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VECTOR AND SCALAR EQUATIONS OF PLANES 

 



 



 



 



CALCULATING DISTANCES FROM POINTS/LINES/PLANES TO 
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Answers to Questions 3 to 6 

 

 



INTERSECTIONS OF LINES AND INTERSECTIONS OF LINES AND PLANES 

 



 



A LITTLE BIT OF VECTOR THEORY THAT HELPS ANALYZE THE INTERSECTION OF PLANES 

Linear Combination of Vectors 
If  then v  is said to be a linear combination of 1 1 2 2 n nv a u a u a u= + + +
G G G G" G

1 2, , , nu u uG G … G .  For example, the vector 

 is a linear combination of . ˆˆ ˆ3 4 5v i j k= + −
G ˆˆ ˆ,  and i j k

Linear Independence of Vectors 
The vectors  are said to be linearly independent if the only linear combination of the vectors that 

produces the zero vector ( ) is .  That is, if 
1 2, , , nu u uG G G…

0
G

1 20 0 0 nu u u+ + +
G G G" 1 1 2 2 0n na u a u a u+ + + =

GG G G" , then 
.  Vectors that are not linearly independent are said to be linearly dependent. 1 20, 0, , 0na a a= = =…

Linear Dependence and Linear Independence in  and  2\ 3\

Vector 
Space 

Maximum Number 
of Linearly 

Independent Vectors 
in any Set of Vectors 

Geometric Significance Diagrams 

2\  2 

• Linearly independent 
vectors are non-parallel 

• Linearly dependent 
vectors are parallel 

 

3\  3 

• Linearly independent 
vectors are non-coplanar 

• Linearly dependent 
vectors are coplanar 

 

 
Simple Test for Linear Independence in  3\
The vectors  are linearly independent (non-coplanar) if and only if 3,  and  in u v wG G G \ 0u v w× ⋅ ≠

G G G .  That is, the vectors 
3,  and  in u v wG G G \  are non-coplanar if and only if the triple scalar product is non-zero.  (Alternatively, 
3,  and  in u v wG G G \  are coplanar if and only if 0u v w× ⋅ =

G G G .) 

Proof: (This proof is left up to you.  It is straightforward if you understand the dot product and cross product.) 



INTERSECTIONS OF PLANES AND SYSTEMS OF LINEAR EQUATIONS 

 



Important Exercise 
Complete the following table.  Two rows have been done for you. 

 Diagram Type of Intersection Nature of Normals Example Linear System 

 

No intersection.  The planes 
are parallel and distinct. 

The normals are parallel but 
the planes do not have any 

common points. 

2 3x y z+ + = 4
9

 (1) 
2 4 6x y z+ + =  (2) 

 

   Two 
Planes 

 

   

 

   

 

   

 

   

 

   

 
   

 

   

 

   

Three 
Planes 

 

The three planes intersect at 
a single point (type IV). 

The normals are  
non-coplanar.  Therefore, 
the triple scalar product of 
the normals is non-zero. 

1 2 3 0n n n× ⋅ ≠
G G G  

3 0x y+ − =  (1) 
5 0y z+ + =  (2) 
2 0x z+ + =  (3) 



 



 



USING MATRICES TO PERFORM GAUSSIAN ELIMINATION AND GAUSS-JORDAN ELIMINATION 

Introduction 
Although the method of elimination of the previous section works very well, it tends to be long and tedious.  In particular, 
it is extremely tiresome having to copy all the literal coefficients (i.e. the x’s, y’s and z’s) from one line to the next.  Since 
mathematicians always strive to strip away all but the essential details, a method has been devised that allows us to solve 
systems of linear equations without having to write the literal coefficients at all!  This approach requires the use of 
matrices, which are introduced in the next section. 

What is a Matrix? 
A matrix (plural matrices) is a rectangular array of elements (or entries) set out by rows and columns.  Matrices are used 
to store numbers (or any other mathematical objects) in rows and columns for a variety of different applications including 
transformations, graph theory and solving systems of equations.  The diagrams below should help to bring this rather 
abstract discussion into the realm of tangibility. 

