

.  This gives us an algebraic method of working 
with vectors.  In addition, when a vector is expressed in algebraic form, it is not necessary to resolve it into mutually 
perpendicular components.  The algebraic form of representing a vector includes the components of the vector! 

Algebraic Vectors 

Definitions 

1. If  is a position vector for the two-dimensional geometric vector OP
JJJG

uG  and point P has coordinates (a, b), then  is 
the algebraic representation of the two-dimensional geometric vector 

( , )a b
uG .  We use the symbol  to denote the set of 

all two-dimensional vectors over the set of real numbers.  The numbers a and b are called the components of the 
vector. 

2\

2. If  is a position vector for the three-dimensional geometric vector OP
JJJG

uG  and point P has coordinates (a, b, c) then 
 is the algebraic representation of the three-dimensional geometric vector uG( , , )a b c .  We use the symbol  to 

denote the set of all three-dimensional vectors over the set of real numbers.  The numbers a, b and c are called the 
components of the vector. 

3\

3. In general, we use the notation  to represent an n-dimensional algebraic vector, where 1 2( , , , )na a a… n∈` .  The 
symbol  is used to denote the set of all n-dimensional vectors over the set of real numbers.  The numbers 

 are called the components of the vector. 

n\
1 2, , , na a a…
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Note 
1. A set of vectors V is known as a vector space if the operations of vector addition and scalar multiplication are defined 

on V and if the operations have the following ten properties: 

(a) If  and  then .  (Closure Under Vector Addition) u V∈G v V∈G u v V+ ∈
G G

(b)  (Commutative Property of Vector Addition) u v v u+ = +
G G G G

(c)  (Associative Property of Vector Addition) ( ) (u v w u v w+ + = + +
G G G G G G)

(d) There is an additive identity element  which has the property that 0
G

0 v v+ =
G G G v V∈G for all . 

( ) 0v v+ − =
GG G

(e) For every vector , there is an additive inverse element (i.e. “opposite” of v V∈G vG ) such that . 

(f) If  and , then  (Closure Under Scalar Multiplication) v V∈G av V∈Ga∈\
1v v=
G G

(g) There is a scalar multiplicative identity element 1, which has the property that  for all . v V∈G

(h)  (Associative Property of Scalar Multiplication) ( ) ( )a bv ab v=
G G

(i)  (Distributive Property of Scalar Multiplication over Vector Addition) ( )a u v au av+ = +
G G G G

(j)  (Distributive Property of Scalar Multiplication over Scalar Addition) ( )a b v av bv+ = +
G G G

2. You may find it very difficult to visualize vectors of dimension greater than 3.  Do not worry, this is quite normal!  If 
you widen your perspective, however, and consider non-geometric applications of vectors, then it becomes easy to 
understand vectors of any dimension. 
 

Consider an 8-dimensional algebraic vector such as (0, 1, 0, 0, 1, 1, 0, 1).  This vector is not easy to interpret from a 
geometric standpoint but it is easy to understand in numerous other contexts.  The following table lists just a few ways 
of understanding this vector and others like it.  (If you have studied computer programming, you certainly should notice 
that algebraic vectors are analogous to one-dimensional arrays!) 

Various Interpretations of Multi-Dimensional Vectors 
Application Explanation 

Code used to represent characters in 
computer systems. 

The vector (0, 1, 0, 0, 1, 1, 0, 1) is the 
binary code for the character “L” 

Seven-Segment Display A B C D E F G DP
1 1 1 1 0 1 1 0 

In this case, the vector  
(1, 1, 1, 1, 0, 1, 1, 0) means that all 
segments should be turned on except for 
“E” and “DP” (“1” means “on” and “0” 
means “off”).  Thus, a “9” would be 
displayed, without a decimal point. 
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CALCULATING MAGNITUDE AND DIRECTION OF VECTORS EXPRESSED IN 
ALGEBRAIC FORM 

Instructions 
1. Calculate the magnitude and direction of each of the vectors shown below.  State the direction as an angle θ  between 

0° and 360° such that θ  is measured counter-clockwise from the positive x-axis. 

 
2. Now derive formulas for the magnitude and direction of ( , )u a b=

G .  Express both uG  and θ in terms of a and b. 

Hint: Use the Pythagorean Theorem to calculate uG  and trigonometry to calculate θ. 

 
3. Now do the same for .  Given the position vector 3\ u OP=

JJJGG
 for the point P(a, b, c), calculate OP

JJJG
 in terms of a, b 

and c.  In addition, calculate the direction angles α, β and γ in terms of a, b and c.  (Note that α is the angle between 
the positive x-axis and the vector u , β is the angle between the positive y-axis and the vector  and γ is the angle 
between the positive z-axis and the vector .)  Can you find a relationship among the direction cosines?  (The 
direction cosines are cos

G uG

uG

α , cosβ  and cosγ .) 

R(7, −2) wG  

x 

y 

O 

P(5, 3) 

Q(−3, −5) 

vG  

θ 

uG  

P(a, b) 

O 

( , )u a b=
G

 

x 

y 

α 

x 

y 

z 

b 

a 

c 

P(a, b, c) 
γ 

β 
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UNIT VECTORS IN  AND  2\ 3\
Introduction 
Unit vectors are important because it is so easy to work with them.  A unit vector is any vector of magnitude 1.  That is, 
any vector  with uG 1u =

G
 is called a unit vector.  In  and , it is especially convenient to work with unit vectors that 

lie along (i.e. are parallel to) the coordinate axes.  These unit vectors are so important that we give them the special names 
i, j and k ( , 

2\ 3\

î ĵ  and  in our textbook).  The diagrams below show the orientation of these unit vectors in  and . k̂ 2\ 3\

• i (or î ) is a unit vector in the 
direction of the positive x-axis 

 

• j (or ) is a unit vector in the 
direction of the positive y-axis 

ĵ

• In , k (or ) is a unit vector in 
the direction of the positive z-axis 

3\ k̂

• In , i = (1, 0) and j = (0, 1). 2\

• In , i = (1, 0, 0), j = (0, 1, 0) and k 
= (0, 0, 1). 

3\

 

Ordered Pair (Triple) Notation or Unit Vector Notation? 
It doesn’t matter whether you use ordered pair notation or unit vector notation.  They are equivalent in every respect!  The 
choice depends only on convenience.  If it is easier to use ordered pair notation, then do so.  Otherwise, use unit vector 
notation. 

More Examples 
Read section 5.1 of our textbook to obtain more examples and more information. 

OPERATIONS WITH VECTORS IN ALGEBRAIC FORM 
Basis for a Vector Space 

It doesn’t take long to realize that any vector in  can be expressed in terms of the unit vectors i and j and that any 2\
vector in  can be expressed in terms of the unit vectors i, j and k.  If we consider  for example, we can “travel” to 3\ 3\
any point P(a, b, c) by starting at the origin and moving only in the directions of the three coordinate axes.  To arrive at 
the point P(a, b, c), we simply move a units in the x-direction, b units in the y-direction and c units in the z-direction.  
Using this method, we can reach any point in . 3\
Any minimal set of vectors that can be used to express any vector in a vector space is called a basis for the vector space.  
(By minimal we mean that the set is as small as possible.  For instance, any basis for  must have exactly 3 vectors.  It 3\
is impossible to form a basis for  using fewer than 3 vectors.  Moreover, any set of vectors that consists of 4 or more 3\
vectors is not considered a basis for  because it’s larger than it needs to be.) 3\

Notice that the number of vectors in a basis equals the dimension of the vector space.  For example,  is two-2\
dimensional because any basis for  has exactly two vectors. 2\

x 

y 

x 

y 

z 

ˆ ˆ( , )a b ai bj= +  ˆˆ ˆ( , , )a b c ai bj ck

i 

j 

j i 

k 

+ +  =

Copyright ©, Nick E. Nolfi MGA4U0 Geometric and Algebraic Vectors and their Applications GAVA-20 



Examples 
1. Prove that two vectors are equal if and only if their respective Cartesian components are equal. 

2. Prove that if ,  and c is a scalar, then 1 2 3( , , )a a a a=
G

1 2 3( , , )b b b b=
G

1 1 2 2 3 3( , ,a b a b a b a b )+ = + + +
GG

 and 

.  (Hint: Express each vector in as a sum of scalar multiples of i, j and k.) 1 2 3( , ,ca ca ca ca=
G )

c

3. Are the points P(1, 2, 3), Q(−2, 4, 6) and R(0, 0, 3) collinear? 

4. If the points A(0, 3, 0) and C(6, −1, 4) are opposite vertices of the parallelogram ABCD, and B(5, 0, 0) is one of the 
other vertices, find the coordinates of the point D.  In addition, describe the orientation of the parallelogram relative to 
the coordinate axes. 

ADDITIONAL VECTOR OPERATIONS – THE DOT PRODUCT AND THE 
CROSS PRODUCT 

Introduction 
In this section we shall learn about two additional operations, the dot product and the cross product.  The dot product is 
defined on  for all .  The cross product, however, is defined only on . n∈`n\ 3\
The dot product, also known as the scalar product or inner product, is an extremely useful tool with many applications.  
One of its prin iple applications is to allow us to calculate the angle between two vectors without the use of complex 
geometry.  If  and  are vectors, then the dot product of uG vG uG vG  is written u v⋅G G and .  The dot product of two vectors 
always produces a scalar, that is, u v . ⋅ ∈

G G \
The cross product of two vectors, on the other hand, always produces a vector.  It is defined in such a way that the result 
of finding the cross product of two vectors is a third vector that is perpendicular to each of the two original vectors.  In 
other words, if and  are vectors in , then u ( )u v u× ⊥

G G GuG  vG v×G G3\  (read “uG vG cross ”) is a third vector in  such that 3\  
and . ( )u v v× ⊥

G G G

Defining the Dot Product 
As mentioned in a previous unit, mathematical definitions often seem arbitrary and senseless.  Such is certainly the case 
with the do duct.  Therefore, before we introduce its definition, we need to understand what motivated mathematicians 
to define u  in such a seemingly strange way! 

t pro
v⋅G G

Before proceeding, we need to remember that like any other operation, the dot product is nothing more than a convenient 
tool for solving problems.  In addition, if it is to be a useful tool, the dot product should have certain desirable properties.  
First of all, the dot product is “designed” in such a way that it has certain convenient properties as listed below: 

Desired Properties of the Dot Product 
1. If u , then . v⊥

G G 0u v⋅ =
G G

2. If u , vG G& u v u v⋅ =
G G G G

. 