2 4 1
2 0 0
8 9 7
0 0 1

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎝ ⎠

An Example of a 4×3 (4 by 3) Matrix 
(4 rows, 3 columns) 

Row 1 
Row 2 
Row 3 
Row 4 

  

11 12 13

21 22 23

31 32 33

41 42 43

a a a
a a a
a a a
a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Notation used to Identify Entries 
(Elements) of a Matrix 

Entry (element) in 
row 4, column 2 

Column 1   Column 2   Column 3 Entry (Element) in Row 2, Column 3 

Entry (element) in 
row 2, column 1 

In general, an “m by n” matrix (written m×n) consists of m rows and n columns.  In any matrix A, the entry (element) 
found in row r and column s is denoted . rsa

How are Matrices used to Solve Systems of Linear Equations? 
Consider the following 
system of linear equations: 

2 3 4x y z+ + =  (1) 

2 4x y z− + = −  7 (2) 

3 14 48x y z− + = −  (3) 

Prediction using Normal Vectors of the Planes Corresponding to the Equations 
There is no pair of parallel normals.  Thus, the system may have a unique solution, an infinite 
number of solutions or no solution. 

1 2n n n× ⋅ 3  
(1,2,3) (2, 1,4) (3, 14,1)= × − ⋅ −  
(11, 2, 5) (3, 14,1)= − ⋅ −  
0=  

Since the triple scalar product is zero, the normal vectors must be coplanar (linearly dependent).  
Therefore, the system has no solutions or an infinite number of solutions (Type III). 

The first step in using a matrix to solve such a system is to write the augmented matrix of the system.  The augmented 
matrix of a linear system consists entirely of the numerical coefficients of the system, written in the same order as they 
appear in the equations.  Thus, the augmented matrix for the above system is written as follows: 

1 2 3 4
2 1 4 7
3 14 1 48

⎛ ⎞
⎜ ⎟− −⎜ ⎟

⎟⎜ − − ⎠⎝

 

Note that the first column contains the numerical coefficients of x, the second column contains the numerical coefficients 
of y, the third column contains the numerical coefficients of z and the fourth column contains the constant coefficients 
from the right hand side of each equation. 
Expressing the system of linear equations in this much more compact form has several advantages.  First, by relieving us 
of the tedium of copying the literal coefficients from one line to the next, it allows us to find solutions much more quickly.  
Second, it allows us to focus entirely on the essential details, which frees us from the pitfall of wasting time on irrelevant 
information.  Finally, this approach lends itself much more easily and neatly to automation (i.e. using a computer or 
electronic calculator to solve a linear system). 



Elementary Row Operations and how they Correspond to the Method of Elimination 
There are operations that can be performed on the rows of an augmented matrix that correspond exactly to the steps 
performed when using the system of elimination.  These operations are summarized in the following table. 

Elementary Row Operations 
1. Any row can be multiplied or divided by a non-zero 

constant. 
2. Any row can be replaced by the sum or difference of that 

row and a multiple of another row. 
3. Any two rows can be interchanged (swapped). 

Corresponding Operations in Method of Elimination 
1. Both sides of an equation can be multiplied or 

divided by a non-zero constant. 
2. A multiple of an equation can be added to or 

subtracted from any other equation. 
3. Two equations can be interchanged (swapped). 

 

Solution to Example from Previous Page using 
Elementary Row Operations 

1 2 3 4
2 1 4 7
3 14 1 48

⎛ ⎞
⎜ ⎟− −⎜ ⎟

⎟⎜ − − ⎠⎝

 

1 2 3 4
0 5 2 15
0 20 8 60

⎛ ⎞
⎜ ⎟− − −⎜ ⎟

⎟⎜ − − − ⎠⎝

 

1 2 3 4
0 5 2 15
0 0 0 0

⎛ ⎞
⎜ ⎟− − −⎜ ⎟

⎟⎜ ⎠⎝

 

The final row of this matrix corresponds to 
the equation , which of course, has an 
infinite number of solutions.  The rest of the 
solution is shown on the right hand side of 
this table. 

0z = 0

4
Solution to Example from Previous Page using Standard Approach 

2 3x y z+ + =  (1) 
2 4x y z 7− + = −  (2) 

3 14 48x y z− + = −  (3) 

(1) × −2 + (2),  5 2 1y z 5− − = −  (4) 
(1) × −3 + (3),  20 8 60y z− − = −  (5) 
(4) × 4 − (5),  0z 0=  (6) 

Since the equation 0 0z =  has an infinite number of solutions, we can let 
z t=  and write parametric solutions for x and y.  By substituting z t=  into 
equation (4), we obtain 2

5 3y t= − + .  By substituting the parametric 
expressions for y and z into equation (1), we obtain 11

5 2x t= − − .  
Summarizing, we conclude that the planes 

2 3x y z 4+ + =  (1) 
2 4x y z 7− + = −  (2) 

3 14 48x y z− + = −  (3) 

intersect in a line with parametric equations  
11
5 2x t= − −  
2
5 3y t= − +  

z t=  

–2R1 + R2 → 
–3R1 + R3 → 

4R2 – R3 → 

Important Terminology 
Gaussian Elimination 
Gaussian elimination is a matrix method for solving systems of linear equations.  It involves the use of elementary row 
operations to transform a matrix into a form in which the entries in the lower triangular portion (below the main 
diagonal) are all zeros.  A matrix in this form is said to be in row-echelon form.  Once the matrix is in row-echelon form, 
back substitution needs to be performed to calculate the required values.  In the example below, for instance, the third 

row of the row-echelon matrix corresponds to the equation 3 3p z l= , which produces the solution 3

3

lz
p

= .  To calculate y, 

this value of z must be substituted into the equation corresponding to the second row.  Finally, to calculate x, the values of 
y and z are substituted into the equation corresponding to the first row. 