3. If u  and  expressed in algebraic form (i.e. in Cartesian or component form), there should be an easy way to 
calculate  without having to calculate the angle between u

G vG  are
u v⋅G G G vG and . 
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Now let’s examine the table below to gain a great deal of insight into how the dot product should be defined. 

uG vG u v⋅G GAngle between Vectors  and  Value of  

u vG G u vG G = (1) 0° 

u vG G (0) 0 = 90° 

u vG G u vG G = (−1) −180° 

? θ 

By observing the table carefully, we see that the dot product behaves much like the cosine function! 

 

cosθ . Therefore, it makes a great deal of sense to define the dot product in terms of 

Definition of the Dot Product 

If  and  are vectors and θ is the non-reflex angle between the vectors ( ), then the dot product of uG vG uG0 18θ≤ ≤D 0D  and 
vG , written , is defined as u v⋅G G cosu v u v θ⋅ =

G G G G
. 

 vG  

uG  

θ 
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Properties of the Dot Product 
1.  (Commutative Property of the Dot Product) u v v u⋅ = ⋅

G G G G

2.  (Distributive Property of the Dot Product over Vector Addition) ( )u v w u v u w⋅ + = ⋅ + ⋅
G G G G G G G

3.  (Associative Property) ( ) ( ) (a u v au v u av⋅ = ⋅ = ⋅
G G G G G G)

4.  (Generalized Associative Property) ( ) ( ) ( )au bv ab u v⋅ = ⋅
G G G G

2u u u⋅ =
G G G

 5. 

6. If  and , then , if and only if 0u ≠
GG 0v ≠

GG u v⊥
G G 0u v⋅ =

G G
. 

7.  if and only if u vG G& u v u v⋅ =
G G G G

 (i.e.  if and only if u vG G& u v u v⋅ = ±
G G G G

) 

8. , ˆ ˆ 1i i⋅ = ˆ ˆ 1j j⋅ = ,  ˆ ˆ 1k k⋅ =

9. , ,  ˆˆ 0j k⋅ =ˆˆ 0i k⋅ =ˆ ˆ 0i j⋅ =

10. If  and 1 2 3( , , )u u u u=
G

1 2 3( , , )v v v v=
G

1 1 2 2 3 3u v u v u v u v⋅ = + +
G G

 then . 

Proof 
The proofs of properties 1 through 9 are left up to you.  The proof of property 10 is given below.  Note that the proof of 
property 10 relies on most of properties 1 through 9. 

1 2 3 1 2 3( , , ) ( , , )u v u u u v v v⋅ = ⋅
G G

 

 

 

 

 

1 2 3 1 2 3
ˆ ˆˆ ˆ ˆ ˆ( ) (u i u j u k v i v j v k= + + ⋅ + + )

ˆ ˆ ˆ)1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (u v i i u v i j u v i k u v j i u v j j u v j k u v k i u v k j u v k k= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3(1) (0) (0) (0) (1) (0) (0) (0) (1)u v u v u v u v u v u v u v u v u v= + + + + + + + +

1 1 2 2 3 3u v u v u v= + +

Examples 
Carefully study examples 1 to 4 on pages 175-177 of our textbook. 

Defining the Cross Product in such a way that it Models Torque 

Unlike the other two products on vector spaces that we have studied, the cross product is defined only on .  It is 
motivated by the physical phenomenon of rotational motion.  Whenever a force causes linear motion (motion along a 
straight line), we can calculate the displacement (change in position) of an body simply by knowing the magnitude and the 
direction of the force. 

3\

In rotational motion, however, a sufficiently strong force will cause a change in rotational motion, not a change in 
position.  In addition to knowing the magnitude and direction of the force, it is also necessary to know the point at which 
the force is applied.  The following examples should help you understand why. 

Consider a door that is closed.  To open the door, a change in its rotational motion 
must take place.  What will cause the largest possible change in its rotational 
motion? 

 
 

θ  

 

 

 
 d  

rG  

F
G

 

• as large a force as possible 
• in the correct direction 
• and applied at the correct point 

Consider a “top view” of the door 

F
G

θ  → force vector,  → angle between force and displacement vectors 
rG   → displacement vector from axis of rotation to point of application of the force 
d   → the perpendicular distance from the center of rotation to the line of action of 

the force 
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u v×G G
Using the Idea of Torque to decide what the Direction of  should be 

Consider a wrench tightening a right-threaded nut or bolt.  
The rotational motion of the nut or bolt will depend on 
the magnitude and the direction of the applied force as 
well as the point at which the force is applied.  In other 
words, the “strength” of the “turning effect” of the 
wrench is determined by how strong the force is, its 
direction and where it is applied.  We call this “turning 
effect” of the applied force the torque or the moment of 
the force about the axis of rotation. 

θ  
 rG

F
G

F
G

 

 
θ  d 

 

Torque is a vector quantity that is perpendicular to both 
F
G

rG and .  Its direction is determined by the “right hand 
rule” for right-handed coordinate systems.  In the 
diagram to the left, the torque is directed into the page at 
right angles to both 

Both the nut and bolt are right-threaded.  This 
means that the bolt or nut must be turned 

clockwise in order to be tightened. F
G

 and .  The direction of the 
torque is the same as the direction that the nut or bolt 
would move when being tightened. 

rG

This diagram shows the 
orientation of u

 

v×G G given uG In general, the torque τG  (or the moment of force) about 
a given axis of rotation is defined as 

 
and v .  Notice that the right 
hand rule is being applied.  
The fingers of the right hand 
“curl” from  toward 

G

r Fτ = ×
GG G . 

rGIn this equation,  represents the displacement from the 
axis of rotation to the point of application of the force and uG vG .  

The thumb points in the 
direction of .  Note 
that v , points in the 
opposite direction of 

F
G

u v×G G  represents the applied force.  Note that sometimes the 
symbols T

G
 and M

G
u×G G  are used to represent torque instead 

of τGu v×G G . . 

u v×G GUsing the Idea of Torque to decide what the Magnitude of  should be 
Suppose that a wrench is tightening a right-threaded bolt, as 
shown in the diagram at the right.  As discussed above, the torque 

f
G

τG  produced by the force  is a vector that is directed “into” the 
page, the same direction that a right-threaded bolt would move 
when being tightened.  (Torque can be thought of as a measure of 
the effectiveness of the force in producing a rotation about the 
axis.) 
What would we expect the magnitude of this vector to be?  Since 
the amount of torque depends on  
(1) the distance between the bolt and the point at which the force 

is applied (i.e. 
 

rG ) 

f
G

(2) the strength of the component of  directed perpendicular* to 

the wrench (i.e. sinf θ
G

), 

sinr f θ
GGit is reasonable to expect the magnitude to be  

sinu v u v θ× =
G G G GTherefore, it’s sensible to expect .  We shall 

prove this shortly. 
f
G

*Note that no contribution to the torque is made by the component of  that is 
parallel to . rG  
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Determining the Components of  u v×G G

Given  and , how can we calculate 1 2 3( , , )u u u u=
G

1 2 3( , , )v v v v=
G u v×G G

?  That is, how can we find a vector that is 
perpendicular to both  and  and that accurately models the physical quantity of torque? uG vG

Let represent such a vector.  That is, let ( , , )a x y z=
G

 ( , , )a x y z=
G

 represent any vector that is perpendicular to both uG  
and .  Then,  and .  Therefore,  vG 0a u⋅ =

G G 0a v⋅ =
G G

1 2 3 0u x u y u z+ + =  (1) and 

1 2 3 0v x v y v z+ + =  (2) 

v3 × (1) − u3 ×(2), 1 3 3 1 2 3 3 2( ) ( )u v u v x u v u v y− + − = 0  (3) 

0

This is a system of 2 linear equations in 3 unknowns.  As we shall learn 
in the next unit, each of these equations represents a plane in .  Unless 
the two planes are parallel, they will intersect in a line.  The line of 
intersection of the two planes is the geometric representation of the 
solution of the system.  Since there are an infinite number of points on a 
line, we should expect an infinite number of solutions to the system. 

3\

v1 × (1) − u1 ×(2),  (4) 2 1 1 2 3 1 1 3( ) ( )u v u v y u v u v z− + − =

2 3 3 2

3 1 1 3

( )u v u v yx
u v u v

−
=

−
Now we have expressed both x and z in terms of y.  Since we know that the 
system of equations has an infinite number of solutions, we can find one 
particular solution by choosing a value for y.  If we choose this value 
carefully, we shall be able to find formulas that are as simple as possible. 

Rearranging (3),  (5) 

1 2 2 1

3 1 1 3

( )u v u v yz
u v u v

−
=

−
Rearranging (4),  (6) 

By choosing  and substituting into equations (5) and (6), we obtain 3 1 1 3y u v u v= − 2 3 3 2x u v u v= − 1 2 2 1z u v u v= − and .  
Finally, we are ready to state a method for computing the cross product. 

Definition of the Cross Product (also known as the Gibbs Vector Product) 

Given  and , . 1 2 3( , , )u u u u=
G

1 2 3( , , )v v v v=
G

2 3 3 2 3 1 1 3 1 2 2 1( , ,u v u v u v u v u v u v u v× = − − −
G G )

Example 
Find a vector perpendicular to both  and v(1,2,3)u =

G G ( 5,2, 1)= − − . 

Solution 
The formula given above is a little difficult to remember so here is a simple method for remembering how to apply it.  
First write the components of the first vector directly above the second.  Then follow the arrows, always following blue 
before green. 

1 2 3 
−5 2 −1 

To calculate the x-component of u v×G G , ignore the x-components of  and  and follow the arrows. uG vG

2(−1) − 3(2) = −8 
1 2 3 
−5 2 −1 

To calculate the y-component of u v×G G , ignore the y-components of  and  and follow the arrows. uG vG

3(−5) − 1(−1) = −14 
1 2 3 
−5 2 −1 

To calculate the z-component of u v×G G , ignore the z-components of u  and  and follow the arrows. G vG

1(2) − 2(−5) = 12 

Therefore, , which is perpendicular to both u( 8, 14,12)u v× = − −
G G G vG and . 