1 2 3 1

1 2 3 2

1 2 3 3

a a a k
b b b k
c c c k

⎛ ⎞
⎜ ⎟
⎜ ⎟

⎟⎜ ⎠⎝

   
1 2 3 1

2 3 2

3 3

0
0 0

m m m l
n n l

p l

⎛ ⎞
⎜ ⎟
⎜ ⎟

⎟⎜ ⎠⎝

 

 Before applying 
Gaussian elimination 

After applying 
Gaussian elimination 



Gauss-Jordan Elimination 
Gauss-Jordan elimination is a variation of Gaussian elimination.  In Gauss-Jordan elimination, elementary row 
operations are applied until all entries are zero except those in the main diagonal, which are all one.  A matrix in this 
form is said to be in reduced row-echelon form.  The main advantage of Gauss-Jordan elimination over Gaussian 
elimination is that back substitution is not required. 

1 2 3 1

1 2 3 2

1 2 3 3

a a a k
b b b k
c c c k

⎛ ⎞
⎜ ⎟
⎜ ⎟

⎟⎜ ⎠⎝

    
1

2

3

1 0 0
0 1 0
0 0 1

l
l
l

⎛ ⎞
⎜ ⎟
⎜ ⎟

⎟⎜ ⎠⎝

 

Before applying 
Gauss-Jordan elimination 

After applying 
Gauss-Jordan elimination 

Example 
Use Gauss-Jordan elimination to solve the given system of three linear equations in 
three unknowns.  Before racing ahead and burying your head in the world of 
elementary row operations, pause for a moment to interpret the given system as the 
intersection of three planes in .  Before you perform even a single elementary row 
operation, you should know whether the system represents type I, II, III or IV intersection. 

3\

Solution 
There is no pair of parallel 
normals, so we can proceed 
directly to calculating the triple 
scalar product. 

1 2 3

2x y z+ + = 8
1

 (1) 
2 3x y z− − + =  (2) 

3 7 4 1x y z− + =

n n n× ⋅
(1,1, 2) ( 1, 2,3) (3, 7,4)= × − − ⋅ −

 
 

(7, 5, 1) (3, 7, 4)= − − ⋅ −  
52=  
0≠  

Therefore, the normal vectors of 
the three planes are non-
coplanar, which means that we 
should expect a unique solution 
(type IV, planes intersect at a 
single point). 

1 1 2 8
1 2 3 1

3 7 4 10

⎛ ⎞
⎜ ⎟− −⎜ ⎟

⎟⎜ − ⎠⎝

 

1 1 2 8
0 1 5 9
0 10 2 14

⎛ ⎞
⎜ ⎟−⎜ ⎟

⎟⎜ − − − ⎠⎝

 

1 0 7 17
0 1 5 9
0 0 52 104

⎛ ⎞
⎜ ⎟−⎜ ⎟

⎟⎜ ⎠⎝

 

1 0 7 17
0 1 5 9
0 0 1 2

⎛ ⎞
⎜ ⎟−⎜ ⎟

⎟⎜ ⎠⎝

 

1 0 0 3
0 1 0 1
0 0 1 2

⎛ ⎞
⎜ ⎟− −⎜ ⎟

⎟⎜ ⎠⎝

 

1 0 0 3
0 1 0 1
0 0 1 2

⎛ ⎞
⎜ ⎟
⎜ ⎟

⎟⎜ ⎠⎝

 

This final matrix is in reduced row-
echelon form.  Clearly, it corresponds to 
the equations 

3x =  
1y =  
2z =  

By substituting these values into each of 
the original equations, we find that each 
equation is satisfied. 

0  (3) 

R2 + R1 → 
R3 – 3R1 → 

R2 + R1 → 

10R2 – R3 →

R1 – 7R3 → 
R2 – 5R3 → 

–R2→ 

Augmented 
Matrix for the 

System 

R3 ÷ 52→ 

Homework 
p. 301: #6, 7, 8, 9 p. 309: #7, 8, 9 
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