Note 
To calculate the y-component of , you may also perform the operations in the same order as for the x and y components, but you 
must remember to change the sign of the value that you obtain. 

u v×G G
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Does our Definition of the Cross Product Accurately Model Torque? 
Before we accept blindly our definition of , we should confirm that it behaves as expected.  Thus, we should verify 
that the direction of u  corresponds with our notion of tightening a right-threaded bolt and that the magnitude of 

u v×G G

v×G G u v×G G  
is indeed equal to sinu v θG G . 

u v×G G
Calculating  

sinu v θG Gu v×G G
First, let’s check that  really does equal .  This is a somewhat tricky, tedious and messy calculation.  
Please refrain from yawning or snoring! 
If  and , .  Therefore, 1 2 3( , , )u u u u=
G

1 2 3( , , )v v v v=
G

2 3 3 2 3 1 1 3 1 2 2 1( , ,u v u v u v u v u v u v u v× = − − −
G G )

2 2 2
2 3 3 2 3 1 1 3 1 2 2 1( ) ( ) (u v u v u v u v u v u v u v× = − + − + −

G G 2)  
2 2 2 2 2 2 2 2 2 2 2 2

2 3 2 2 3 3 3 2 3 1 1 1 3 3 1 3 1 2 1 1 2 2 2 12 2 2u v u v u v u v u v u v u v u v u v u v u v u v= − + + − + + − +  

At this point, we scratch our heads and wonder where this is going.  To avoid a great deal of frustration, let’s try a method 
employed by the ancient Greeks whenever the search for a logical “path” to the desired conclusion seemed to lead to 
nothing but dead ends.  Let’s begin with the conclusion and work our way back to the initial premise.  Then we can 
try to reverse the steps. 
 

Begin with the conclusion. sinu v u v θ× =
G G G G

 

2 2 2 2sinu v u v θ× =
G G G G Square both sides to avoid having to use the square root symbol.  

2 2 2(1 cos )u v θ= −
G G Use a trig identity to change from “sin” to “cos.”  This may allow us to introduce the 

dot product, which can be expressed in terms of “cos.”  This may help us because the 
dot product has so many useful properties. 

 

2 2 2 2 2scou v u v θ= −
G G G G

 

( )22 2u v u v= − ⋅
G G G G

 

2 2 2 2 2 2
1 2 3 1 2 3 1 2 3 1 2 3( )( ) (( , , ) ( ,u u u v v v u u u v v v= + + + + − ⋅ 2, ))

2)

2)

 

2 2 2 2 2 2
1 2 3 1 2 3 1 1 2 2 3 3( )( ) (u u u v v v u v u v u v= + + + + − + +  
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3u v u v u v u v u v u v u v u v u v= + + + + + + + +  
2 2 2 2 2 2

1 1 1 1 2 2 1 1 3 3 2 2 1 1 2 2 2 2 3 3 3 3 1 1 3 3 2 2 3 3u v u v u v u v u v u v u v u v u v u v u v u v u v u v u v− − − − − − − − −  

2 2 2 2 2 2 2 2 2 2 2 2
1 2 1 1 2 2 2 1 1 3 1 1 3 3 3 1 2 3 2 2 3 3 3 22 2 2u v u v u v u v u v u v u v u v u v u v u v u v= − + + − + + − +  

2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 2 3 3 1 1 2 2 3 3u v u v u v u v u v u v+ + + − − −  

2 2 2 2 2 2 2 2 2 2 2 2
2 3 2 2 3 3 3 2 1 3 1 1 3 3 3 1 1 2 1 1 2 2 2 12 2 2u v u v u v u v u v u v u v u v u v u v u v u v= − + + − + + − +  

2 2
2 3 3 2 3 1 1 3 1 2 2 1( ) ( ) (u v u v u v u v u v u v= − + − + −  

Lo and behold, we are back where we started!  By reversing these steps, therefore, we can obtain the desired result.  (See 
next page.) 
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If  and , .  Therefore, 1 2 3( , , )u u u u=
G

1 2 3( , , )v v v v=
G

2 3 3 2 3 1 1 3 1 2 2 1( , ,u v u v u v u v u v u v u v× = − − −
G G )

2 2 2
2 3 3 2 3 1 1 3 1 2 2 1( ) ( ) (u v u v u v u v u v u v u v× = − + − + −

G G 2)

2 3 2 2 3 3 3 2 3 1 1 1 3 3 1 3 1 2 1 1 2 2 22 2 2u v u v u v u v u v u v u v u v u v u v u v u= − + + − + + − +

2)

 
2 2 2 2 2 2 2 2 2 2 2 2

1v  
2 2 2 2 2 2 2 2 2 2 2 2

1 2 1 1 2 2 2 1 1 3 1 1 3 3 3 1 2 3 2 2 3 3 3 22 2 2u v u v u v u v u v u v u v u v u v u v u v u v= − + + − + + − +

The trick that we 
discovered by 
working backwards 
is to add and 
subtract the terms 
shown here. 

 
2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 2 3 3 1 1 2 2 3 3u v u v u v u v u v u v+ + + − − −  

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3u v u v u v u v u v u v u v u v u v= + + + + + + + +  

2 2 2 2 2 2
1 1 1 1 2 2 1 1 3 3 2 2 1 1 2 2 2 2 3 3 3 3 1 1 3 3 2 2 3 3u v u v u v u v u v u v u v u v u v u v u v u v u v u v u v− − − − − − − − −  

2 2 2 2 2 2
1 2 3 1 2 3 1 1 2 2 3 3( )( ) (u u u v v v u v u v u v= + + + + − + +  

( )22 2u v u v= − ⋅
G G G G

 
2 2 2 2 2cosu v u v θ= −
G G G G

 
2 2 2(1 cos )u v θ= −
G G

 
2 2 2sinu v θ=
G G

 

sinu v u v θ× =
G G G G

By taking the square root of both sides, we finally obtain the result,  
Summary 

Given  and , 1 2 3( , , )b b b b=
G

1 2 3( , , )a a a a=
G

2 3 3 2 3 1 1 3 1 2 2 1( , ,a b a b a b a b a b a b a b× = − − − )
GG

. 

   
 
Properties of the Cross Product 
If ,  and  are vectors in , then uG vG wG 3\
1. tive Law) u v v u× = − ×
G G G G

 (Anti-commuta

)
2.  (Distributive Law of the Cross Product over Vector Addition) ( )u v w u v u w× + = × + ×
G G G G G G G

3.  ( ) ( ) (k u v ku v u kv× = × = ×
G G G G G G

4.  0u u× =
GG G

5.  if and only if  (This is not the most efficient method for determining whether vectors are parallel!) 0u v× =
GG Gu vG G&

6. , , ˆˆ ˆi j k× = ˆˆ ˆi k j× = − ˆˆ ˆj k i× =  
7.  (Products of this form are called “triple scalar products”) ( ) ( )u v w u v w⋅ × = × ⋅
G G G G G G

Questions 
1. Prove properties 1 to 7 listed above. 

sinu v u v θ× =
G G G G2. We have already verified that .  Now use examples to show that u v×G G  points in the right direction. 

3. Is the cross product associative? 
4. What unit could be used to measure torque?  Is this unit used to measure any other physical quantities that you have 

studied? 
5. You may have heard about torque in automotive advertising.  In addition, you may have heard about horsepower.  Do 

some research to find out how these two quantities are used to measure the “power” of a car. 
6. Use a geometric argument to explain why  and ( )u u v⋅ × =

G G G 0 0( )v u v⋅ × =
G G G  
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An Alternative Method of Remembering how to find the Cross Product of Two Vectors 
We can use the concept of the determinant of a matrix as a handy method for remembering how to calculate the cross 
product of two vectors.  (We shall study matrices in the next unit.) 

Let  and .  Then, 1 2 3 1 2 3
ˆˆ ˆ( , , )a a a a a i a j a k= = + +

G
1 2 3 1 2 3

ˆˆ ˆ( , , )b b b b b i b j b k= = + +
G

2 3 1 3 1 2
1 2 3

2 3 1 3 1 2
1 2 3

ˆˆ ˆ
ˆˆ ˆdet det det det

i j k
a a a a a a

a b a a a i j k
b b b b b b

b b b

⎛ ⎞
⎜ ⎟ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

× = = − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠

GG ,
x y

xw yz
z w

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
⎟  where det . 

Example 
ˆˆ ˆ2 5 3a i j k= − +

G , b i  ˆˆ ˆ3 2j k= − + −
G

⎞
⎟
⎠

k

ˆˆ ˆ
5 3 2 3 2 5 ˆˆ ˆdet 2 5 3 det det det

3 2 1 2 1 3
1 3 2

i j k
a b i j k

⎛ ⎞
⎜ ⎟ − −⎛ ⎞ ⎛ ⎞ ⎛

× = − = − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜− − − −⎝ ⎠ ⎝ ⎠ ⎝⎜ ⎟− −⎝ ⎠

GG  

ˆˆ ˆ[( 5)( 2) 3(3)] [2( 2) 3( 1)] [2(3) ( 5)( 1)]i j= − − − − − − − + − − −  
ˆˆ ˆi j k= + +  

APPLICATIONS OF THE DOT PRODUCT AND CROSS PRODUCT 
Introduction 
In this section we shall discuss applications of the dot product and cross product including, area, volume, projections, 
work and torque.  Since we discussed torque extensively in the previous section, we shall focus on the others in this 
section. 
Area of a Parallelogram 

sinh u θ=
G

uG  

v

By observing the diagram at the right, one readily notices that .  In 

addition, the length of the base is equal to vG .  Therefore the area A of the 
parallelogram is given by  

θ 

h 
( sin ) sinA bh v u u v u vθ θ= = = = ×
G G G G G G  

uG vGTherefore, the area of a parallelogram having sides  and  is given by G
A u v= ×

G G    

Projections 
Imagine a light source directly above a vector u  and a 
vector v  perpendicular to the light rays emitted by the 
source.  The vector u  would cast a “shadow” on 

G
G

G vG  known 
as the projection of  on .  (You can also visualize 
projections by dropping a perpendicular from each point on 

 onto v .) 

uG vG

uG G

proj cosvu u θ=G
G G  

cos cosu v u v u v
v v
θ θ ⋅

= = =
G G G G G G
G G vG

 

2
( ) ( ) ( )ˆprojv
u v u v v u v vu v

v v v v

⎛ ⎞⋅ ⋅ ⋅
∴ = = =⎜ ⎟⎜ ⎟

⎝ ⎠
G

G G G G G G G GG
G G G G  

vG  

uG  

θ

projvuG
G

 

uG  

v
θ 

 
GprojvuG

G
 

2
( )projv
u v vu

v
⋅

∴ =G

G G GG
G  

Copyright ©, Nick E. Nolfi MGA4U0 Geometric and Algebraic Vectors and their Applications GAVA-28 



Volume of a Parallelepiped 
A parallelepiped is a solid, the opposite faces of which are parallel and congruent parallelograms.  In the diagram at the 
right, the edges of the parallelepiped are the non-coplanar vectors uG vG wG,  and .  Let A represent the area of the base of the 
parallelepiped and let V represent the volume of the parallelepiped.  
Then, since a parallelepiped is a regular solid, 

A 

uG  

vG  

hwG  

V Ah=  

v wv w proj u×= × G G
G G G

 

( )u v w
v w

v w
⋅ ×

= ×
×

G G G
G G

G G  

(u v w= ⋅ ×
G G G )  (absolute value of triple scalar product) 

 

h 

uG  

v
 

Work 
Scientific Meaning of Work (for Motion along a Straight Line) 
From a scientific perspective, work is done whenever a force causes a displacement. 
In a scientific context, the word “work” has a much narrower meaning than in everyday life.  If you happened to be 
standing still while holding up a heavy body, you certainly would feel as if you were doing hard work!  However, a 
physicist would argue that you are doing no work because the body is not displaced (moved). 
If you have studied physics, you have probably learned that work is the product of force and distance (W Fd= , where F 
represents the net force acting on the body).  This formula works well as long as the body is displaced in the same 
direction as that of the net force.  What happens if the force is applied in a different direction?  In this case, we need to 
take into account the angle between the force and displacement vectors.  (See diagrams below.) 

 

 

G
 

wG  

projv wu×
G G
G

 

v w×G G
 

This diagram shows only the vectors involved in calculating the 
volume of the parallelepiped.  Notice that the height is equal to 

the magnitude of the projection of uG  onto v w×G G
. 

When the directions of F
G

 and d
G

 are not the 
same, the angle between the vectors must be 
taken into account.  In this case, only the 
horizontal component of F

G
 contributes to the 

work done.  The vertical component does no 
work because the object moves in the horizontal 
direction only.  In this case, work is equal to 
    ( cos ) cosW F d F d F dθ θ= = = ⋅

G G GG G G
 

Initial 
Position 

Final 
Position 

F
G

 

 d
Gθ 

Initial 
Position 

Final 
Position 

F
G

 

 d
G F

G
When the direction of  is the 
same as that of d

G
, the work done 

by F
G

W F d=
GG

 is equal to . 
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Scientific Definition of Work (for Motion along a Straight Line) 

d
G

F
G

Suppose that a force  is applied to a body at a given angle θ, causing a displacement .  If the displacement is due to 
F
G

motion along a straight line, then the work W done on t e body by the force h  is defined as 
cosW F d F d θ= ⋅ =

G GG G
. 

(If the motion follows a path other than a straight line or if the force changes over time, the above definition no longer 
holds.  In this case, a general definition of work can be given in terms of a line integral, a concept from advanced 
calculus.) 

 
Unit of Work 

cosW F d F d θ= ⋅ =
G GG G

F
G

 is the Newton and the basic unit for measuring Recall that .  Since the basic unit for measuring 

d
G

 is the metre, the basic unit of work is called the Newton-metre.  In keeping with the idea that unit names should be as 

simple as possible, a Newton-metre is more commonly known as a Joule. 

 
Intuitive Understanding of Work (for Motion along a Straight Line and v considerably smaller than light speed) 
You may have noticed that work and energy are both measured in Joules.  The following points should help you to 
understand the close relationship between work and energy. 
� Work is the amount of energy transferred to a body by a force. 

netF
G

netF
G

 represents the resultant force.  Then the work done by � Suppose that two or more forces act on a body and that  
is the change in kinetic energy of the body.  That is, 

2 2

2 2

1 1
2 2
1 ( )
2

net k

kf ki

f i

f i

W E
E E

mv mv

m v v

= Δ

= −

= −

= −

      , 

kiE kfEwhere  and represent the initial and final kinetic energies of the body respectively, and where  and iv fv  
represent its initial and final velocities respectively. 

0
G

� If a body moves uniformly (in a straight line, at a constant speed) the net work done is zero (since the net force is ). 
� Thus, we can also view the net work done as the energy required to accelerate a body from one position to another. 

 

For instance, if a car accelerates (which means there is a net force acting on the car) through a distance of 100 m along 
a straight line, a certain amount of work Wnet is done.  The quantity Wnet represents the energy required to accelerate the 
car through a distance of 100 m assuming 100% energy efficiency.  In reality, the energy expenditure is far greater than 
Wnet because a great deal of energy is dissipated as heat. 
 

Specifically, the energy that is used to make a car move comes from the combustion of gasoline.  A great deal of 
energy is released during this combustion process but only a relatively small portion of it is converted into the kinetic 
energy of the moving vehicle.  Some of it is transformed into other forms of energy, which collectively are known as 
heat (energy that does no work).  Mechanical engineers constantly grapple with the problem of using more of the 
energy of combustion to move a car and losing less of the energy to heat.  That is, their goal is to transform as much of 
the energy of combustion as possible into kinetic energy. 

See http://en.wikipedia.org/wiki/Mechanical_work for a detailed explanation of work. 
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Torque Revisited 
Since we have already discussed the concept of torque extensively, at this point we shall investigate an example of torque 
in the automotive world. 

Example 
Shown below are some specifications for a Ferrari 360 Modena 

Year 2000 

Model 360 Modena 

3.6 L (220 cubic inches) 
DOHC V-8 Engine 

Weight 3065 lbs (1393 kg) 

395 bhp (296 kW)  
@ 8500 rpm Horsepower

Torque 275 lb-ft (373 J) @ 4750 rpm 

0 - 60 mph 
(0 - 96.5 
km/h) 

3.9 s 

1/4 mile 
(0.40225 
km) 

 12.2 s 

 
The following is a great site for performing conversions between imperial and metric units: 
     http://www.metrication.com  

Power of the Ferrari 360 Modena 
In science, power is defined as the rate of change of work done with respect to time.  In other words, you can think of 
power as the amount of work done per unit time.  The Ferrari 360 Modena shown on the previous page has a maximum 
power output of 296 kW (kilowatts), which means that it can do up to 296 kJ (kilojoules) of work per second.  (Note that 
1 W = 1 J/s). 

Torque of the Ferrari 360 Modena 
As we know, torque is the “turning effect” produced by a force in rotational motion.  In the chart on the previous page 
you should notice that torque is measured in Joules (Newton-metres), which is the same unit used to measure both work 
and energy.  Does this mean that torque is the same as both energy and work?  Before we come to a rash conclusion, we 
should remember that torque is a vector quantity while work and energy are both scalars.  Nevertheless, the magnitude of 
torque must be measured in Joules because of the fact that we measure F

G
rG  in metres,  in Newtons and 

      sinr F r Fτ θ= × =
G GG G G . 

Now what does it mean that the torque of the 360 Modena’s engine is 373 J?  The images shown below should give you a 
good idea of how the pistons are connected to the crankshaft by means of connecting rods. 
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In the diagram at the left, we can see how 
the force of the piston moving down is 
applied to the crankshaft.  In this way, the 
up and down motion of the piston is 
converted into the rotational motion of the 
crankshaft. 

Once we superimpose the vectors rG  and 
F
G

 onto the connecting rod and crankshaft 
respectively, we see that a torque is 
produced.  Clearly, the torque is directed 
into the page when the piston is on its way 
down.  When the piston is on its way back 
up, the torque is still directed into the page 
because the directions of both rG  and F

G
 

are “reversed.” 

In the case of the Ferrari shown above, 
each piston produces a torque of about  
46.6 J (373 ÷ 8). 

F
G

 

rG  

F
G

 

θ 

Piston 

Connecting Rod 

Crankshaft 

Valve Train 

Pistons, Connecting 
Rods and Crankshaft 

Crankshaft  
(no pistons connected to it) 
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Homework Exercises for Chapter 5 (Algebraic Vectors) 
We have now reached the end of the second unit.  You should now be ready to do the following: 

1. Read all of chapter five once again.  Pay attention to the examples in the textbook, especially those that are different 
from the examples found in these notes or those given in class. 

2. Make summary notes of the main ideas of the unit. 
See page 14 for an example of how to create a good summary note. 

3. Read these notes once again.  Ensure that you understand all examples and that you have answered all questions. 
4. Do the following homework sets.  Whenever necessary, consult your textbook, these notes or any other resources. 

Homework Set 1 Homework Set 2 Homework Set 3 Homework Set 4 

p. 166 
#1, 2c, 3c, 4d, 6 

p. 167 
#7, 8, 9 

p. 168 
#11, 12ef, 13ef, 14cd, 15 

p. 169 
#23, 24, 25 

p. 172  
#1, 2hjl, 3bd, 4f, 5d 

p. 173 
#6, 7cd, 8b, 9c, 10 

p. 173 
#11, 12, 13, 14 

p. 174 
#15, 16, 18, 19 

p. 178 
#1, 2, 3, 4, 5, 6, 7 

p. 179 
#8, 9, 10, 11, 14 

p. 179 
#15, 16, 17, 18, 19 

p. 180 
#20, 21, 23, 24, 26 

p. 185 
#1, 2, 3, 4 

pp. 185-186 
#5, 6, 7, 8, 9 

p. 186 
#10cf, 11, 12 

p. 186 
#13, 14, 15 

p. 192 
#1, 2, 3, 4 

p. 192 
#5, 6, 7, 8, 9cd 

p. 193 
#10, 11, 12, 14, 15d 

p. 193 
#16, 17, 18, 19 
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